unidad 4. campos gravitatorio y elÉctricog...problemas campos gravitatorio y eléctrico iv-4 p.iv-...

21
Problemas Campos gravitatorio y eléctrico IV-1 UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICO P.IV- 1. Dado el campo vectorial r u r k r F 2 , donde k es una constante y r u es el vector unitario en la dirección y sentido del desplazamiento, calcular la circulación del campo (el trabajo para el caso particular de los campos de fuerza) entre dos puntos A y B, cuyos vectores de posición son A r y B r . P.IV- 2. Sabiendo que la carga del electrón vale 1.6·10 -19 C y que las masas del electrón y protón son, respectivamente, de 9.11·10 -31 Kg y de 1.67·10 -27 Kg, calcula las fuerzas gravitatoria y eléctrica ejercidas entre el protón del núcleo del átomo de hidrógeno y su electrón, que gira en una órbita de radio 5.29·10 -11 m (primera órbita atómica de Bohr del H). Halla después la relación entre ambas fuerzas. Solución: 3.6·10 -47 N; 8.2·10 -8 N; 2.3·10 39 P.IV- 3. Si tratamos de acercar una carga de 0.1 mC a otra fija de 0.3 mC desde 2 m hasta 50 cm de la misma: (a) representar cómo varía la fuerza que hay que ejercer en función de la distancia; (b) halla el trabajo total realizado. Solución: -4.05·10 2 J P.IV- 4. El átomo de hidrógeno tiene una masa de 1.67·10-27 Kg y cuando está ionizado su carga vale 1.6·10 -19 C. ¿Qué relación existe entre la fuerza electrostática y la gravitatoria cuando dos protones se encuentran a 1 m de distancia? Solución: 10 36 P.IV- 5. Cuatro cuerpos, de igual masa M, se encuentran situados en los vértices de un cuadrado de lado l. Calcula el módulo de la fuerza ejercida sobre una cualquiera de las masas por parte de las otras tres. Solución: (GM 2 /l 2 )(2 1/2 + 1/2)

Upload: lamdung

Post on 08-Apr-2018

227 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-1

UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICO

P.IV- 1. Dado el campo vectorial rurkrF

2 , donde k es una constante y

ru

es el vector unitario en la dirección y sentido del desplazamiento, calcular la

circulación del campo (el trabajo para el caso particular de los campos de fuerza) entre

dos puntos A y B, cuyos vectores de posición son Ar

y Br

.

P.IV- 2. Sabiendo que la carga del electrón vale 1.6·10-19

C y que las masas del

electrón y protón son, respectivamente, de 9.11·10-31

Kg y de 1.67·10-27

Kg, calcula las

fuerzas gravitatoria y eléctrica ejercidas entre el protón del núcleo del átomo de

hidrógeno y su electrón, que gira en una órbita de radio 5.29·10-11

m (primera órbita

atómica de Bohr del H). Halla después la relación entre ambas fuerzas.

Solución: 3.6·10-47

N; 8.2·10-8

N; 2.3·1039

P.IV- 3. Si tratamos de acercar una carga de 0.1 mC a otra fija de 0.3 mC desde

2 m hasta 50 cm de la misma: (a) representar cómo varía la fuerza que hay que ejercer

en función de la distancia; (b) halla el trabajo total realizado.

Solución: -4.05·102 J

P.IV- 4. El átomo de hidrógeno tiene una masa de 1.67·10-27 Kg y cuando está

ionizado su carga vale 1.6·10-19

C. ¿Qué relación existe entre la fuerza electrostática y la

gravitatoria cuando dos protones se encuentran a 1 m de distancia?

Solución: 1036

P.IV- 5. Cuatro cuerpos, de igual masa M, se encuentran situados en los vértices

de un cuadrado de lado l. Calcula el módulo de la fuerza ejercida sobre una cualquiera

de las masas por parte de las otras tres.

Solución: (GM2/l

2)(2

1/2 + 1/2)

Page 2: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-2

P.IV- 6. Dos bolitas conductoras idénticas de masa m se cuelgan, mediante hilos

de longitud L y masa despreciable, de un mismo punto. Si se las carga con la misma

carga, éstas se separan de manera que el ángulo que forman los dos hilos es de 2θ.

¿Cuál es el valor de la carga suministrada en función de θ?

Solución: (4L2mgsen

2θtgθ/K)

1/2

P.IV- 7. Calcula el trabajo que es necesario desarrollar para desplazar una masa

de 1 kg desde un punto situado a 3 m de otra masa de 5 Kg, hasta otro punto situado a 1

m de distancia. Efectúa el mismo cálculo para el caso del campo eléctrico en el vacío y

toma los mismos valores numéricos, sustituyendo Kg por nC de carga positiva.

Interpreta el signo del trabajo.

Solución:22.2·10-11

J; -3·10-10

J

P.IV- 8. ¿En qué punto, a lo largo de la línea que une dos masas, una doble que

la otra, se anula el campo gravitatorio resultante? Contesta a la pregunta anterior si se

trata de campo eléctrico y son dos cargas del mismo signo, una doble que la otra. ¿Y si

se trata de dos cargas del mismo valor y de signo opuesto?

Solución: en un punto situado entre ambas a distancia 0.586d de la

mayor//idem//en ningún punto

P.IV- 9. Para mantener fijo en el espacio un cuerpo pequeño de 0.1 g de masa y

cargado positivamente, se utiliza un campo eléctrico que como mínimo debe poseer una

intensidad de 10 V·m-1. ¿Cuánto vale la carga que posee el cuerpo?. En el caso de que

el campo pase por su valor mínimo, ¿cuál será la dirección y sentido respecto a la

vertical?

Solución:98 C; 10 N·C-1

P.IV- 10. En un sistema de coordenadas rectangulares se encuentran en el vacío

dos cargas puntuales, q1 = 2·10-8

C en el punto A (-5,0,0) y la carga q2 = -2·10-8 C

situada en el punto B (5,0,0), donde las coordenadas están dadas en centímetros.

Calcula:

Page 3: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-3

a) El vector intensidad de campo en el punto C del segmento AB , situado a 2

cm de A.

b) Siendo D un punto del plano XY tal que el triángulo ADB es equilátero,

calcula el vector intensidad de campo en D.

c) Calcula el potencial creado en los puntos C y D.

d) Calcula el trabajo realizado para trasladar una carga de 3·10-8

C desde C a D.

P.IV- 11. Un dipolo está constituido por dos cargas: q = -2·10-9

C y q´= 2·10-9

C,

situadas en el vacío. La constante dieléctrica en este medio vale

2129

036

10

mNC

.

Determina:

a) El potencial electrostático producido por el dipolo en un punto M de la

mediatriz de AB (puntos donde están situadas las cargas).

b) El potencial en punto C, siendo AC = 10 m y CB = 8 m.

c) El trabajo necesario para llevar una carga de 10-9

C desde el punto M hasta el

punto C.

Solución: 0 V; 0,45 V; -0,45·10-9

J

P.IV- 12. Dos cargas puntuales idénticas +q C están separadas una distancia d.

a) Calcula el trabajo por unidad de carga para traer otra carga Q desde el infinito,

a lo largo de la perpendicular que corte en el punto medio a la línea que une las cargas,

hasta el citado punto de corte.

b) ¿Cuánto valdría dicho trabajo si las cargas fuesen +q y -q?

Solución: (4KqQ/d) J; 0 J

P.IV- 13. Para un valor de q1 = 5 C calcula el valor de Q si el potencial en el

punto P es nulo. Obtener el vector campo eléctrico en dicho punto y encontrar la fuerza

resultante sobre la carga Q. En el diagrama todas las coordenadas están expresadas en

metros.

Solución: -8·10-6

C; -1620 j

N·C-1

; 0 N

Page 4: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-4

P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están

situadas en los puntos A y B de la figura. Calcula el campo eléctrico en el punto P

creado por aquellas cargas. Determina el trabajo necesario para trasladar una carga de 2

C desde el punto P al punto C.

Solución: (25.92·106 i

+ 70.56·106 j

) N·C-1

; 4.32 J

P.IV- 15. Dado el sistema de cargas puntuales de la figura, determina:

a) El valor de q2 para que la fuerza sobre una carga puntual positiva situada en P

sea horizontal.

b) El campo y el potencial electrostáticos en P.

Datos: a = 1 m; b = 31/2

m; q1 = 2 C

Solución: 16 C; 62353.83 i

N·C-1

; 0 V

Page 5: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-5

P.IV- 16. Dadas dos cargas de valores 1 y -2 nC, situadas en los puntos A (0,0,0)

y B (2,0,0) respectivamente. Calcula el trabajo realizado para llevar una carga de 1 C

desde el punto C (1,1,1) hasta el punto D (0,1,0).

Solución: -6.14·10-6

J

P.IV- 17. Se tienen dos cargas puntuales Q y 4Q separadas una distancia R.

Obtener el vector campo eléctrico y el potencial eléctrico en el punto medio de su

separación. ¿Existe algún punto del segmento que las une para el que se anule el campo

eléctrico? ¿Y el potencial?

Solución: 108·109 N·C

-1; 90·10

9 Q·R

-1 V; a una distancia R/3 de Q

P.IV- 18. Sean cuatro masas iguales de valor m colocadas en los vértices de un

cuadrado de lado l. Calcula el campo y el potencial:

a) En un punto P situado sobre la perpendicular al plano del cuadrado por su

centro y a una distancia l.

b) En el centro del cuadrado.

c) Calcula además la velocidad de una masa m abandonada en reposo en el punto

P al llegar al centro del cuadrado.

Solución: a) 2

33

28

l

Gmg p ;

l

GmVp

3

24 ; b)

Kg

Ng 00 ;

Kg

JV 240 ;

c) 1

0

78.4 sml

Gmv

Page 6: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-6

P.IV- 19. Dos cargas negativas iguales, de 1 C, se encuentran sobre el eje de abscisas,

separadas una distancia de 20 cm. A una distancia de 50 cm sobre la vertical que pasa

por el punto medio de la línea que las une, se abandona una carga de 1 C positiva, de

masa 1 g, inicialmente en reposo. Determina la velocidad que tendrá al pasar por el

punto medio de la línea de unión.

Solución: 17 m·s-1

P.IV- 20. En el modelo de Bohr del átomo de hidrógeno, el electrón gira

alrededor de protón, describiendo una órbita circular de radio r, bajo la acción de una

fuerza atractiva, entre ambas partículas, de naturaleza coulombiana. Determina:

a) La energía cinética que posee el electrón en su órbita, en función del radio de

la misma.

b) La relación entre la energía cinética y la energía potencial del electrón.

c) La energía cinética y la energía total del electrón para r = 0.53·10-10

m.

d) La energía, en eV, que debe suministrarse al átomo de hidrógeno para

ionizarlo.

Solución: (1.15·10-28

/r) J; Ec = -Ep/2; 2.17·10-18

J; -2.17·10-18

J ; 13.58 eV

P.IV- 21. Un campo eléctrico uniforme de valor E = 200 N·C-1

está dispuesto

horizontalmente en la dirección del eje X. Se deja en libertad en el origen, y partiendo

del reposo, una carga puntual de Q = 3C y m = 0.12 g. Calcula:

a) La variación de energía cinética de la carga en x = 4m.

b) La variación de energía potencial en el mismo recorrido.

c) El desplazamiento vertical que ha experimentado la partícula.

d) La diferencia de potencial eléctrico entre la posición inicial y final de la

partícula.

Solución:1.15·10-2

J; -1.15·10-2

J; 7.78 m; 800 V.

Page 7: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-7

P.IV- 22. Calcula el campo gravitatorio que crean las masas que se indican en la

figura, en el punto (3,1). Las distancias se miden en metros y m1 = m2 = m3 = 100 Kg.

¿Cuál será el valor de la fuerza resultante que actúa sobre una masa de 100 Kg,

colocada en dicho punto? ¿Cuál será el valor del potencial gravitatorio en el punto P?

Solución: 93.58G j

N·Kg-1

; 9368G j

N; -1.08·10-8

J·Kg-1

P.IV- 23. Dibujar a escala las líneas de campo y equipotenciales de dos cargas

puntuales de 1 nC de signos opuestos (dipolo eléctrico) separadas entre sí una distancia

de 10 cm.

P.IV- 24. Dibuja las líneas de campo y las equipotenciales que representan al

campo eléctrico creado por:

a) Una carga puntual positiva.

b) Una carga puntual negativa.

c) Compara estos resultados con las correspondientes al campo gravitatorio.

P.IV- 25. La figura muestra líneas de fuerza debidas a una masa en forma de

disco. ¿Qué información sobre el campo gravitatorio puede obtenerse, debido al hecho

de que las líneas son mucho más densas cerca de disco que lejos de él? ¿Y debido al

hecho de que cerca del centro del disco las líneas están uniformemente espaciadas?

Page 8: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-8

P.IV- 26. La siguiente figura muestra las líneas de fuerza correspondientes a un

sistema de cargas puntuales. ¿Cómo son los valores relativos de ambas cargas? ¿Cuáles

son los signos de ambas cargas? ¿En qué regiones del espacio es más intenso el campo

eléctrico? Razona las respuestas.

P.IV- 27. ¿Cuál sería el flujo gravitacional terrestre a través de la pared de una

habitación de 3×6 m? ¿Y a través del piso de iguales dimensiones?

Solución:0 Nm2·Kg

-1; -176.4 Nm

2·Kg

-1

P.IV- 28. Calcula el flujo que atraviesa una superficie cúbica de lado l en el

campo gravitatorio terrestre (para puntos próximos a la superficie de la Tierra).

Solución:0 Nm2/Kg

Page 9: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-9

P.IV- 29. Razonar que la fuerza de atracción sobre una partícula P, que se

encuentra en el interior de una esfera homogénea hueca, es cero se encuentre donde se

encuentre en el interior.

P.IV- 30. A una esfera metálica hueca, de 8 cm de radio, se le comunica una

carga de Q = -4·10-8

C. Calcula:

a) La intensidad del campo eléctrico sobre la superficie.

b) La intensidad del campo eléctrico en un punto interior a 4 cm del centro.

c) La intensidad del campo eléctrico en un punto exterior a 15 cm del centro.

Solución:E = Q/4r2 si r R; E = 0 si r < R; 56.25·10

3 N·C

-1; 0 N·C

-1;

16·103 N·C

-1; dirigidos hacia el centro

P.IV- 31. Calcula el campo y el potencial creado por una esfera de carga Q

distribuida superficialmente con densidad superficial de carga y comparar el resultado

con el obtenido cuando la carga se distribuye con densidad de volumen .

Solución:1. Carga distribuida superficialmente:

Rrr

QE

24; RrE 0 ; Rr

r

QV

4;

RrR

QV

4

2. Carga distribuida en volumen:

Rrr

QE

24; Rrr

R

QE

34; Rr

r

QV

4;

22

33

2rR

R

KQV

P.IV- 32. Calcula el campo gravitatorio en puntos exteriores e interiores a la

Tierra, supuesta esférica y el único astro del Universo (Nota: todas las características de

este campo serán idénticas a las del campo eléctrico del P.IV- 31).

Solución: TRrr

GMg

2; Rrr

R

MGrGg

T

T 33

4

Page 10: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-10

P.IV- 33. Supongamos que se hace un túnel a través de la Tierra, a lo largo de un

diámetro, y se deja caer por su interior una cierta masa m.

a) Halla la fuerza sobre la masa m, cuando esté situada a una distancia r del

centro de la Tierra (r < R).

b) A la vista del resultado anterior, discutir su movimiento.

c) Halla el periodo del movimiento armónico.

Solución: Tr

T

T RrurR

mMGF

3; M.A.S.; T = 1.41 horas

P.IV- 34. Determina por aplicación del teorema de Gauss el campo eléctrico en

las proximidades de un plano infinito, siendo la densidad superficial de carga.

Solución: E = /20

P.IV- 35. Halla el campo y el potencial entre dos láminas conductoras paralelas

planas e infinitas, separadas una distancia d, cargadas con cargas iguales y de signos

contrarios.

Solución: 0E ; dEd

VV BA

0

, siendo A y B dos puntos

situados en las láminas

P.IV- 36. Considerando la Tierra totalmente esférica y homogénea, calcula:

a) El campo y el potencial gravitatorio para un punto cualquiera situado a una

altura h sobre la superficie terrestre.

b) La energía potencial que adquiere una masa m situada en ese punto si:

b.1) Tomamos el origen de energía potencial en el infinito.

b.2) Tomamos el origen de energía potencial en la superficie terrestre.

c) Aplicación numérica de los dos anteriores apartados si h = 10000 m y m = 4

Kg.

P.IV- 37. Un astronauta, cuyo peso en la Tierra es de 700 N, aterriza en el

planeta Venus y de nuevo mide su peso, observando que después de efectuadas las

correcciones pesa 600 N. Considerando que el diámetro de Venus es aproximadamente

el mismo que el de la Tierra, calcula la masa de Venus. Datos: MT = 6·1024

Kg.

Page 11: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-11

P.IV- 38. Determina la aceleración de la gravedad para un cuerpo que cae sobre

la Luna desde un punto muy próximo a ella, si sabemos que el diámetro de la Luna es

aproximadamente 1/4 del diámetro de la Tierra y la razón entre sus masas es de 1/81.

Solución: 1.93 m·s-2

P.IV- 39. Calcula la masa del Sol a partir del radio de giro de la Tierra y del

periodo de rotación de la misma (rotación alrededor del Sol = traslación).

Solución: 2

23 4

GT

R , coincide exactamente con la 3ª Ley de Kepler

P.IV- 40. Desde la superficie de la Tierra se lanza un satélite de 1000 Kg y se le

sitúa en una órbita de 650 Km sobre la superficie terrestre. Determina:

a) Valor de la intensidad del campo gravitatorio en la órbita.

b) Velocidad y periodo de giro del satélite.

c) Energía suministrada por los motores para situarlo en órbita.

Datos: MT= 5,974 1024

kg; RT=6370 km; G= 6,67 10-11

Nm2/kg

2

P.IV- 41. Determina la rapidez con que debemos lanzar un cuerpo desde la

superficie terrestre para que alcance una altura de 9RT / 4. Determina además el periodo

de giro de un satélite que gire en torno a la Tierra en una órbita de radio igual a la altura

dada anteriormente.

Datos: MT= 5,974 1024

kg; RT=6370 km; G= 6,67 10-11

Nm2/kg

2

Solución: 9297.1 m·s-1

; 29679.8 s

P.IV- 42. Un satélite artificial de 100 Kg está girando alrededor de la Tierra a

una altura media, sobre la superficie terrestre, de 400 Km. Calcula:

a) La velocidad orbital del satélite.

b) Suponiendo que no existen rozamientos, el trabajo que ha tenido que

realizarse para situarlo en órbita desde la superficie terrestre.

c) En la posición que ocupa, ¿ha aumentado o ha disminuido la energía

potencial?

Datos: goT= 9,8 N/kg; RT=6370 km;

Solución: 7761.14 m·s-1

; 3.3882·109 J

Page 12: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-12

P.IV- 43. Se lanza un satélite con el propósito de situarlo en una órbita circular

situada en el plano ecuatorial y que sea geoestacionaria. El satélite describe su

trayectoria con una velocidad de módulo constante v. Calcula:

a) El valor de la altura h donde evoluciona el satélite.

b) El módulo de la velocidad.

Datos: MT= 5,974 1024

kg; RT=6370 km; G= 6,67 10-11

Nm2/kg

2

Solución: 35852 Km; 3068.9 m·s-1

P.IV- 44. El planeta Marte tiene un radio igual a 0.53 veces el de la Tierra. Su

satélite Fobos describe una órbita circular de radio R1 = 2.77 RM en T = 7h, 39 min,

14s, aproximadamente. Calcula la aceleración de la gravedad en la superficie de Marte.

Solución: 3.73 m·s-2

P.IV- 45. Desde una altura de 1000 Km sobre la superficie de la Tierra, se lanza

un cuerpo con cierta velocidad v0 tal como se indica en la figura.

Calcula para qué valores de la velocidad el cuerpo quedará en órbita alrededor

de la Tierra y para cuáles escapará de la atracción terrestre. Considera en todos los casos

que la órbita es circular y que RT = 6500 Km.

Solución: Si v0 > 10.313 Km·s-1

el cuerpo escapa; en caso contrario queda

atrapado.

Page 13: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-13

P.IV- 46. Halla el punto situado entre la Tierra y la Luna en el que debe

colocarse un cuerpo de masa m para que la fuerza de atracción de la Luna iguale a la

fuerza de atracción de la Tierra. ¿Cuál es el trabajo mínimo necesario para lanzar una

nave cósmica de masa 2000 Kg desde la superficie de la Tierra a la Luna? (Suponer que

el cuerpo alcanzará la Luna si es capaz de llegar hasta el punto en que se igualan la

atracción lunar y la terrestre). Datos: distancia Tierra-Luna = 3.8·108 m; MT = 81 ML.

Solución: a 3.42·108 m de la Tierra; 2.59·10

9 J

P.IV- 47. Si por alguna causa interna la Tierra redujese su radio a la mitad

manteniendo su masa:

a) ¿Cuál sería la intensidad del campo en su nueva superficie?

b) ¿Se modificaría sustancialmente su órbita alrededor del Sol?

c) ¿Cuál sería la nueva duración, en horas, del día?

Solución: g = 4 g0; no; 6 horas

P.IV- 48. Dos satélites artificiales de masa m0 y 2 m0 describen órbitas circulares

del mismo radio r = 2RT, siendo RT el radio de la Tierra. Calcula la diferencia entre las

energías mecánicas de ambos satélites.

Solución: GMTm0/4RT

P.IV- 49. Un satélite artificial de 1.2 Tn se eleva a una distancia de 6500 Km del

centro de la Tierra y se le confiere un impulso mediante cohetes propulsores para que

describa una órbita circular alrededor de la Tierra.

a) ¿Qué velocidad deben comunicar los cohetes para que tenga lugar ese

movimiento?

b) ¿Cuánto vale el trabajo realizado para llevarlo de la superficie de la Tierra a

esa altura?

Datos: RT = 6.36·106 m; g0 = -3.659·10

10 J

Solución: 7809.31 m·s-1

; -1.61·109 J; -3.659·10

10 J

Page 14: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-14

P.IV- 50. Un cuerpo de 2 kg de masa se mueve a lo largo de una recta con una

velocidad constante j

3 m/s. Determinar su momento angular con respecto al origen

(0,0) cuando el cuerpo está en los puntos (2,0), (2,1) y (2,2) de la misma recta. ¿Qué

conclusión se obtiene respecto del momento angular de un cuerpo que se mueve con

movimiento rectilíneo uniforme?

P.IV- 51. ¿Permanece constante el momento angular de un electrón en una

órbita determinada según el modelo de Bohr? Explicadlo.

P.IV- 52. Teniendo en cuenta la respuesta del problema anterior, ¿puede usarse

el valor del momento angular para caracterizar una determinada órbita? ¿Conoces algún

número cuántico referido al momento angular?

P.IV- 53. Un cuerpo de 3 kg de masa se mueve a lo largo de una recta con

velocidad jiv

43 m/s. Determinar su momento angular con respecto al origen (0,0)

cuando el cuerpo se encuentra en el punto (4,1). ¿Qué dirección tiene el momento

angular?

Solución: jip

129 kg m/s; kL

39 kg m2/s.

P.IV- 54. Una persona se encuentra de pie sobre una plataforma que gira

alrededor de un eje vertical. En un momento dado, se siente mareada y trata de

desplazarse hacia el eje con la intención de asirse a él. ¿Crees que ha tomado la decisión

más acertada? ¿Por qué?

P.IV- 55. El radio solar es de unos 6.96×108 m, y su período de rotación es de

25.3 días. ¿Cuál sería su período de rotación si se colapsara formando una enana blanca

de 4000 km de radio, sin variación apreciable de masa?

Solución: 1 min 12 s.

P.IV- 56. Si G = 6.67 × 1011

N m2/kg

2, la masa de la Tierra es 6×10

24 kg y el

radio de la Tierra es de 6370 km, determinar:

a) La magnitud de la fuerza con que la Tierra atrae a una piedra de 100 g.

b) La magnitud de la fuerza con que la piedra atrae a la Tierra.

Page 15: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-15

c) El valor de la aceleración que adquiere la piedra sometida a esa fuerza.

d) El valor de la aceleración que adquiere la Tierra sometida a esa misma

fuerza.

e) La fuerza con que la Tierra atraerá a otra piedra cuya masa es de 10 kg,

así como la aceleración que ésta adquiere.

Solución: a) 0.98 N; b) 0.98 N; c) 9,8 m/s2; d) 1.6×10

25 m/s

2; e) 98N, 9.8

m/s2.

P.IV- 57. Una masa cae con una aceleración de 3.7 m/s2 sobre la superficie de

un planeta sin atmósfera cuyo radio es 0.4 veces el terrestre. ¿Cómo es la masa de este

planeta en relación con la terrestre?

Datos: gT= 9,8 N/kg;

Solución: mP/mT = 0.06.

P.IV- 58. Dos masas puntuales iguales de 5 kg se encuentran situadas en los

vértices inferiores de un triángulo equilátero de 40 cm de lado. Si se coloca en el vértice

superior una tercera masa m´:

a) ¿Qué aceleración adquiere esta última masa en ese punto (exprésala en

notación vectorial?

b) ¿Descenderá con aceleración constante?

c) ¿Qué aceleración tendrá en el momento de llegar a la base del triángulo?

Solución: a) j9106.3 m/s

2; b) no; c) 0.

P.IV- 59. Determinar el campo producido en el punto P por la distribución de

masas de la figura:

5 kg

10 kg

P

3 kg

5 m

10 m

Solución: jig 1112 10309.110107.8 N/kg

Page 16: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-16

P.IV- 60. Tenemos cuatro partículas iguales de 2 kg de masa en los vértices de

un cuadrado de 1 m de lado. Determinar el módulo de la fuerza gravitatoria que

experimenta cada partícula debido a la presencia de las otras tres.

Solución: 5.10×1010

N.

P.IV- 61. Halla el valor que tiene el campo gravitatorio en la superficie del

planeta Júpiter, teniendo en cuenta que su masa es 300 veces la de la Tierra, y su radio,

11 veces mayor que el terrestre.

Solución: 24.3 m/s2.

P.IV- 62. La distancia de la Tierra al Sol es de 152 100 000 km en el afelio,

mientras que en el perihelio es de 147 100 000 km. Si la velocidad orbital de la Tierra es

de 30270 m/s en el perihelio, determinar, por conservación de la energía mecánica, cuál

será la velocidad orbital en el afelio.

Solución: 29247.5 m/s.

P.IV- 63. Cinco masas de 4 kg cada una están en posiciones equidistantes sobre

el arco de una semicircunferencia de 80 cm de radio. Una masa de 0.5 kg se sitúa en el

centro de curvatura de dicho arco. Determinar:

a) La fuerza que actúa sobre dicha masa.

b) La energía potencial de dicha masa en ese punto.

Solución: a) j101002.5 N; b) 8.33×10

10 J.

4 kg

4 kg

4 kg

4 kg

4 kg

0.5 kg

Page 17: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-17

P.IV- 64. Determinar la fuerza que actúa sobre la carga Q3 de la figura.

+

Q1 = + 4 C

Q2 = 10 C Q3 = 6 C

0.3 m

0.2 m

Solución: jiF

38.158.12 N.

P.IV- 65. ¿Cómo es el campo gravitatorio debido a una corteza esférica en un

punto exterior? ¿Y en uno interior? ¿Podrías demostrar tu respuesta a esta última

cuestión desde punto de vista cualitativo?

P.IV- 66. En un campo de fuerzas conservativo la energía potencial viene dada

por la expresión 3533 2 yzxyxU expresada en el sistema internacional.

Calcula: a) La fuerza que actúa sobre la partícula colocada en el punto A (1,2,1) m. b) El

trabajo realizado por el campo cuando la partícula se desplaza del punto A al B (-1,3,2)

m.

Solución: kjiF

6 N; 31 J.

P.IV- 67. Halla la fuerza gravitatoria y la fuerza eléctrica que se ejercen entre sí

dos electrones separados por una distancia de 10-10

m (1 Å), que es una distancia típica a

escala atómica. Compara las magnitudes de ambas fuerzas.

Solución: 5.54·10-51

N; 2.3·10-8

N; 4.16·1042

.

Page 18: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-18

P.IV- 68. Una gota de aceite tiene una masa de 4·10-14

kg y una carga neta de

4.8·10-19

C. Se hace actuar un campo eléctrico, variando su magnitud hasta lograr que la

fuerza eléctrica equilibre el peso de la gota, quedando ésta en reposo. ¿Cuál deberá ser

la dirección y magnitud de dicho campo eléctrico?

Solución: 8.17·105

N·C-1

.

P.IV- 69. Las masas m1, m2 y m3 de la figura adjunta valen 8·103 kg, 9·10

3 kg y

103 kg, respectivamente. Se pide: a) La intensidad del campo gravitatorio en el punto

(4,3) m. b) Fuerza que actuará sobre una masa de 10 kg situada en dicho punto.

Solución: (-3.55·10-8

, -6.83·10-8

) N·Kg-1

; (-35.5·10-8

; -68.3·10-8

) N.

P.IV- 70. ¿A qué altura de la superficie terrestre la intensidad del campo vale la

mitad que en la superficie de la Tierra? (Da el resultado en función del radio de la

Tierra, RT).

Solución: 0.41 RT.

Page 19: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-19

P.IV- 71. Dadas las cargas q1 = -7.2 C, q2 = -40 C y q3 = 6.4 C representadas en la

figura adjunta, determina:

a) Intensidad del campo eléctrico en el origen de coordenadas y fuerza que actúa

sobre una carga de -10-6

C situada en dicho punto.

b) Trabajo realizado por la fuerza electrostática al desplazar q2 hasta el origen.

c) Energía potencial de la distribución inicial. ¿Cuál es su significado físico?

Solución: (1980, 3960) N·C-1

; (-1.98·10-3

, -3.96·10-3

) N; -0.204 J; -0.101 J.

P.IV- 72. Un electrón describe una órbita circular de radio r alrededor de un

núcleo que contiene Z protones. Halla la expresión de la energía total de este átomo de 1

sólo electrón considerando que fuesen válidas las leyes de la Mecánica Clásica. Halla

su valor para el caso del átomo de hidrógeno (Z=1), suponiendo entonces r = 0.5 Å.

Solución: -14 eV.

Page 20: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-20

P.IV- 73. Una masa de 1000 kg se desplaza desde un punto en el que el

potencial es -5 J·kg-1

a otro que es -7 J·kg-1

. Calcula: a) El trabajo de las fuerzas

gravitatorias e indica si se trata o no de una transformación espontánea. b) Idem si el

cuerpo se aleja desde el punto en que Vg = -5 J·kg-1

hasta una gran distancia en que Vg

puede considerarse prácticamente nulo.

Solución: 2000 J (espontánea); -5000 J (forzada).

P.IV- 74. En el núcleo atómico existe un determinado número (Z) de protones.

Si la distancia media a la que se encuentran los nucleones es de 10-13

m, ¿cuál es la

fuerza repulsiva que se ejercen entre sí dos protones cualesquiera?

P.IV- 75. ¿A qué altura sobre la superficie de la Tierra debe encontrarse un

cuerpo para perder el 10% de su peso?

Solución: 344.6 km.

P.IV- 76. Dada la figura adjunta y sabiendo que en el punto M se encuentra una

carga q1 de 5 nC y en el punto N otra carga q2 de valor -10 nC, determina:

Page 21: UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICOG...Problemas Campos gravitatorio y eléctrico IV-4 P.IV- 14. Dos cargas eléctricas puntuales q1 = 36 C y q2 = - 36 C están situadas en

Problemas Campos gravitatorio y eléctrico

IV-21

a) Intensidad del campo y potencial en el punto A. ¿Qué fuerza actuaría sobre

una carga q=-2C que se situase en el punto A?. b) Energía potencial del sistema de

cargas formado por q1 y q2. c) Trabajo realizado por la fuerza electrostática si

desplazamos q1 hasta el punto O.

Solución: (1.76, 4.06, -1.54) N·C-1

; -10.19 V; (-3.52·10-6

, -8.12·10-6

, 3.08·10-6

)

N; -6.18·10-8

J; 6.3·10-8

J.

P.IV- 77. Un satélite se pone en órbita a una distancia de la superficie terrestre

tal que la aceleración de la gravedad es la mitad del valor en la superficie. ¿Cuál es el

período de revolución del satélite en torno a la Tierra?

Solución: 2h, 21´, 59´´.

P.IV- 78. Un cometa tiene una velocidad de 18·104 km·h

-1 cuando se encuentra

a una distancia de 2·108 km del Sol. ¿Qué tipo de órbita describirá?

Solución: Hiperbólica.

P.IV- 79. a) Calcula la energía potencial electrostática en eV de un electrón en

un átomo de hidrógeno, suponiendo que el electrón se halla a una distancia media

respecto del protón igual a 5.3·10-11

m. b) Calcula a continuación la energía potencial

gravitatoria del sistema y compara ambas cantidades.

Solución: 27.1 eV; -1.2·10-38

eV; 2.26·1039

eV.