unidad 06 ecuaciones diferenciales imprimir

Upload: cristian-aguilar-quintanilla

Post on 29-Mar-2016

244 views

Category:

Documents


0 download

TRANSCRIPT

  • EcuacionesDiferenciales

    UniversidaddeElSalvadorFacultaddeIngenierayArquitectura

    EscueladeIngenieraElctrica

    AnlisisNumrico

    WilberCaldern

  • MtododeEuler

    AnchodelintervaloEDO

    ValoranteriorNuevaaproximacin

    dydx

    = f x , y= x i , yi=

    yi1=yi xi , yi h

  • MtododeEuler

    Seaf(x,y)=2y(xo,yo)=(1,4)encontrarlasolucinverdaderaycompararlaconelmtododeEuler

    i xi Euler Solucin

    0 -1.00 4.00 4.00

    1 -0.75 4.50 4.50

    2 -0.50 5.00 5.00

    3 -0.25 5.50 5.50

    4 0.00 6.00 6.00

    5 0.25 6.50 6.50

    6 0.50 7.00 7.00

    7 0.75 7.50 7.50

    8 1.00 8.00 8.00

  • MtododeEuler

    Seaf(x,y)=6x,y(xo,yo)=(0,2)encontrarlasolucinverdaderaycompararlaconelmtododeEuler

    h=0.5 h=0.05 h=0.0005

    i xi Solucin Euler Euler Euler

    0 0 2.00 2.00 2.00 2.00

    1 0.5 2.75 2.00 2.68 2.75

    2 1 5.00 3.50 4.85 5.00

    3 1.5 8.75 6.50 8.53 8.75

    4 2 14.00 11.00 13.70 14.00

    5 2.5 20.75 17.00 20.38 20.75

    6 3 29.00 24.50 28.55 29.00

    7 3.5 38.75 33.50 38.23 38.74

    8 4 50.00 44.00 49.40 49.99

  • MtododeHeun

    yi+10 =yi+ f (x i , yi) h

    yi+1=yi+f (x i , yi)+ f (xi+1 , yi+1

    0 )2

    h

    yi+10 :Predictor

    yi+1 :Corrector

  • MtododeHeun

    Seaf(x,y)=6x,y(xo,yo)=(0,2)encontrarlasolucinverdaderaycompararlaconelmtododeEuler

    i xi Solucin Predictor Corrector

    0 0.0 2.00 2.00 2.00

    1 0.5 2.75 2.00 2.75

    2 1.0 5.00 4.25 5.00

    3 1.5 8.75 8.00 8.75

    4 2.0 14.00 13.25 14.00

    5 2.5 20.75 20.00 20.75

    6 3.0 29.00 28.25 29.00

    7 3.5 38.75 38.00 38.75

    8 4.0 50.00 49.25 50.00

  • MtododeHeun

    yi+10 =yi+ f (xi , yi) h

    yi+11 =yi+

    f (x i , yi)+ f (x i+1 , yi+10 )

    2h

    yi+12 =yi+

    f (x i , yi)+ f (x i+1 , yi+11 )

    2h

    yi+13 =yi+

    f (x i , yi)+ f (x i+1 , yi+12 )

    2h

    yi+1n1=yi+

    f (xi , yi)+ f (xi+1 , yi+1n2)

    2h

    yi+1n =yi+

    f (x i , yi)+ f (xi+1 , yi+1n1)

    2h

  • MtododeHeun

    Aplicar el mtodo de Heun a la siguiente ecuacindiferencialordinaria.a)Paradoscorrectoresb)ParacuatrocorrectoresPresentarlasolucinhastax=2enavancesde0.25

    =e0.3 x0.3 y(xo , yo)=(0,0)

  • Paradoscorrectores

    .

    i x Predictor Corrector 1 Corrector 2

    0 0 0 0 0

    1 0.25 0.25 0.23159 0.23228

    2 0.50 0.4468 0.43037 0.43099

    3 0.75 0.61384 0.59921 0.59976

    4 1.00 0.75441 0.7414 0.74188

    5 1.25 0.87145 0.8599 0.86033

    6 1.50 0.96763 0.9574 0.95778

    7 1.75 1.04535 1.03631 1.03665

    8 2.00 1.10679 1.09882 1.09912

  • Paratrescorrectores

    .

    i x Predictor Corrector 1 Corrector 2 Corrector 3

    0 0 0 0 0 0

    1 0.25 0.25 0.23159 0.23228 0.23226

    2 0.50 0.44677 0.43035 0.43097 0.43094

    3 0.75 0.6138 0.59917 0.59972 0.5997

    4 1.00 0.75435 0.74134 0.74182 0.74181

    5 1.25 0.87138 0.85983 0.86026 0.86024

    6 1.50 0.96755 0.95731 0.9577 0.95768

    7 1.75 1.04526 1.03622 1.03656 1.03655

    8 2.00 1.1067 1.09872 1.09902 1.09901

  • Paracuatrocorrectores

    .

    i x Predictor Corrector 1 Corrector 2 Corrector 3 Corrector 4

    0 0 0 0 0 0 0

    1 0.25 0.25 0.23159 0.23228 0.23226 0.23226

    2 0.50 0.44677 0.43035 0.43097 0.43094 0.43094

    3 0.75 0.6138 0.59917 0.59972 0.5997 0.5997

    4 1.00 0.75435 0.74134 0.74183 0.74181 0.74181

    5 1.25 0.87138 0.85983 0.86026 0.86024 0.86025

    6 1.50 0.96755 0.95732 0.9577 0.95769 0.95769

    7 1.75 1.04527 1.03622 1.03656 1.03655 1.03655

    8 2.00 1.1067 1.09873 1.09902 1.09901 1.09901

  • Importante

    NoolvidarqueelmtododeHeunsellenaporfila,ylacalculadoradebeestar

    enradianes.

  • Importante

    ParaqueelmtododeHeundemejoresresultadossedebencalcularvarioscorrectoresyutilizarpequeosavances.

  • MtododePuntoMedio

    Estudiarparaantesdeexamen.

  • ltimaclase 15

    MtodosdeRungeKutta

    (xi,yi,h):funcinincremento

    yi1=yi xi , yi , h h

    xi , yi , h=a1k1a2 k2a3k3...an kn

  • ltimaclase 16

    MtodosdeRungeKutta

    asonconstantesylaskk1= f x i , yi

    k2= f x ip1h , yiq11 k1hk3= f x ip2 h , yiq21 k1hq22 k2 h

    k n= f x i pn1h , yiqn1,1k1hqn1,2 k2 hqn1,n1k n1h

  • ltimaclase 17

    MtodosdeRungeKutta

    Observequelasktienenrelacionesderecurrencia.Estoes,k1,apareceenlaecuacinparacalculark2,lacual

    apareceenlaecuacindek3,etctera.

  • ltimaclase 18

    MtodosdeRungeKutta2orden

    Donde

    yi1=yia1k1a2 k2 h

    k1= f x i , yik2= f x i p1h , yiq11 k1h

  • ltimaclase 19

    MtodosdeRungeKutta2orden

    Tresecuacionesconcuatroincgnitas,sedebeasumiralgunoelvalordeunavariable.

    a1=1a2, p1=q11=

    12 a2

  • ltimaclase 20

    MtodosdeRungeKutta2orden

    MtododeHeunconunsolocorrector(a2=)

    k1= f (x i , yi)k2= f (x i+h , yi+k1h)

    yi+1=yi+[ 12 k1+ 12 k2]h

  • ltimaclase 21

    MtodosdeRungeKutta2orden

    MtodoRalston(a2=2/3)

    k1= f (x i , yi) k2= f (xi+ 34 h , yi+ 34 k1h)yi+1=yi+[ 13 k1+ 23 k2]h

  • ltimaclase 22

    MtodosdeRungeKutta2orden

    Elmtododepuntomedio(a2=1)

    k1= f (x i , yi)

    k2= f (x i+12h , yi+

    12k1h)

    yi+1=yi+k2 h

  • ltimaclase 23

    MtodosdeRungeKutta2orden

    Ejemplo:UtilizarelmtododeRKdesegundogradoparaelpuntomedio,pararesolverlasiguienteecuacindiferencial.

    f (x , y)=exp(0.3x)0.3y(xo , yo)=(0 ,0)

  • ltimaclase 24

    MtodosdeRungeKutta2orden

    i x k1 k2 y

    0 0.00 - - 0

    1 0.25 1 0.92569 0.23142

    2 0.50 0.85832 0.79198 0.42942

    3 0.75 0.73188 0.67276 0.59761

    4 1.00 0.61923 0.56662 0.73926

    5 1.25 0.51904 0.47231 0.85734

    6 1.50 0.43009 0.38866 0.95451

    7 1.75 0.35128 0.31463 1.03317

    8 2.00 0.28161 0.24927 1.09548

  • ltimaclase 25

    MtodosdeRungeKutta3orden

    k1= f (x i , yi)

    k2= f ( x i+ 12 h , yi+ 12 k1h)k3= f (x i+h , y ik1h+2k2 h)

    y i+1=yi+16 [k1+4 k2+k3 ]h

  • ltimaclase 26

    function[x,ysol]=rk3(xini,yini,xfin,h,dydx)

    fxy=inline(dydx,"x","y")x=xini:h:xfin;ysol=zeros(1,length(x));,ysol(1)=yini;forp=1:length(x)1

    k1=fxy(x(p),ysol(k));k2=fxy(x(p)+0.5*h,ysol(p)+0.5*k1*h);k3=fxy(x(p)+h,ysol(p)k1*h+2*k2*h);

    ysol(p+1)=ysol(p)+h*(k1+4*k2+k3)/6;endforendfunction

    k1= f (x i , yi) k2= f ( xi+ 12 h , yi+ 12 k1h)k3= f (x i+h , yik1h+2k2 h )

    yi+1=yi+16 [k1+4 k 2+k3 ]h

  • ltimaclase 27

    MtodosdeRungeKutta4orden

    k1= f ( x i , yi) , k2= f ( x i+ 12 h , yi+ 12 k1h)k3= f (x i+ 12 h , yi+ 12 k 2h)k 4= f ( x i+h , yi+k3h )

    yk+1=yi+16(k1+2k2+2k3+k 4)h

  • ltimaclase 28

    MtodosdeRungeKutta4orden

    ResolverelproblemaanteriorutilizandoelmtododeRKdecuartogradoycompararlo

    conlarespuestamatemtica.

  • ltimaclase 29

    MtodosdeRungeKutta4orden

    i x k1 k2 k3 k4 y

    0 0.00 - - - - 0

    1 0.25 1 0.92569 0.92848 0.85811 0.23194

    2 0.50 0.85816 0.79184 0.79432 0.73155 0.43035

    3 0.75 0.7316 0.67249 0.6747 0.61881 0.59889

    4 1.00 0.61885 0.56625 0.56823 0.51854 0.74082

    5 1.25 0.51857 0.47186 0.47361 0.42952 0.85911

    6 1.50 0.42956 0.38815 0.3897 0.35067 0.95644

    7 1.75 0.3507 0.31408 0.31545 0.28096 1.03522

    8 2.00 0.28099 0.24868 0.24989 0.2195 1.09762

  • ltimaclase 30

  • ltimaclase 31

    PREGUNTAS?

  • ltimaclase 32

    Tarea

    Entrega:23dejuniode8:00a10:00a.m.enlaoficinadelprofesor.

  • ltimaclase 33

    FINDEUNIDAD

    FINDELCONTENIDO

    Diapositiva 1Diapositiva 2Diapositiva 3Diapositiva 4Diapositiva 5Diapositiva 6Diapositiva 7Diapositiva 8Diapositiva 9Diapositiva 10Diapositiva 11Diapositiva 12Diapositiva 13Diapositiva 14Diapositiva 15Diapositiva 16Diapositiva 17Diapositiva 18Diapositiva 19Diapositiva 20Diapositiva 21Diapositiva 22Diapositiva 23Diapositiva 24Diapositiva 25Diapositiva 26Diapositiva 27Diapositiva 28Diapositiva 29Diapositiva 30Diapositiva 31Diapositiva 32Diapositiva 33