solucion larzon cap13

Upload: valerio

Post on 05-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 solucion larzon cap13

    1/41

    C H A P T E R 1 3

    Multiple Integration

    Section 13.1 Iterated Integrals and Area in the Plane . . . . . . . . . . . . . 365

    Section 13.2 Double Integrals and Volume . . . . . . . . . . . . . . . . . . . 369

    Section 13.3 Change of Variables: Polar Coordinates . . . . . . . . . . . . . 375

    Section 13.4 Center of Mass and Moments of Inertia . . . . . . . . . . . . . 379

    Section 13.5 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

    Section 13.6 Triple Integrals and Applications . . . . . . . . . . . . . . . . . 388

    Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates . . . . 393

    Section 13.8 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . 397

    Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

    Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

  • 8/2/2019 solucion larzon cap13

    2/41

    365

    C H A P T E R 1 3

    Multiple Integration

    Section 13.1 Iterated Integrals and Area in the Plane

    Solutions to Even-Numbered Exercises

    2. x2

    x

    y

    xdy 12

    y2

    x x2

    x

    1

    2 x4

    x

    x2

    x x

    2x2 1 4.

    cos y

    0

    ydx yxcos y

    0

    y cosy

    6. x

    x3

    x2 3y2dy x2y y3x

    x3 x2x x

    3 x2x3 x33 x52 x32 x5 x9

    8. 1y2

    1y2x2 y 2dx 13x3 y2x

    1y2

    1y2 213 1 y232 y21 y212

    21 y 2

    31 2y 2

    10.

    cosx 13 cos3x cosy2

    y

    cosy 13 cos3y cosy

    2

    y

    sin3x cosydx 2

    y

    1 cos2x sinx cosydx

    12.

    1

    14x2 163 dx

    4x3

    3

    16

    3x

    1

    1

    43 16

    3 4

    3

    16

    3 8

    1

    1

    2

    2

    x2 y2dydx 1

    1x2y y

    3

    3 2

    2

    dx 1

    12x2 83 2x2

    8

    3dx

    14.

    4

    4

    64 x3x2dx 29 64 x3324

    4

    0 2

    912832

    2048

    92

    4

    4x2

    064 x

    3

    dydx 4

    4y64 x3

    x2

    0dx

    16.

    2010y 143 y3 2y3dy 5y2

    7y4

    6

    y4

    2 2

    0

    20 56

    3 8

    140

    3

    20

    2yy

    10 2x2 2y2dxdy 2010x 2x

    3

    3 2y2x

    2y

    y

    dy 2020y 163 y3 4y3 10y

    2

    3y3 2y3dy

    18. 2

    0

    2yy2

    3y26y

    3ydxdy 2

    0

    3xy2yy2

    3y26y

    dy 32

    0

    8y2 4y3dy 383y3 y42

    0

    16

    20. 2

    0

    2 cos

    0

    rdrd 2

    0

    r2

    2 2 cos

    0

    d 2

    0

    2 cos2d 12 sin 22

    0

    2

    22.

    4

    0

    cos3 sin d cos4

    4 4

    0

    1

    41

    24

    1 316

    4

    0

    cos

    0

    3r2 sin drd 4

    0

    r3sin cos

    0

    d

  • 8/2/2019 solucion larzon cap13

    3/41

    24. 3

    0

    0

    x2

    1 y2dydx

    3

    0

    x2 arctany

    0

    dx 3

    0

    x22dx

    2x3

    3 3

    0

    9

    2

    26. 0

    0

    xyex2y2dxdy

    0

    12yex2y2

    0

    dy 0

    1

    2yey

    2

    dy 14ey2

    0

    1

    4

    28.

    A 3

    1

    3

    1

    dxdy 3

    1

    x3

    1

    dy 3

    1

    2 dy 2y3

    1

    4

    2

    2

    31

    3

    1

    x

    y

    A 3

    1

    3

    1

    dydx 3

    1

    y3

    1

    dx 3

    1

    2 dx 2x3

    1

    4

    30.

    3y12

    0

    1y y1

    12 2

    12

    0

    3 dy 1

    12 1y 2 1dy

    12

    0

    x5

    2

    dy 1

    12x

    11y2

    2

    dy

    x2 5

    3

    3

    5

    4

    2

    41

    1

    1

    x 1y =

    y

    A 12

    0 5

    2dxdy

    1

    1211y2

    2dxdy

    A 5

    2

    1x1

    0

    dydx 5

    2

    y1x1

    0

    dx 5

    2

    1

    x 1dx 2x 1

    5

    2

    2

    32.

    y 2 sin , dy 2 cos d, 4 y 2 2 cos

    2 12 sin 22

    0

    42

    0

    cos2d 22

    0

    1 cos 2d

    A 2

    0

    4y 2

    0

    dxdy 2

    0

    4 y2dy

    x 2 sin , dx 2 cos d, 4 x2 2 cos

    2 12 sin 22

    0

    22

    0

    1 cos 2d

    42

    0

    cos2d

    2

    0

    4 x2dx

    x

    2

    1 2

    1

    y x= 4 2

    y

    A 2

    04x2

    0

    dydx 34.

    3

    532 16

    16

    5

    35y53 y2

    4 8

    0

    8

    0

    y23 y2dy

    A 8

    0

    y23

    y2dxdy

    16 2

    532

    16

    5

    x2 25x524

    0

    4

    0

    2x x32dx

    40

    y2x

    x32dx

    1 1

    1

    2

    3

    4

    5

    6

    7

    8

    2 3 4 5 6 7 8

    y

    x

    (4, 8)

    y =x3/2

    y = 2x

    A 4

    0

    2x

    x32dydx

    366 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    4/41

    36.

    x

    4

    6

    2 4 6 8

    2

    2

    (3, 3)

    (9, 1)

    y x=

    y =9x

    y

    9y 12y 21

    0

    9 lny 12y 23

    1

    9

    21 ln 9

    1

    0

    9 ydy 3

    1

    9y ydy

    1

    0

    x9

    y

    dy 3

    1

    x9y

    y

    dy

    A 1

    0

    9

    y

    dxdy 3

    1

    9y

    y

    dxdy

    9

    21 ln 9

    12x23

    0

    9 lnx9

    3

    9

    2 9ln 9 ln 3

    3

    0

    yx

    0

    dx 9

    3

    y9x

    0

    dx 3

    0

    xdx 9

    3

    9

    xdx

    A 3

    0

    x

    0

    dydx 9

    3

    9x

    0

    dydx 38.

    x

    2

    3

    4

    1 2 3 4

    1

    y x= 2

    y x=

    y

    A 2

    0

    2x

    x

    dydx 2

    0

    2x xdx x2

    2 2

    0

    2

    1 4 3 2

    y2

    4 2

    0

    2y y2

    4 4

    2

    2

    0

    y

    2dy

    4

    2

    2 y2dy

    A 2

    0

    y

    y2 dxdy

    4

    2

    2

    y2dxdy

    40.

    x

    2

    3

    4

    1 2 3 4

    1

    y x= 2

    y

    2

    0 x2

    0

    fx,ydydx

    4

    0

    2

    y

    fx,ydxdy, y x 2, 0 y 4 42.

    1

    1

    1

    2

    3

    4

    1 2 3 4

    y

    x

    4

    0 4y

    0

    fx,ydxdy

    2

    0

    4x

    2

    0

    fx,ydydx, 0 y 4 x2, 0 x 2

    44.

    1 1 2

    2

    3

    y

    x

    e2

    0

    2

    1

    fx,ydxdy e

    e2

    ln y

    1

    fx,ydxdy

    2

    1

    ex

    0

    fx,ydydx, 0 y ex, 1 x 2 46.

    2

    x

    2

    1

    23

    4

    4

    y

    1

    0

    arccosy

    arccos y

    fx,ydxdy

    2

    2

    cosx

    0

    fx,ydydx, 0 y cosx,

    2 x

    2

    Section 13.1 Iterated Integrals and Area in the Plane 367

  • 8/2/2019 solucion larzon cap13

    5/41

    48.

    x

    2

    3

    4

    1 2 3 4

    1

    y

    2

    1

    4

    2

    dxdy 4

    2

    2

    1

    dydx 2 50.

    1

    1

    1

    1

    y

    x

    2

    2

    4y2

    4y2dxdy 4

    2

    2

    4x2

    4x2dydx

    2

    2

    4 x2 4 x2dx 4

    52.

    2

    0

    6y

    2y

    dxdy 2

    0

    6 3ydy 6y 3y2

    2 2

    0

    6y = x

    2 y = 6 x

    y

    x

    11

    1

    1

    2

    3

    4

    5

    6

    2 3 4 5 6

    (4, 2)

    4

    0

    x2

    0

    dydx 6

    4

    6x

    0

    dydx 4

    0

    x

    2dx

    6

    4

    6 xdx 4 2 6

    54.

    3

    0

    y2

    0

    dxdy 3

    0

    y2dy y3

    3 3

    0

    9

    1

    2

    1

    2

    3

    4

    5

    3

    4

    5

    1 2 3 4 5 6 7 8 9

    y

    x

    y = x

    9

    0

    3

    xdydx

    9

    0

    3 xdx 3x 23x329

    0

    27 18 9

    56. 2

    2

    4y2

    0

    dxdy 4

    0

    4x

    4x

    dydx 32

    3

    x

    2

    1 2 3

    1

    1

    2x y= 4 2

    y

    58. The first integral arises using vertical representative rectangles. The second integral arises using horizontal

    representative rectangles.

    1

    4cos4

    1

    2sin4

    1

    4

    4

    0

    y

    y2x sinydxdy

    4

    0

    12y siny 1

    8y2 sinydy

    1

    4cos4

    1

    2sin4

    1

    4

    x

    1

    1

    2

    2

    3

    4

    (2, 4)

    y

    2

    0

    2x

    x2

    x sinydydx

    2

    0

    x cos2x x cosx2dx

    368 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    6/41

    Section 13.2 Double Integrals and Volume

    60.

    20

    xey2y

    0

    dy 20

    yey2

    dy 12 ey2

    2

    0

    1

    2e4

    1

    2e0

    1

    2 1 1

    e4 0.4908

    20

    2x

    ey2

    dydx 20

    y0

    ey2

    dxdy

    62.

    40

    yx sinxx

    0

    dx 40

    x sinxdx sinx x cosx4

    0

    sin 4 4 cos 4 1.858

    2

    0 4

    y 2x sinxdxdy

    4

    0 x

    0x sinxdydx

    64. 10

    2yy

    sin x ydxdy sin 2

    2

    sin 3

    3 0.408 66. a

    0

    ax0

    x2 y 2dydx a4

    6

    68. (a)

    (b)

    (c) Both orders of integration yield 1.11899.

    2

    0 2

    4y 2

    xy

    x2 y 2 1dxdy

    3

    2 2

    0

    xy

    x2 y 2 1dxdy

    4

    3 164y

    0

    xy

    x2 y 2 1dxdy

    y 4 x2

    4x 16 4y

    x

    1

    1

    2

    2

    3

    4

    yy 4 x2x 4 y 2

    70. 20

    2x

    16 x3 y3dydx 6.8520 72. 20

    1sin 0

    15rdrd452

    32

    135

    8 30.7541

    78. False, letfx,y x.

    74. A region is vertically simple if it is bounded on the left and right by vertical lines, and bounded on the top and bottom by

    functions ofx. A region is horizontally simple if it is bounded on the top and bottom by horizontal lines, and bounded on the

    left and right by functions ofy.

    76. The integrations might be easier. See Exercise 59-62.

    For Exercises 2 and 4, and the midpoints of the squares are

    12,1

    2, 3

    2,

    1

    2, 5

    2,

    1

    2, 7

    2,

    1

    2, 1

    2,

    3

    2, 3

    2,

    3

    2, 5

    2,

    3

    2, 7

    2,

    3

    2.

    x

    2

    3

    4

    1 2 3 4

    1

    yxi y

    i 1

    2.

    40

    20

    1

    2x2ydydx 4

    0

    x2y2

    4 2

    0dx 4

    0

    x2dx x3

    3 4

    0

    64

    3 21.3

    i1

    fxi,yixiyi 1

    16

    9

    16

    25

    16

    49

    16

    3

    16

    27

    16

    75

    16

    147

    16 21

    fx,y 1

    2x2y

    Section 13.2 Double Integrals and Volume 369

  • 8/2/2019 solucion larzon cap13

    7/41

    4.

    40

    ln 3

    x 1dx ln 3 lnx 1

    4

    0 ln 3ln 5 1.768

    40

    20

    1

    x 1y 1dydx 4

    0

    1x 1 lny 12

    0dx

    8

    i1

    fxi,yixiyi 4

    9

    4

    15

    4

    21

    4

    27

    4

    15

    4

    25

    4

    35

    4

    45

    7936

    4725 1.680

    fx,y 1

    x 1y 1

    6. 20

    20

    fx,ydydx 4 2 8 6 20

    8.

    2

    8

    8x 1

    2sin 2x

    0

    8

    0

    1 cos 2xdx

    0

    1

    2

    sin2x

    2dx

    2

    2

    31

    3

    1

    x

    y

    0

    20

    sin2x cos2y

    dy

    dx

    0

    12 sin2xy 12 sin 2y

    2

    0dx

    10.

    1024

    27

    256

    9

    256

    27

    2y92

    27

    y6

    1444

    0

    4

    0 y

    72

    3 y

    5

    24dy

    1

    1

    2

    3

    4

    2 3 4

    y

    x

    (2, 4)4

    0

    y12y

    x2y2dxdy 40x

    3y2

    3 y

    12ydy

    12.

    1

    2e e1

    ey 12 e2y11

    0

    10

    e e2y1dy

    x1 1

    2

    y x= + 1y x= + 1

    y

    10

    0y1

    exydxdy 10

    1y0

    exydxdy 10

    exy0

    y1dy 1

    0

    exy1y

    0dy

    370 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    8/41

    14.

    x

    y

    22

    23

    23

    25

    2

    2

    23

    0

    sinxdx

    sinx cosy2

    0dx

    20

    sinx sinydxdy

    20

    sinx sinydydx 16.

    For the first integral, we obtain:

    1

    1

    2

    3

    4

    2 3 4

    y

    x

    5 8 e4 e4 13.

    e

    4x

    1

    x

    x2

    2

    4

    0

    40xey

    4x

    x0

    dx 4x0

    xe4 xdx

    40

    4x0

    xeydydx 40

    4y0

    xeydxdy

    18.

    14 ln1 x24

    0

    1

    4ln17

    1

    24

    0

    x

    1 x2dx

    1

    24

    0

    y2

    1 x2x

    0 dx

    x

    2

    3

    4

    1 2 3 4

    1

    y x=

    y

    2

    0 4

    y 2

    y

    1 x2dxdy 4

    0 x

    0

    y

    1 x2dydx

    22.

    x

    2

    3

    4

    1 2 3 4

    1

    y

    40

    8 dx 32

    4

    0 2

    0 6

    2ydydx

    4

    0 6y

    y2

    2

    0dx 24.

    1

    1

    2

    2

    y =x

    y

    x

    2

    0 x

    0 4 dydx

    2

    0 4xdx

    2x

    2

    2

    0

    8

    20.

    x4 4 x232 1

    2 x4 x2 4 arcsinx

    2 1

    12x4 x232 6x4 x2 24 arctanx

    22

    2 4

    22x24 x2 13 4 x232dx

    22x2y 13y3

    4x2

    0dx

    2

    2

    4

    x2

    0

    x2 y 2dydx

    x2 1 1

    1

    2

    3

    4

    x y= 4 2x y= 4 2

    y

    20

    4y2

    4y 2x2 y 2dxdy

    Section 13.2 Double Integrals and Volume 371

  • 8/2/2019 solucion larzon cap13

    9/41

    26.

    1

    1

    2

    2

    y = 2 x

    y

    x

    1

    6x 23

    2

    0

    4

    3

    20

    1

    22 x2 dx

    20

    2x0

    2 x ydydx 202y xy y

    2

    2 2x

    0

    dx 28.

    x

    2

    1 2

    1 y x=

    y

    4

    2y2 y4

    4 2

    0

    20

    y0

    4 y 2dxdy 20

    4y y3dy

    30. 0

    2ex2dx 4ex2

    0 4

    0

    0

    exy2dydx 0

    2exy2

    0dx

    32. 1

    0 x

    0

    1 x2dydx 13

    34.

    13x35

    0

    125

    3

    50

    xyx

    0dx 5

    0

    x2dx

    V 50

    x0

    xdydx

    x2 5

    3

    3

    5

    4

    2

    41

    1

    y x=

    y

    36.

    4r3

    3

    2r2x 13x3r

    0

    42r

    0

    r2 x2dx

    4r0

    yr2 x2 y 2 r2 x2 arcsin yr2 x2r2x2

    0dx

    x

    r

    r

    y r x= 2 2

    yV 8r

    0r2x2

    0

    r2 x2 y 2dydx

    38.

    32 64

    3

    32

    5

    256

    15

    16x 8x3

    3

    x5

    5 2

    0

    20

    16 8x2 x4dx

    20

    4 x24 x2dx

    1 2

    1

    2

    3

    4

    3 4

    y

    x

    y = 4 x2

    V 2

    0

    4x2

    0

    4 x2dydx 40.

    x2 2

    0

    20

    2dx

    20

    arctany

    0dx

    x

    2

    1 2

    1

    yV 2

    0

    0

    1

    1 y 2dydx

    372 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    10/41

    42.

    5

    2

    2 y5

    0

    50

    2dy

    x2 5

    3

    3

    5

    4

    2

    41

    1

    y

    V 50

    0

    sin2xdxdy 44. V 90

    9y0

    9 ydxdy 81

    2

    46. V 160

    4y0

    ln1 x ydxdy 38.25

    48.

    cab2 ab

    3 ab

    2

    ab

    6 abc

    6

    cab2 1 x

    a2

    x2b

    2a

    x3b

    3a2

    ab

    6 1 x

    a3

    a

    0

    ca0

    b1 xa xb

    a 1 x

    a b2

    2b 1 x

    a2

    dx

    ca0

    y xya y 2

    2bb1xa

    0dx

    V

    Rfx,ydA

    a

    0 b1xa

    0 c1

    x

    a

    y

    bdydx

    z c1 xa y

    b

    x

    ya

    a

    a

    R

    z

    x

    a

    y

    b

    z

    c 1

    50.

    x2 5

    6

    3

    10

    8

    4

    41

    2

    y e= x

    y

    101

    dy y10

    1 9

    101

    xlnyln y

    0dy

    ln 10

    0 10

    ex

    1lny

    dydx 10

    1 ln y

    0

    1lny

    dxdy 52.

    2cos 2 2 sin 2 1

    2cosy y siny2

    0

    220

    y cosydy(2, 2)

    y = x212

    1

    1

    2

    2

    y

    x

    20

    y cosy2ydy

    2

    0 2

    12x2y cosydydx

    2

    0 2y

    0y cosydxdy

    54. Average 1

    84

    0

    20

    xydydx 1

    84

    0

    2xdx x2

    8 4

    0 2

    56.

    e 12

    e2 2e 1

    2 ex1 12e2x1

    0 2e2 12e2 e

    1

    2

    Average1

    121

    0

    1x

    exydydx 210

    ex1 e2xdx

    Section 13.2 Double Integrals and Volume 373

  • 8/2/2019 solucion larzon cap13

    11/41

    58. The second is integrable. The first contains

    which does not have an elementary antiderivation.

    siny2dy 60. (a) The total snowfall in the countyR.(b) The average snowfall inR.

    62. Average 1

    15060

    45

    5040

    192x 576y x2 5y 2 2xy 5000dxdy 13,246.67

    64. for all and

    P0 x 1, 1 y 2 10

    21

    1

    4xydydx 1

    0

    3x

    8dx

    3

    16.

    fx,ydA 20

    20

    1

    4xydydx 2

    0

    x

    2dx 1

    x,yfx,y 0

    66. for all and

    12 e2x ex11

    0

    1

    2e2 e1

    1

    2

    1

    2e1 12 0.1998.

    P0 x 1,x y 1 10

    1x

    exydydx 10

    exy1

    x dx 1

    0

    e2x ex1dx

    0

    limb

    exyb

    0dx

    0

    exdx limb

    exb

    0 1

    fx,ydA

    0

    0

    exydydx

    x,yfx,y 0

    68. Sample Program for TI-82:

    Program: DOUBLE

    : Input A

    : Input B

    : Input M

    : Input C

    : Input D

    : Input N

    :

    :

    :

    : For

    : For

    :

    :

    :

    : End

    : End

    : Disp V

    V sin x y G H VC 0.5H2J 1 y

    A 0.5G2I 1 xJ, 1, N, 1

    I, 1, M, 1

    D CN H

    B AM G

    0 V

    70.

    (a) 129.2018

    (b) 129.2756

    m 10, n 2020

    40

    20ex38dydx

    374 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    12/41

    72.

    (a) 13.956

    (b) 13.9022

    m 6, n 441

    21

    x3 y3dxdy 74.

    Matches a.

    x

    y

    3

    4

    3 3

    z

    V 50

    76. True

    78.

    Thus,

    21

    1

    ydy lny

    2

    1 ln 2.

    21

    exy

    y

    0dy

    21

    0

    exydxdy

    0e

    x

    e

    2x

    x dx

    0 2

    1exydxdy

    21

    exydy 1x exy2

    1

    ex e2x

    x

    Section 13.3 Change of Variables: Polar Coordinates

    2. Polar coordinates 4. Rectangular coordinates

    6. R r, : 0 r 4 sin , 0 8. R r, : 0 r rcos 3, 0

    10.

    02 3 41

    2

    16

    3

    643 sin2

    2 4

    0

    40

    40

    r2 sin cos drd 40

    r3

    3sin cos

    4

    0d 12.

    02 31

    2

    4 1 1

    e9

    12 e9 12

    0

    20

    30

    rer2

    drd 20

    12er23

    0d

    Section 13.3 Change of Variables: Polar Coordinates 375

  • 8/2/2019 solucion larzon cap13

    13/41

    14.

    16 1 cos 32

    0

    1

    6

    20

    sin

    21 cos 2d

    01

    ( , ) = (0, 1)x y

    2

    20

    1cos 0

    sin rdrd 20

    sin r2

    2 1cos

    0d

    16. a0

    a2x2

    0

    xdydx 20

    a0

    r2 cos drda3

    32

    0

    cos d a3

    3sin

    2

    0

    a3

    3

    18.

    40

    22 3

    3d 22

    3

    3

    4

    0

    22 3

    3

    4

    42

    3

    20

    8y2

    y

    x2 y 2dxdy 40

    22

    0

    r2drd

    20.

    6420

    sin4 sin6d64

    6sin5cos sin

    3cos

    4

    3

    8 sin cos

    2

    0 2

    4

    0 4yy2

    0

    x2dxdy 2

    0 4 sin

    0

    r3 cos2drd 2

    0

    64 sin4cos2d

    22.

    625

    16

    625

    8 sin2

    4

    0

    40

    625

    4sin cos d

    52 20

    x0

    xydydx 552 2

    25x2

    0

    xydydx 40

    50

    r3 sin cos drd

    24.

    1 e2522

    2 1 e252

    22

    1 e252d5 4 3 2

    2

    1

    2

    3

    4

    5

    3

    4

    5

    1 1 2 3 4

    y

    x

    22

    50

    er22rdrd 2

    2er22

    5

    0

    d

    26.

    20

    30

    9r r3drd 20

    92 r2 1

    4r4

    3

    0d

    81

    42

    0

    d81

    8

    30

    9x2

    0

    9 x2 y2dydx 20

    30

    9 r2rdrd

    376 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    14/41

    28.

    74 7

    4

    440

    7

    4d

    V 420

    10

    r2 3rdrd 420

    r4

    4

    3r2

    2 1

    0

    d 30.

    4ln 4 34

    220

    ln 4 34d

    2

    2

    0

    r2

    4

    1 2 ln r

    2

    1

    d

    220

    21

    rln rdrd

    R lnx2 y 2dA 2

    0

    21

    ln r2rdrd

    32. 20

    515 d 1015V 2

    0

    41

    16 r2rdrd 20

    13 16 r23

    4

    1d

    34.

    (8 times the volume in the first octant)

    820

    a3

    3d 8a

    3

    3

    2

    0

    4a3

    3

    820

    12 2

    3a2 r232

    a

    0d

    V 8

    2

    0 a

    0

    a2 r2rdrd

    x2 y 2 z2 a2z a2 x2 y 2 a2 r2

    36.

    (a)

    (b)

    (c) V 220

    121cos2

    14

    9

    4r2 36rdrd 0.8000

    Perimeter 2 0

    14 1 cos22 cos2sin2d 5.21dr

    d cos sin

    xy

    1

    1

    1

    zr1

    21 cos2

    1

    2

    1

    2cos2

    Perimeter

    r2 drd2

    d.

    9

    4r2 36 z

    9

    4r2 36

    0.7

    1 1

    0.7

    1

    4 r

    1

    21 cos2

    9

    4x2 y2 9 z

    9

    4x2 y2 9;

    38. A 20

    42

    rdrd 20

    6 d 12

    40.

    1

    24 4 cos 1

    2

    1

    4sin 2

    2

    0

    1

    28 4 4

    9

    2

    20

    2sin 0

    rdrd1

    22

    0

    2 sin 2

    d1

    22

    0

    4 4 sin sin2d1

    22

    04 4 sin 1 cos 22 d

    Section 13.3 Change of Variables: Polar Coordinates 377

  • 8/2/2019 solucion larzon cap13

    15/41

    42. 840

    3 cos 20

    rdrd 4 40

    9 cos2 2d 1840

    1 cos 4d 18 14 sin 44

    0

    9

    2

    44. See Theorem 13.3. 46. (a) Horizontal or polar representative elements

    (b) Polar representative element

    (c) Vertical or polar

    48. (a) The volume of the subregion determined by the point is base height Adding up the 20

    volumes, ending with you obtain

    (b)

    (c) 7.4824103.5 179,621 gallons

    5624013.5 1,344,759 pounds

    5

    4150 555 1250 2135 2025

    5

    46115 24013.5 ft3

    3512 15 18 16 459 10 14 12

    V 10

    857 9 9 5 158 10 11 8 2510 14 15 11

    45 10 812, 5 10 87.5, 16, 7

    50. 4

    0 4

    0

    5er rdrd 87.130 52.

    Answer (a)

    94 3 21

    x

    y

    4

    4

    2

    2

    4

    6

    zVolume base height

    54. True

    56. (a) Let then

    (b) Let then

    e4x2

    dx

    eu2

    1

    2du

    1

    2.u 2x,

    ex2

    dx

    eu2

    2 12

    du 12 2 .u 2x,

    58.

    For to be a probability density function,

    k4

    .

    k

    4 1

    fx,y

    0

    0

    kex2y2dydx 2

    0

    0

    ker2

    rdrd 20

    k2 er2

    0d 2

    0

    k

    2d

    k

    4

    60. (a)

    (b)

    (c) 220

    4 cos 0

    f rdrd

    420

    4x22

    0

    fdydx x

    2

    1

    2

    1

    3

    1

    ( 2) + 2 = 4x y 2y

    420

    24y2

    2

    fdxdy

    378 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    16/41

    Section 13.4 Center of Mass and Moments of Inertia

    2.

    1

    120 93

    243

    4

    149 x23

    3 3

    0

    3

    0

    x9 x22

    2dx

    m 30

    9x2

    0

    xydydx 30xy

    2

    2 9x2

    0

    dx

    4.

    1

    281

    2

    81

    4 54 2978

    1

    229 x232 9x2

    2

    x4

    4 3

    0

    12

    3

    06x9 x2 9x x3dx

    30

    x

    23 9 x2 9dx

    m 30

    39x2

    3

    xydydx 30xy

    2

    2 39x2

    3

    dx

    6. (a)

    y Mxm

    ka2b36

    ka2b24

    2

    3b

    x My

    m

    ka3b26

    ka2b24

    2

    3a

    My a0

    b0

    kx2ydydx ka3b2

    6

    Mx a0

    b0

    kxy2dydx ka2b3

    6

    m a0

    b0

    kxydydx ka2b2

    4(b)

    y Mxm

    kab2122a2 3b2

    kab3a2 b2

    b

    4 2a2 3b2

    a2 b2

    x My

    m

    ka2b123a2 2b2

    kab3a2 b2

    a

    4 3a2 2b2

    a2 b2

    My a0

    b0

    kx3 xy2dydx ka2b

    123a2 2b2

    Mx a0

    b0

    kx2y y3dydx kab2

    122a2 3b2

    m a0

    b0

    kx2 y 2dydx kab

    3a2 b2

    8. (a)

    CONTINUED

    x y Mxm

    ka36

    ka22

    a

    3

    My Mx by symmetry

    Mx

    a

    0

    ax

    0

    kydydx ka3

    6

    xa

    ay a x=

    ym a2k

    2

    Section 13.4 Center of Mass and Moments of Inertia 379

  • 8/2/2019 solucion larzon cap13

    17/41

    10. Thex-coordinate changes by h units horizontally and kunits vertically. This is not true for variable densities.

    12. (a)

    y 4a

    3by symmetry

    x My

    m

    ka33

    ka24

    4a

    3

    k3 a2 x232a

    0

    ka3

    3

    ka0

    xa2 x2dx

    My a

    0

    a2x2

    0

    kxdydx

    m a

    0

    a2x2

    0

    kdydx ka2

    4(b)

    x y M

    y

    m ka

    5

    5 8

    ka4 8a

    5

    My Mx by symmetry

    20

    a0

    kr4 sin drdka5

    5

    Mx a0

    a2x2

    0

    kx2 y 2ydydx

    20

    a0

    kr3drdka4

    8

    m a

    0a2x2

    0

    kx2 y 2dydx

    8. CONTINUED

    (b)

    y 2a

    5by symmetry

    x My

    m

    a515

    a46

    2a

    5

    a0

    ax3 x 4 13 a3x a2x2 ax3 1

    3x 4dx 13

    a

    0

    a3x 3a2x2 6ax3 4x4dx a5

    15

    My a

    0 ax

    0

    x3 xy2dydx

    a0

    x2y y3

    3 ax

    0dx a

    0

    ax2 x3 13 a x3dx a4

    6

    m a0

    ax0

    x2 y 2dydx

    14.

    y Mxm

    16k

    32k5

    5

    2

    x My

    m

    32k

    3

    5

    32k

    5

    3

    My 20

    x3

    0

    kx2dydx 32k

    3

    Mx 2

    0

    x3

    0

    kxydydx 16k

    m 20

    x3

    0

    kxdydx 20

    kx4dx 32k

    516.

    x

    2

    3

    4

    1 2 3 4

    1

    y =4x

    y

    y My

    m

    24k

    30k

    4

    5

    x

    My

    m

    84k

    30k

    14

    5

    My 41

    4x0

    kx3dydx 84k

    Mx 41

    4x0

    kx2ydydx 24k

    m 41

    4x0

    kx2dydx 30k

    380 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    18/41

    18.

    x6 3 3 6

    6

    3

    12

    y x= 9 2

    y

    y Mxm

    139,968k

    35

    35

    23,328k 6

    Mx 3

    3

    9x2

    0

    ky3dydx 139,968k

    35

    m 33

    9x2

    0

    ky2dydx 23,328k

    35

    x 0 by symmetry 20.

    x

    1

    L2

    y = cosxL

    t

    y Mxm

    kL

    8

    kL

    8

    x My

    m

    L2 2k

    22

    kL

    L 2

    2

    My L2

    0

    cos xL0

    kxdydx L 2 2k

    22

    Mx L20

    cos xL0

    kydydx kL

    8

    m L20

    cos xL0

    kdydx kL

    22.

    y Mxm

    ka42 2 8

    12

    ka3

    32 2a2

    x My

    m

    ka42

    8

    12

    ka3

    32a

    2

    My R

    kx2 y 2dA 40

    a0

    kr3 cos dka42

    8

    Mx R

    kx2 y 2ydA 40

    a0

    kr3 sin dka42 2

    8

    0a

    r a=y x=

    2m

    Rkx2 y2dA 4

    0

    a0

    kr2drdka3

    12

    24.

    y Mxm

    k

    6

    2

    k

    1

    3

    x M

    ym k1 2k

    2

    My e

    1

    ln x0

    k

    xxdydx k

    Mx e1

    ln x0

    k

    xydydx

    k

    6

    m e1

    ln x0

    k

    xdydx

    k

    2

    2

    2

    3e1

    3

    1

    x

    y x= ln

    y

    Section 13.4 Center of Mass and Moments of Inertia 381

  • 8/2/2019 solucion larzon cap13

    19/41

    26.

    x My

    m

    5k

    4

    2

    3k

    5

    6

    5k

    4

    k

    32

    0

    cos 32 1 cos2 3 cos 1 sin2 1

    41 cos 22d

    k3

    2

    0

    cos 1 3 cos 3 cos2 cos3d

    My RkxdA 2

    0

    1cos 0

    kr2 cos drd

    m RkdA 2

    0

    1cos 0

    krdrd3k

    2

    01

    r= 1 + cos

    2y 0 by symmetry

    28.

    y Ixm bh312

    bh2

    h

    66

    6h

    x Iym b3h12

    bh2

    b

    66

    6b

    Iy b0

    hhxb0

    x2dydx b3h

    12

    Ix b0

    hhxb0

    y2dydx bh3

    12

    m

    b

    0

    hhxb

    0

    dydx bh

    230.

    x y Ixm a4

    8

    2

    a2

    a

    2

    I0 Ix Ix a4

    8

    a4

    8

    a4

    4

    Iy Rx2dA

    0

    a0

    r3 cos2drda4

    8

    Ix Ry 2dA

    0

    a0

    r3 sin2drda4

    8

    m a2

    2

    32.

    y Ixm ab3

    4

    1

    ab

    b

    2

    x Iym a3b

    4

    1

    ab

    a

    2

    I0 Iy Ix a3b

    4

    ab3

    4

    ab

    4a2 b2

    Iy 4 b0

    abb2y 2

    0

    x2dxdy a3b

    4

    4b3

    3a3a

    2

    2 xa2 x2 a2 arcsinx

    a 1

    8x2x2 a2a2 x2 a4 arcsinxa

    a

    0

    ab3

    4

    4a0

    b3

    3a3a2 x232dx

    4b3

    3a3a

    0

    a2a2 x2 x2a2 x2dx

    Ix 4a

    0

    baa2x2

    0

    y 2dydx

    m

    ab

    382 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    20/41

    34.

    y Ixm 4ka515

    2ka332a

    2

    5

    2a

    10

    x Iym 2ka515

    2ka33a

    2

    5

    a

    5

    I0 Ix Iy 2ka5

    5

    Iy ka

    aa

    2x2

    0

    x2ydydx 2ka5

    15

    Ix k

    a

    aa2x2

    0y3dydx

    4ka5

    15

    ka0

    a2 x2dx 2ka3

    3

    m 2ka0

    a2x2

    0

    ydydx

    ky 36.

    y Ixmk60

    k2425

    x Iym k48

    k24

    1

    2

    I0 Ix Iy 9k

    240

    3k

    80

    Iy k

    1

    0 x

    x2x3ydydx

    k

    21

    0x5 x7dx

    k

    48

    Ix k1

    0

    xx2

    xy3dydx k

    41

    0

    x5 x9dx k

    60

    m k10

    xx2

    xydydx k

    21

    0

    x3 x5dx k

    24

    kxy

    38.

    y Ixm x 395

    891

    x

    Iy

    m

    158

    2079

    35

    6

    395

    891

    I0 Ix Iy 316

    2079

    Iy 1

    0

    xx2

    x2 y 2x2dydx 158

    2079

    Ix 1

    0

    xx 2

    x2 y 2y 2dydx 158

    2079

    m 10

    xx2

    x2 y 2dydx 6

    35

    x2 y 2 40.

    y Ixm 32,768k

    65

    21

    512k

    81365

    65

    x

    Iy

    m

    2048k

    45

    21

    512k

    28

    15

    2105

    15

    I0 Ix Iy 321,536k

    585

    Iy 22

    0

    4xx3

    kx2ydydx 2048k

    45

    Ix 22

    0

    4xx3

    ky3dydx 32,768k

    65

    m 220

    4xx3

    kydydx 512k

    21

    ky

    42. I 40

    20

    kx 62dydx 4

    0

    2kx 62dx 2k3 x 6

    34

    0

    416k

    3

    44.

    2k7a5

    15

    a5

    8 ka556 15

    60 2k1

    4a5 2

    3a5

    1

    5a5 2a3

    a4

    4

    a4

    16 a2

    2 a3 a3

    3

    1

    8 x2x2 a2a2 x2 a4 arcsinx

    a a2

    2 a2x x3

    3 a

    a

    k14a4x 2a2x3

    3

    x5

    5 2a

    3 a2

    2 xa2 x2 a2 arcsinx

    a

    aa

    k14 a4 2a2x2 x 4 2a

    3a2a2 x2 x2a2 x2

    a2

    2a2 x2dx

    a

    a

    ky4

    4

    2ay3

    3

    a2y 2

    2

    a2x20

    dx

    I aaa

    2x2

    0

    kyy a2dydx

    Section 13.4 Center of Mass and Moments of Inertia 383

  • 8/2/2019 solucion larzon cap13

    21/41

    46.

    2k

    3 32 32

    192

    5

    128

    7

    1408k

    105

    k

    322

    16 12x2 6x4 x6dx k316x 4x3 6

    5x

    5

    1

    7x7

    2

    2

    I 22

    4x2

    0

    ky 22dydx 22

    k3 y 13

    4x2

    0dx 2

    2

    k

    32 x2 8dx

    48.

    will be the same.x,y

    x,y k2 x. 50. Both and will decreaseyxx,y k4 x4 y.

    52. Moment of inertia aboutx-axis.

    Moment of inertia abouty-axis.Iy Rx2x,ydA

    Ix R

    y2x,ydA

    54. Orient thexy-coordinate system so thatL is along they-axis andR is in the first quadrant. Then the volume of the solid is

    By our positioning, Therefore, V 2rA.x r.

    2xA.

    2RxdARdA RdA

    2RxdA

    x

    L

    R( , )x y

    y

    V R 2xdA

    56.

    ya a

    2

    a3b12

    L a2ab

    a3L 2a

    32L a

    Iy b0

    a0

    y a22

    dydx a3b

    12

    y a

    2,A ab, h L

    a

    258.

    ya a44

    La2

    a2

    4L

    a4

    4

    2

    0

    a4

    4

    sin2d

    20

    a0

    r3 sin2drd

    Iy aaa

    2x2

    a2x2y 2dydx

    y 0,A a2, h L

    384 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    22/41

    Section 13.5 Surface Area

    2.

    2

    2

    31

    3

    1

    x

    R

    y

    S 3

    0 3

    0

    14 dydx 3

    0

    314 dx 914

    1 fx 2 fy

    214

    fx 2,fy 3

    fx,y 15 2x 3y 4.

    1

    2

    1

    2

    2 1 1

    x

    y x= 9 2

    y x= 9 2

    R

    y

    20

    30

    14 rdrd 914

    S 339x29x2

    14 dydx

    1 fx 2 fy 2 14

    fx 2, fy 3

    R x,y:x2 y 2 9

    fx,y 10 2x 3y

    6.

    square with vertices

    34 2y1 4y2 ln2y 1 4y23

    0

    3

    4637 ln6 37

    S 30

    30

    1 4y 2dxdy 30

    31 4y 2dy

    1 fx 2 fy

    21 4y2

    fx 0, fy 2y

    0, 0, 3, 0, 0, 3, 3, 3R

    2

    2

    31

    3

    1

    x

    R

    yfx,y y 2

    8.

    x

    2

    1 2

    1 R

    y = 2 x

    y

    12

    53

    8

    5

    2

    332

    2

    5

    352

    2

    2

    5

    21 y32 25 1 y522

    0

    S 202y

    0

    1 ydxdy 20

    1 y 2 ydy

    1 fx2fy

    21 y

    fx 0, fy y12

    fx,y 2 2

    3y32 10.

    1

    1

    1 1

    x

    R

    y

    2

    0

    1

    12

    1732 1d

    6

    1717 1

    20

    112 1 4r2 322

    0d

    S 20

    20

    1 4r2rdrd

    1 fx 2 fy

    21 4x2 4y 2

    fx 2x, fy 2y

    fx,y 9 x2 y 2

    Section 13.5 Surface Area 385

  • 8/2/2019 solucion larzon cap13

    23/41

    12.

    204

    0

    1 r2rdrd2

    31717 1

    S

    4

    4

    16x2

    16x2

    1 y2 x2dydx

    1 fx 2 fy

    21 y 2 x2

    fx y, fy x

    R x,y:x2 y2 162

    2

    2 2

    x

    x y2 2+ = 16

    yfx,y xy

    14. See Exercise 13.

    20

    a0

    a

    a2 r2rdrd 2a2S a

    aa2x2a2x2

    a

    a2 x2 y 2dydx

    16.

    42

    4

    2

    6

    6

    x

    y x= 16 2

    y

    20

    40

    1 4r2rdrd

    246565 1

    S 4

    0 16x

    2

    0

    1 4x2 y 2dydx

    1 fy2 fy

    21 4x2 4y 2

    z 16 x2 y 2 18.

    1

    1

    1 1

    x

    y

    x2+y2= 4

    S 202

    0

    5rdrd 45

    1 fx2fy

    2

    1

    4x2

    x2

    y2

    4y2

    x2

    y25

    z 2x2 y2

    20.

    triangle with vertices

    2

    2

    31

    3

    1

    x

    R

    y x=

    y

    S 20

    x0

    5 4y2dydx 1

    122121 55

    1 fx 2 fy

    25 4y2

    0, 0, 2, 0, 2, 2R

    fx,y 2x y2 22.

    2

    2

    2 2

    x

    x y22+ = 16

    y

    2

    0

    4

    0 1

    4r2

    drd

    6565 16

    S 4416x216x2

    1 4x2 4y 2dydx

    1 fx 2 fy

    21 4x2 4y 2

    fx 2x, fy 2y

    0 x2 y 2 16

    R x,y: 0 fx,y 16

    fx,y x2 y 2

    386 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    24/41

    24.

    S

    1

    0

    1

    0

    1 x sinx2dydx 1.02185

    1 fx 2 fy

    21 x sinx2

    fx x12 sinx, fy 0

    R x,y: 0 x 1, 0 y 1

    fx,y 23 x

    32 cosx 26. Surface

    Matches (c)

    xy33

    3

    2

    z

    area 9

    28.

    1

    0

    1 y3dy 1.1114

    S 10

    10

    1 y3dxdy

    1 fx 2 fy

    21 y3

    fx 0, fy y32

    R x,y: 0 x 1, 0 y 1

    fx,y 25y

    52 30.

    S

    4

    0

    x

    0

    1 13x2 y 2dydx

    1 13x2 y 2

    1 fx fy 21 2x 3y2 3x 2y2

    fx 2x 3y, fy 3x 2y 3x 2y

    R x,y: 0 x 4, 0 y x

    fx,y x2 3xy y 2

    32.

    S 22

    (2)x2(2)x2

    1 4x2 y 2 sin2x2 y 2dydx

    1 fx 2 fy

    21 4x2 sin2x2 y 2 4y 2sin2x2 y 2 1 4sin2x2 y 2x2 y 2

    fx 2x sinx2y 2, fy 2y sinx

    2y 2

    R x,y: x2 y 2 2fx,y cosx2 y 2

    34.

    S 40

    x0

    1 e2xdydx

    1 e2x

    1 fx 2 fy

    21 e2x sin2y e2x cos2y

    fx ex siny, fy e

    x cosy

    R x,y: 0 x 4, 0 y x

    fx,y ex siny 36. (a) Yes. For example, letR be the square given by

    and S the square parallel toR given by

    (b) Yes. LetR be the region in part (a) and S the surface

    given by

    (c) No.

    fx,y xy.

    0 x 1, 0 y 1,z 1.

    0 x 1, 0 y 1,

    38.

    S R1 fx 2 fy 2dA

    Rk2 1 dA k2 1

    RdA Ak2 1 r2k2 1

    1 fx 2 fy

    21 k2x2x2 y 2 k

    2y 2

    x2 y 2k2 1

    fx,y kx2 y 2

    Section 13.5 Surface Area 387

  • 8/2/2019 solucion larzon cap13

    25/41

    42. False. The surface area will remain the same for any vertical translation.

    40. (a)

    (c)

    S 2500

    150

    1 fy2fx

    2dydx 3087.58 sq ft

    fx 0,fy 1

    25

    y2 8

    25

    y 16

    15

    fx,y 1

    75y3

    4

    25y2

    16

    15y 25

    z 1

    75y3

    4

    25y2

    16

    15y 25 (b)

    cubic feet

    (d) Arc length

    Surface area of roof 25030.8758 3087.58 sq ft

    30.8758

    100266.25 26,625

    V 250150 175y3

    4

    25y2

    16

    15y 25dy

    Section 13.6 Triple Integrals and Applications

    2.

    2

    3

    1

    1

    1

    1

    y 2z2dydz 2

    9

    1

    1

    y3z21

    1dz

    4

    9

    1

    1

    z2dz 427z31

    1

    8

    27

    11

    11

    11

    x2y 2z2dxdydz 1

    311

    11

    x3y 2z21

    1dydz

    4.

    1

    29

    0

    xy 2 3x3y3

    0dy

    2

    189

    0

    y3dy 136y 49

    0

    729

    4

    90

    y30

    y29x2

    0

    zdzdxdy 1

    29

    0

    y30

    y 2 9x2dxdy

    6.

    41

    1xlnz2

    2 e2

    1dx 4

    1

    2

    xdx 2 ln x

    4

    1 2 ln 4

    41

    e2

    1

    1xz0

    lnzdydzdx 41

    e2

    1

    lnzy1xz

    0dzdx 4

    1

    e2

    1

    lnz

    xzdzdx

    8. 20

    y20

    1y0

    sinydzdxdy 20

    y20

    siny

    ydxdy

    1

    22

    0

    sinydy 12 cosy2

    0

    1

    2

    10. 20

    2x2

    0

    4y2

    2x2y2ydzdydx 2

    0

    2x2

    0

    4y 2x2y 2y3dydx 162

    15

    12.

    60

    3(x2)0

    1

    2 6 x 2y

    3 2

    ex2y 2dydx 2.118

    3

    0 2(2y3)

    0 62y3z

    0

    zex2y 2dxdzdy

    6

    0 (6x)2

    0 (6x2y)3

    0

    zex2y 2dzdydx

    14. 30

    2x0

    9x2

    0

    dzdydx

    388 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    26/41

    16.

    44

    16x2

    16x280x

    2y2

    12x2y2dzdydx

    z 8x2 y2 2z 16x2 y2 z2 2z z2 80z2 2z 80 0 z 8z 10 0

    z 1

    2x2 y2 2z x2 y2

    18. 1

    0 1

    0 xy

    0

    dzdydx 1

    0 1

    0

    xydydx 1

    0

    x

    2dx x

    2

    4 1

    0

    1

    4

    20.

    49x36 x2 324 arcsinx6 1

    6x36 x232

    6

    0

    4162 648

    4603636 x2 x236 x2 1336 x232dx

    460

    36x2

    0

    36x2y

    2

    0

    dzdydx 460

    36x2

    0

    36 x2 y2dydx 46036y x2y y

    3

    3 36x2

    0

    dx

    22.

    20

    18 9x 2x2 x3dx 18x 92x2 2

    3x3

    1

    4x 4

    2

    0

    50

    3

    2

    0 2x

    0 9x2

    0dzdydx

    2

    0 2x

    09 x2dydx

    2

    09 x22 xdx

    24. Top plane:

    Side cylinder:

    30

    9y2

    0

    6xy0

    dzdxdy

    x2 y2 9

    x

    y

    6

    3

    6

    63

    zx y z 6 26. Elliptic cone:

    40

    4zy

    2z22

    0

    dxdydz

    x

    y

    5

    5

    4

    3

    3

    2

    2

    1

    1

    z

    4x2 z2 y 2

    28.

    40

    2y0

    y0

    xyzdxdzdy 40

    22y

    2z0

    dxdzdy 10421

    20

    (2z)2

    0

    y0

    xyzdxdydz 20

    4(2z)22z

    0

    xyzdxdydz

    20

    2z0

    4x2

    xyzdydxdz

    2

    0

    2x

    0

    4

    x2xyzdydzdx

    40

    y0

    2x0

    xyzdzdxdy

    Q

    xyzdV 20

    4x22x

    0

    xyzdzdydx

    x

    y44

    2

    4

    2

    (2, 4)

    zQ x,y,z: 0 x 2,x2 y 4, 0 z 2 x

    Section 13.6 Triple Integrals and Applications 389

  • 8/2/2019 solucion larzon cap13

    27/41

    30.

    60

    10

    1x2

    0

    xyzdydxdz

    10

    60

    1x2

    0

    xyzdydzdx

    60

    10

    1y2

    0

    xyzdxdydz

    1

    0 6

    0 1y

    2

    0

    xyzdxdzdy

    10

    1y2

    0

    60

    xyzdzdxdy

    Q

    xyzdV 10

    1x2

    0

    60

    xyzdzdydx

    x

    y2

    1

    6

    21

    zQ x,y,z: 0 x 1,y 1 x2, 0 z 6

    32.

    y Mxz

    m 2

    Mxz k5

    0

    5x0

    15153x3y0

    y2dzdydx 125

    4k

    m k

    5

    0

    5x

    0

    15153x3y

    0

    ydzdydz 125

    8

    k 34.

    y Mxz

    m

    kab2c24

    kabc6

    b

    4

    Mxz kb

    0

    a[1(yb)]0

    c[1(yb)(xa)]0

    ydzdxdy kab2c

    24

    m k

    b

    0

    a1(yb)

    0

    c1(yb)(xa)

    0

    dzdxdy kabc

    6

    36.

    z Mxy

    m

    kabc33

    kabc22

    2c

    3

    y Mxz

    m

    kab2c24

    kabc22

    b

    2

    x Myz

    m

    ka2bc24

    kabc22

    a

    2

    Mxz ka0

    b0

    c0

    yzdzdydx kab2c2

    4

    Myz ka

    0 b

    0 c

    0

    xzdzdydx ka2

    bc2

    4

    Mxy ka0

    b0

    c0

    z2dzdydx kabc3

    3

    m ka0

    b0

    c0

    zdzdydx kabc2

    2

    38. will be greater than whereas and will be unchanged.yx85,z

    40. and will all be greater than their original values.zx,y

    390 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    28/41

    42.

    z Mxy

    m

    k

    16k3

    3

    16

    y Mxz

    m

    2k

    16k3

    3

    8

    x Myz

    m

    0

    16k3 0

    Mxy 2k2

    0

    4x2

    0

    y0

    zdzdydx k

    Mxz 2k2

    0

    4x2

    0

    y0

    ydzdydx 2k

    Myz k2

    2

    4x2

    0

    y0

    xdzdydx 0

    k20

    4 x2dx 16k

    3

    m 2k20

    4x2

    0

    y0

    dzdydx

    44.

    z Mxy

    m k12

    4k2

    4

    y Mxzm kln 4

    k ln 4

    k20

    10

    1

    y 2 12dydx k2

    0

    y2y 2 1 1

    2arctany

    1

    0dx k14

    82

    0

    dx k12

    4

    Mxy 2k2

    0

    10

    1(y21)

    0

    zdzdydx

    Mxz 2k2

    0

    10

    1(y21)

    0

    ydzdydx 2k20

    10

    y

    y 2 1dydx k2

    0

    ln 2dx kln 4

    m 2k20

    10

    1(y21)

    0

    dzdydx 2k20

    10

    1

    y 2 1dydx 2k4

    2

    0

    dx k

    x 0

    46.

    z Mxy

    m

    10k

    10k 1

    y Mxz

    m

    15k2

    10k

    3

    4

    x Myz

    m

    25k2

    10k

    5

    4

    Mxy k5

    0

    (35)x30

    (115)(6012x20y)0

    zdzdydx 10k

    Mxz k5

    0 (35)x3

    0 (115)(6012x20y)

    0

    ydzdydx 15k2

    Myz k50

    (35)x30

    (115)(6012x20y)0

    xdzdydx 25k

    2

    m k50

    (35)x30

    (115)(6012x20y)0

    dzdydx 10k

    x2 5

    3

    3

    5

    4

    2

    41

    1

    y x= (5 - )35

    yfx,y 1

    1560 12x 20y

    Section 13.6 Triple Integrals and Applications 391

  • 8/2/2019 solucion larzon cap13

    29/41

    48. (a)

    (b)

    Iz Iyz Ixz 7ka7

    180

    Iy Ixy Iyz a7k

    30

    Ix Ixy Ixz a7k

    30

    Iyz Ixz by symmetry

    Ixz ka2

    a2a2a2a2a2

    y 2x2 y 2dzdydx kaa2a2a2a2

    x2y 2 y 4dydx 7ka7

    360

    Ixy ka2

    a2a2a2a2a2

    z2x2 y 2dzdydx a3k

    12a2a2a2a2

    x2 y 2dydx a7k

    72

    Ix Iy Iz ka5

    12

    ka5

    12

    ka5

    6

    Ixz Iyz ka5

    12by symmetry

    Ixy ka2a2a2a2a2a2

    z2dzdydx ka5

    12

    50. (a)

    CONTINUED

    Ix Ixz Ixy 2048k

    9,Iy Iyz Ixy

    8192k

    21,Iz Iyz Ixz

    63,488k

    315

    k40

    20

    1

    2x216 8y 2 y4dydx

    k

    24

    0

    x216y 8y3

    3

    y5

    5 2

    0dx

    k

    24

    0

    256

    15x2dx

    8192k

    45

    Iyz k40

    20

    4y2

    0

    x2zdzdydx k40

    20

    1

    2x24 y 22dydx

    k40

    20

    1

    216y 2 8y4 y6dydx

    k

    24

    016y

    3

    3

    8y5

    5

    y7

    7 2

    0dx

    k

    24

    0

    1024

    105dx

    2048k

    105

    Ixz k4

    0 2

    0 4y2

    0

    y 2zdzdydx k4

    0 2

    0

    12y 24 y 22dydx

    k

    44

    0

    256y 256y3

    3

    96y5

    5

    16y7

    7

    y9

    9 2

    0dx k4

    0

    16,384

    945dx

    65,536k

    315

    k

    44

    0

    20

    256 256y 2 96y4 16y6 y8dydx

    Ixy k40

    20

    4y2

    0

    z3dzdydx k40

    20

    1

    44 y 24dydx

    392 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    30/41

    Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates

    50. CONTINUED

    (b)

    Ix Ixz Ixy 48,128k

    315, Iy Iyz Ixy

    118,784k

    315, Iz Ixz Iyz

    11,264k

    35

    k40

    20

    4y2

    0

    4x2dzdydx k40

    20

    4y2

    0

    x2zdzdydx 4096k

    9

    8192k

    45

    4096k

    15

    Iyz k4

    0

    20

    4y2

    0

    x24 zdzdydx

    k40

    20

    4y2

    0

    4y 2dzdydx k40

    20

    4y2

    0

    y 2zdzdydx 1024k

    15

    2048k

    105

    1024k

    21

    Ixz 4

    0 2

    0 4y2

    0

    y 24 zdzdydx

    k40

    20

    4y2

    0

    4z2dzdydx k40

    20

    4y2

    0

    z3dzdydx 32,768k

    105

    65,536k

    315

    32,768k

    315

    Ixy 40

    20

    4y2

    0

    z24 zdzdydx

    52.

    Iz Ixz Iyz 1

    12ma2 c2

    Iy Ixy Iyz 1

    12mb2 c2

    Ix Ixy Ixz 1

    12ma2 b2

    Iyz c2

    c2a2a2b2b2

    x2dzdydx abc2c2

    x2dx abc3

    12

    1

    12c2abc

    1

    12mc2

    Ixz c2

    c2a2a2b2b2

    y 2dzdydx bc2c2a2a2

    y 2dydx ba3

    12c2c2

    dx ba3c

    12

    1

    12a2abc

    1

    12ma2

    Ixy c2

    c2a2a2b2b2

    z2dzdydx b3

    12c2c2a2a2

    dydx 1

    12b2abc

    1

    12mb2

    54. 11

    1x2

    1x24x

    2y2

    0

    kx2x2 y 2dzdydx 56. 6

    58. Because the density increases as you move away from the axis of symmetry, the moment of intertia will increase.

    2.

    1

    24

    0

    20

    4r 4r2 r3drd1

    24

    0

    2r2 4r3

    3

    r4

    4 2

    0

    d2

    34

    0

    d

    6

    4

    0

    2

    0

    2r

    0

    rzdzdrd 4

    0

    2

    0rz

    2

    2 2r

    0

    drd

    4. 20

    0

    20

    e3

    2ddd 20

    0

    13 e3

    2

    0

    dd 20

    0

    1

    31 e8

    dd

    2

    61 e8

    Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates 393

  • 8/2/2019 solucion larzon cap13

    31/41

    6.

    52

    36

    4

    0

    sin cos d 52

    36sin2

    2 4

    0

    52

    144

    1

    34

    0

    sin cos sin sin3

    3 4

    0

    d

    1

    34

    0

    40

    sin cos cos 1 sin2dd

    40

    40

    cos 0

    2 sin cos ddd1

    34

    0

    40

    cos3sin cos dd

    8. 20

    0

    sin 0

    2 cos 2ddd8

    9

    10.

    2

    0

    94

    d 92

    20

    3r2

    2

    r4

    4 3

    0

    d

    y

    x

    2233

    4

    z20

    30

    3r2

    0

    rdzdrd 20

    30

    r3 r2drd

    12.

    468

    3

    117

    32

    0cos

    0

    d

    yx 7

    7

    7 r= 5

    r= 2

    z20

    0

    52

    2 sin ddd117

    32

    0

    0

    sin dd

    14. (a)

    (b) 20

    60

    40

    3 sin2ddd 20

    262 csc

    4

    3 sin2 ddd82

    3 23

    20

    20

    16r2

    0

    r2dzdrd82

    3 23

    16. (a) 20

    10

    1r2

    0

    rr2 z2dzdrd

    8(b) 2

    0

    20

    10

    3 sin ddd

    8

    18.

    (Volume of lower hemisphere) (Volume in the first octant)

    128

    3

    642

    3

    64

    32 2

    128

    3 4823

    82

    3

    128

    3 4823

    2

    013 16 r232

    4

    22d

    V128

    3 4

    2

    0

    220

    r2drd 20

    422

    r16 r2drd

    4

    yx7

    7

    7

    zV2

    343 4

    2

    0

    220

    r0

    rdzdrd 20

    42216r

    2

    0

    rdzdrd

    394 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    32/41

    20.

    8

    32 2

    2

    0

    1

    3

    4 r232 r3

    3

    2

    0

    d

    20

    20

    r4 r2 r2drd

    V 20

    20

    4r2

    r

    rdzdrd 22.

    3k1 e4

    20

    6ke4 6kd

    20

    6ker2

    2

    0

    20

    20

    12er

    2

    0

    krdzdrd 20

    20

    12ker

    2

    rdrd

    24.

    z Mxy

    m

    kr02h2

    12 3

    r02hk

    h

    4

    2kh2

    r02

    r04

    12

    2 kr0

    2h2

    12

    2kh2

    r02

    20

    r00

    r02r 2r0r

    2 r3drd

    Mxy 4k2

    0

    r00

    hr0rr00

    zrdzdrd

    m 1

    3r0

    2hk from Exercise 23

    x y 0 by symmetry 26.

    z Mxy

    m

    kr02h330

    kr02h212

    2h

    5

    1

    30kr0

    2h3

    Mxy 4k2

    0 r0

    0 h(r

    0r)r

    0

    0

    z2rdzdrd

    1

    12kr0

    2h2

    m 4k20

    r00

    h(r0r)r00

    zrdzdrd

    x y 0 by symmetry

    kz

    28.

    1

    15r0

    5kh

    4kh1

    30r0

    5

    2

    4kh20

    1

    30r0

    5d

    4kh20

    r05

    5

    r05

    6 d

    4kh20

    r5

    5

    r6

    6r0r0

    0

    d

    4kh20

    r00

    r0 r

    r0r4drd

    4k

    2

    0

    r0

    0

    hr0rr

    0

    0

    r4dzdrd

    Iz Q

    x2 y2x,y,zdV 30.

    3

    2ma2

    3

    2ka4h

    Iz 2k2

    0

    2a sin 0

    h0

    r3dzdrd

    m ka2h

    Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates 395

  • 8/2/2019 solucion larzon cap13

    33/41

    34.

    ka4

    4

    1

    4k2a4

    ka4121

    4sin 2

    2

    0

    ka4

    2

    0 sin2

    d

    2ka420

    20

    sin2dd

    m 8k20

    20

    a0

    3 sin2ddd 36.

    z Mxy

    m

    kR4 r44

    2kR3 r33

    3R4 r4

    8R3 r3

    1

    4kR4 r4 18 kR4 r4 cos 2

    2

    0

    1

    4kR4 r42

    0

    sin 2d

    1

    2kR4 r42

    02

    0

    sin 2dd

    Mxy 4k2

    0

    20

    Rr

    3 cos sin ddd

    m k23R3 2

    3r3 23 kR3 r3

    x y 0 by symmetry

    38.

    4k

    15R5 r5

    2k5 R5 r5cos cos3

    3 2

    0

    2k

    5R5 r52

    0

    sin 1 cos2d

    4k

    5R5 r52

    0

    20

    sin3dd

    Iz 4k

    2

    0

    2

    0

    R

    r

    4 sin3ddd 40.

    z cos cos z

    x2 y2 z2

    y sin sin tan y

    x

    x sin cos 2 x2 y2 z2

    42.

    2

    1

    2

    1

    2

    1

    fsin cos , sin sin , cos 2

    sin ddd

    44. (a) You are integrating over a cylindrical wedge.

    46. The volume of this spherical block can be determined as follows. One side is length

    Another side is Finally, the third side is given by the length of an arc of angle in a

    circle of radius Thus:

    2 sin

    V sin

    sin .

    .

    x

    y

    i i isin

    i i i

    z.

    32. (includes upper and lower cones)

    1 22 43 b3 a3 23 2 2 b3 a3 43 b3 a3cos

    4

    0

    4

    3b3 a34

    0

    sin dy

    x

    aa

    b

    b

    b

    z

    8

    3b3 a34

    0

    20

    sin dd

    V 840

    20

    ba

    2 sin ddd

    (b) You are integrating over a spherical block.

    396 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    34/41

    Section 13.8 Change of Variables: Jacobians

    2.

    x

    uy

    v

    y

    ux

    v

    ad cb

    y cu dv

    x au bv 4.

    x

    uy

    vy

    ux

    v v 2u vu 2u

    y uv

    x uv 2u

    6.

    x

    uy

    vy

    ux

    v 11 00 1

    y v a

    x u a 8.

    x

    uy

    vy

    ux

    v 1v1 1

    u

    v2 1

    v

    u

    v2

    u v

    v2

    y u v

    x u

    v

    3,66, 3

    0,62, 2

    3, 04, 1

    0, 00, 0

    u, vx,y10.

    v x 4y

    u x y

    y

    1

    3 u v

    x 1

    34u v

    (0, 0) (3, 0)

    (3, 6)(0, 6)

    11

    1

    2

    3

    4

    5

    6

    1 2 4 5 6

    v

    u

    12.

    1523 26

    3 120

    152 23u3 26

    3u

    1

    1

    11

    15

    2 2u2 26

    3 du

    11152

    v3

    3 u2v

    3

    1

    du

    1

    1

    3

    1

    15

    2v2 u2dvdu

    1

    1

    3

    1

    6012 u v1

    2u v12dvdu

    R60xydA

    x

    uy

    vy

    ux

    v

    1

    2 1

    2 1

    21

    2 1

    2

    y 1

    2u v, v x y

    x 1

    2u v, u x y

    (1, 3)(1, 3)

    (1, 1) (1, 1)

    2 1

    1

    2

    1 2

    v

    u

    1, 11, 0

    1, 31, 2

    1, 32, 1

    1, 10, 1

    u, vx,y

    Section 13.8 Change of Variables: Jacobians 397

  • 8/2/2019 solucion larzon cap13

    35/41

    18.

    0

    12 u3

    3 1 cos 2v

    2 2

    dv 73

    12 v 1

    2sin 2v

    0

    74

    12

    R

    x y2 sin2x ydA

    0

    2

    u2 sin2v12dudv

    x,y

    u, v

    1

    2

    x 1

    2u v,

    u x y 2,

    2

    x

    x y = 0

    x y =x y+ =

    x y+ = 2

    2

    2

    3

    2

    3

    yu x y ,

    y 1

    2u v

    v x y

    v x y 0

    20.

    8

    0

    16v 32dv 2516v528

    0

    4096

    52

    R3x 2y2y x32dA

    8

    0 16

    0

    uv3218dudv

    x

    uy

    vy

    ux

    v

    1

    43

    8 1

    81

    4 1

    8

    x 1

    4u v,

    u 3x 2y 16,

    x2

    3

    3

    5

    2

    41

    1

    12

    2 = 0y x

    2 = 8y x

    3 + 2 = 16x y

    3 + 2 = 0x y

    y

    (0, 0)

    (2, 3)

    (2, 5)

    (4, 2)

    u 3x 2y 0,

    y 1

    8u 3v

    v 2y x 8

    v 2y x 0

    16.

    Ry sinxydA 4

    1 4

    1

    vsin u1vdvdu

    4

    1

    3 sin udu 3 cos u4

    1 3cos 1 cos 4 3.5818

    x

    uy

    vy

    ux

    v

    1

    v

    y v

    x u

    v

    14.

    2

    0

    2u1 eu2du 2u2

    2 ueu2 eu2

    2

    0 21 e2

    R 4x yexydA

    2

    0

    0

    u2

    4uev12dvdu

    x

    uy

    vy

    ux

    v

    1

    2

    y 1

    2u v

    x 1

    2u v

    u1 2

    1

    2

    v u= 2

    v

    398 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    36/41

    22.

    4

    112 ln1 v2

    4

    11

    udu 12 ln 17 ln 2 ln u

    4

    1

    1

    2 ln17

    2 ln 4

    R xy

    1 x2y2dA

    4

    1

    4

    1

    v

    1 v2 1

    udvdu

    x

    uy

    vy

    ux

    v

    1

    u

    x u,

    u x 4,

    u x 1,

    y v

    u

    v xy 4

    v xy 1

    x

    2

    3

    4

    1 2 3 4

    1

    x = 4

    x = 1

    xy = 4

    xy = 1

    y

    24. (a)

    Let and

    Let

    (b)

    Let and

    Let

    2Aab2 0 0 4

    2 4 2Aab

    Aab2

    0

    1

    0

    cos2 rrdrdAab2r

    sinr2

    4

    2cosr2

    1

    02

    u rcos ,v rsin .

    Rfx,ydA

    1

    1

    1u2

    1u2A cos2u2 v2abdvdu

    y bv.x au

    R:x2

    a2

    y2

    b2 1

    fx,y A cos 2x2

    a2

    y 2

    b2

    12398 7

    16sin 2

    2

    0 12394 117

    122

    0

    8 41 cos 22 9

    4 1 cos 2

    2 d 122

    0

    398 7

    8cos 2d

    122

    0

    8r2 4r4 cos2 94 r4 sin21

    0d 12

    2

    0

    8 4 cos2 94 sin2d

    2

    0

    1

    0

    16 16r2 cos2 9r2 sin2 12rdrd

    u rcos , v rsin .R16 x2 y 2dA

    1

    11u2

    1u216 16u2 9v2 12dvdu

    y 3v.x 4u

    V

    R

    fx,ydA

    R:x2

    16

    y 2

    9 1

    fx,y 16 x2 y 2

    Section 13.8 Change of Variables: Jacobians 399

  • 8/2/2019 solucion larzon cap13

    37/41

    Review Exercises for Chapter 13

    2. 2yy

    x 2 y 2dx x3

    3xy 2

    2y

    y

    10y3

    3

    4.

    2

    0

    4x 2 2x3 2x4dx

    4

    3

    x3 1

    2

    x4 2

    5

    x5

    2

    0

    88

    15

    2

    0

    2x

    x2

    x 2 2ydydx

    2

    0

    x 2y y 2

    2x

    x2

    dx

    6. y4 y 2 4 arcsiny23

    03

    4

    33

    024y

    2

    24y2dxdy 23

    0

    4 y 2dy

    8.

    1

    2

    2

    0

    6 3ydy 126y 3

    2y2

    2

    0 3

    A 20

    6y2y

    dxdy

    20

    x0

    dydx 32

    62x0

    dydx 20

    6y2y

    dxdy

    10.

    A 40

    6xx2

    x22x

    dydx 40

    8x 2x2dx 4x2 23x34

    0

    64

    3

    40

    6xx2

    x22x

    dydx 01

    11y11y

    dydx 80

    11y39y

    dxdy 98

    39y39y

    dxdy

    12. A 20

    y21

    0

    dxdy 10

    20

    dydx 51

    2x1

    dydx 14

    3

    14. A

    3

    0

    2yy2

    y

    dxdy

    0

    3

    11x

    x

    dydx

    1

    0

    11x

    11x

    dydx 9

    2

    16. Both integrations are over the common regionR shown in the figure. Analytically,

    30

    2x30

    exydydx 53

    5x0

    exydydx 35 e5 e3 2

    5 e5 e3 8

    5e5

    2

    5

    20

    5y3y2

    exydxdy 2

    5

    8

    5e5

    x

    1

    1

    2

    2

    3

    3

    4

    4

    5

    5

    (3, 2)

    y

    26. See Theorem 13.5. 28.

    x,y,z

    u, v, w

    4

    0

    1

    1

    4

    0

    0

    1

    1 17x 4u v, y 4v w, z u w

    30.

    1rcos2 rsin2 rx,y,z

    r, ,z

    cos

    sin

    0

    rsin

    rcos

    0

    0

    0

    1

    x rcos , y rsin , z z

    400 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    38/41

    22.

    Since we have

    P 0.50

    0.250

    8xydydx 0.03125

    k 8.k8 1,

    kx4

    8 1

    0

    k

    8

    10

    kx3

    2dx

    10

    x0

    kxydydx 10kxy

    2

    2 x

    0dx 24. False, 1

    0

    10

    xdydx 21

    21

    xdydx

    26. True, 10

    10

    1

    1 x2 y2dxdy < 1

    0

    10

    1

    1 x2dxdy

    4

    28. 20

    r4

    4 4

    0d 2

    0

    64 d 3240

    16y20

    x2 y 2dxdy 20

    40

    r3drd

    30.

    4

    3R2 b232

    8

    3R2 b2322

    0

    d

    8

    32

    0R2 r232

    R

    bd

    V 820

    Rb

    R2 r2rdrd 32.

    The polar region is given by and

    Hence,

    x

    1

    1

    2

    3

    4

    4, )( 12/ 138/ 13

    8/ 13

    x y2 2+ =16

    23

    xy =

    y

    arctan320

    40

    rcos rsin rdrd288

    13

    0 0.9828.

    0 r 4

    tan 1213

    813

    3

    2 0.9828

    18.

    12x33

    0

    27

    2

    3

    2

    3

    0

    x2dx

    30xy 12y2

    x

    0dx

    V 30

    x0

    x ydydx 20. Matches (c)

    x

    y

    2

    2

    1

    2

    3

    z

    Rev iew Exercises for Cha pte r 13 401

  • 8/2/2019 solucion larzon cap13

    39/41

    36.

    y Ixm 16,384k315128k15 12821

    x Iym 512k105128k15 47

    m Rx,ydA 2

    0

    4x2

    0

    kydydx 128

    15k

    I0 Ix Iy 16,384k

    315

    512k

    105

    17,920

    315k

    512

    9k

    Iy Rx2x,ydA 2

    0

    4x2

    0

    kx2ydydx 512

    105k

    Ix Ry2x,ydA 2

    0

    4x2

    0

    ky3dydx 16,384

    315k

    38.

    62 ln4 32 92

    2 ln2

    2

    6

    52

    3 ln22 3

    12418 2 ln4 18 1

    121818 ln2 2212

    122y2 4y2 2 ln2y 2 4y2 112 2 4y2322

    0

    S

    2

    0 2

    y 2 4y2dxdy

    2

    0 22 4y2 y2 4y2dy

    1 fx2 fy

    2 2 4y2

    fx 1,fy 2y

    R x,y: 0 x 2, 0 y x

    fx,y 16 x y2

    34.

    y Mxm 17kh

    2

    L80

    127khL

    51h140

    x My

    m

    5khL2

    24

    12

    7khL

    5L

    14

    kh

    2L

    02x x

    2

    L

    x3

    L2dx kh

    2 x2 x3

    3L

    x4

    4L2L

    0

    kh

    2

    5L2

    12

    5khL2

    24

    My kL0

    h22xLx2L2

    0

    xdydx

    kh2

    8

    17L

    10

    17kh2L

    80

    kh2

    8 4x 2x2

    L

    x3

    L2

    x 4

    2L3

    x5

    5L4L

    0

    kh2

    8

    L

    04 4xL

    3x2

    L2

    2x3

    L3

    x4

    L4dx

    kh2

    8L

    02 xL

    x2

    L22

    dx

    Mx kL

    0

    h22xLx2L2

    0

    ydydx

    x

    h

    L

    y = 2 h2

    xL

    x2

    L2( (

    ym kL0

    h22xLx2L2

    0

    dydx kh

    2L

    02 xL

    x2

    L2dx 7khL

    12

    402 Chapter 13 Multiple Integration

  • 8/2/2019 solucion larzon cap13

    40/41

    44.

    20

    5 arctan 5cos 2

    0d

    25 arctan 5

    20

    20

    arctan 5

    0sin dd

    50

    25x2

    0

    25x2y2

    0

    1

    1 x2 y2 z2dzdydx 2

    0

    20

    50

    2

    1 2sin ddd

    46. 20

    4x2

    0

    4x2y2

    0

    xyzdzdydx 4

    3

    48.

    84 2 sin 2 14sin3cos 3

    41

    2

    1

    4sin 2

    2

    0

    29

    2

    220

    32 sin2 4 sin4d 820

    8 sin2 sin4d

    220

    2 sin 0

    r16 r2drdV 220

    2 sin 0

    16r2

    0

    rdzdrd

    50.

    z Mxy

    m

    kc2a416

    2kca33

    3ca

    32

    y Mxz

    m

    kca48

    2kca33

    3a

    16

    x 0

    Mxy 2k2

    0

    a0

    crsin 0

    rzdzdrd kc220

    a0

    r3 sin2drd1

    4kc2a42

    0

    sin2d1

    16kc2a4

    Mxz 2k2

    0

    a

    0

    crsin

    0

    r2 sin dzdrd 2kc2

    0

    a

    0

    r3 sin2drd1

    2kca4

    2

    0

    sin2d1

    8kca4

    m 2k20

    a0

    crsin 0

    rdzdrd 2kc20

    a0

    r2 sin drd2

    3kca32

    0

    sin d2

    3kca3

    40. (a) Graph of

    over regionR

    x

    y50

    50

    50

    R

    z

    25 1 ex2y21000 cos2x2 y 2

    1000

    fx,y z

    (b) Surface area

    Using a symbolic computer program, you obtain surface

    area sq. ft. 4,540

    R

    1 fxx,y2 fyx,y2dA

    42. 1

    22

    0

    20

    r5drd16

    32

    0

    d32

    322

    4x24x2

    (x2y2)2

    0

    x2 y 2dzdydx 20

    20

    r22

    0

    r3dzdrd

    Rev iew Exercises for Cha pte r 13 403

  • 8/2/2019 solucion larzon cap13

    41/41

    52.

    z Mxy

    m

    81

    4

    1

    162

    1

    8

    20

    30

    12 r3 9

    2rdrd

    2

    0

    18 r4 9

    4r2

    3

    0

    d 818 2

    0

    81

    4

    Mxy 2

    0 3

    0 4

    25r2zrdzdrd

    2

    0 5

    3 25r2

    25r2zrdzdrd

    2

    0 3

    0 8 12 25 r2rdrd 0

    x y 0 by symmetry

    500

    3 213 25 r232 2r2

    3

    0

    500

    3 2643 18

    125

    3 500

    3

    14

    3 162

    m 500

    3 3

    0

    20

    25r24

    rdzddr500

    3 3

    0

    20

    r25 r2 4rddr

    54.

    4ka6

    9

    Iz k

    0

    20

    a0

    2 sin22 sin ddd

    56.

    8

    15a

    aa

    1z2a2

    1z2a21y

    2z2a2

    1y2z2a2

    x2 y2dxdydz

    Iz Qx2 y2dV

    x2 y2 z2

    a2 1 58.

    Since represents a paraboloid with vertex

    this integral represents the volume of the solid

    below the paraboloid and above the semi-circle

    in thexy-plane.y 4 x2

    0, 0, 1,z 1 r2

    0

    20

    1r2

    0

    rdzdrd

    60.

    2u2v 2u2v 8uv

    x,yu, v

    xu

    yv yu

    xv

    62.

    Boundary inxy-plane Boundary in uv-plane

    4 arctan 5 4 arctan v5

    51

    4

    1 v2dv 5

    1

    51

    1

    1 v2dudv

    R x

    1 x2y2dA 5

    1

    51

    u

    1 u2vu21ududv

    v 5xy 5

    v 1xy 1

    u 5x 5

    u 1x 1

    x u,y v

    u u x, v xy

    y = 1x

    y = 1x

    x = 5

    x = 1

    1

    1

    2

    3

    4

    5

    4 5

    y

    x

    x,y

    u, vx

    uy

    vx

    vy

    u 11u 0

    1

    u

    404 Chapter 13 Multiple Integration