solucion de estructuras con cargas en los nudos

Upload: antonino-e-h-viteri

Post on 08-Mar-2016

227 views

Category:

Documents


0 download

DESCRIPTION

Solucion de Estructuras Con Cargas en Los Nudos

TRANSCRIPT

  • 29/01/2016 - UTSLABDOC01 -

    1

    ESTRUCTURAS PLANAS CON CARGAS EN LOS NUDOS

    Tres coordenadas locales

    Ing.: Juan Manuel Urteaga Garca

    1 2

    3

    1 2

    3

    1 3

    2

    4.00

    3.004.00

    Solucionar la estructura mostrada; Trazar los

    diagramas de Momento Flector, Fuerza

    Cortante y la deformada Viga = (0.30 X 0.60)

    Col. = (0.40 X 0.50)

    E = 2.1 E +06 Tn/m2

  • 29/01/2016 - UTSLABDOC01 -

    2

    10.00 T.m. 9.00 T.m.

    4.00 T.

    CARGAS ACTUANTES

    RELACIONES DE COMPATIBILIDAD

  • 29/01/2016 - UTSLABDOC01 -

    3

    Elemento D1

    D2

    D3

    1

    qi 0 0 0

    qj 1 0 0

    D 0 0 1

    2

    qi 1 0 0

    qj 0 1 0

    D 0 0 3/4

    3

    qi 0 0 0

    qj 0 1 0

    D 0 0 5/4

    0

    1

    0

    1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    0

    0

    1

    0

    0

    0

    -1

    0

    0

    3/4

    0

    0

    -5/45/4 3/4

    RELACIONES DE COMPATIBILIDAD

    Miembro 1 Miembro 2 Miembro 3

    qI,1 = 0 qI,2 = D1 qI,3 = 0

    qJ,1 = D1 qJ,2 = D2 qJ,3 = D2

    D1 = -D3 D1 = (3/4)D3 D3 = -(5/4)D3

  • 29/01/2016 - UTSLABDOC01 -

    4

    DETERMINACIN DE LOS COEFICIENTES DE RIGIDEZ

    K i,j

    PRIMERA DEFORMADA

    Desplazamientos

    D1 = 1

    D2 = 0

    D3 = 0

  • 29/01/2016 - UTSLABDOC01 -

    5

    COEFICIENTES DE RIGIDEZ (PRIMERA COORDENADA)

    4EI1/L1

    K1,1

    K2,1

    4EI2/L2 2EI2/L2

    K1,1 = 4EI1/L1 + 4EI2/L2 = 4(2.1x106)((0.0042/4)+(0.0054/4)) = 20160 T.m.

    K2,1 = 2EI2/L2 = 2(2.1x106)(0.0054)/4 = 5670 T.m.

    COEFICIENTES DE RIGIDEZ (PRIMERA COORDENADA)

    6EI1/L12

    K3,1

    6EI2/L22

    6EI1/L12 = B

    6EI2/L22 = A

    53

    P3

    P2

    SFy = 0 => (4/5)P3 = A => P3 = (5/4)A

    SFx = 0 => P2+ B = (3/5)P3 => P2 = (3/5)(5/4)A B =>P2 = (3/4)A B (Neg)

    K3,1 = 6EI2/L22(3/4)-6EI1/L1

    2 = 6(2.1x106)((0.0054/42)(3/4)-(0.0042/52))

    K3,1 = 118.125 T.

  • 29/01/2016 - UTSLABDOC01 -

    6

    SEGUNDA DEFORMADA

    Desplazamientos

    D1 = 0

    D2 = 1

    D3 = 0

    COEFICIENTES DE RIGIDEZ (SEGUNDA COORDENADA)

    2EI2/L2

    K1,24EI3/L3

    4EI2/L2

    K2,2

    K1,2 = 2EI2/L2 = 2(2.1x106)(0.0054)/4 = 5670 T.m.

    K2,2 = 4EI2/L2 + 4EI3/L3 = 4(2.1x106)((0.0054/4)+(0.0042/5)) = 18396 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    7

    COEFICIENTES DE RIGIDEZ (SEGUNDA COORDENADA)

    K3,2

    SFy = 0 => (3/5)B+(4/5)P3 = A => P3 = (5/4)(A-(3/5)B) => P3 = (5/4)A-(3/4)B

    SFx = 0 => P2+(4/5)B = (3/5)P3 => P2 = (3/5)((5/4)A-(3/4)B)-(4/5)B

    =>P2 = (3/4)A-(5/4)B

    K3,2 = 6EI2/L22(3/4)-6EI3/L3

    2(5/4) = 6(2.1x106)((0.0054/42)(3/4)-(0.0042/52)(5/4))

    K3,2 = -543 T.

    6EI3/L32

    6EI2/L22

    6EI3/L32 = B

    6EI2/L22 = A

    5337

    P3

    P2

    TERCERA DEFORMADA

    Desplazamientos

    D1 = 0

    D2 = 0

    D3 = 1

  • 29/01/2016 - UTSLABDOC01 -

    8

    COEFICIENTES DE RIGIDEZ (TERCERA COORDENADA)

    6EI1/L12

    K1,3

    6EI3/L32(5/4)

    K2,3

    K1,3 = 6EI1/L12- 6EI2/L2

    2(3/4) = 6(2.1x106)((0.0042/42)-(0.0054/42)(3/4))

    K1,3 = 118.125 T.m.

    K2,3 = -6EI2/L22(3/4)+6EI3/L3

    2(5/4) = -6(2.1x106)((0.0054/42)(3/4)+(0.0042/52)(5/4))

    K2,3 = -543 T.m.

    6EI2/L22(3/4)

    6EI2/L22(3/4)

    5/4

    4/4

    3/4

    COEFICIENTES DE RIGIDEZ (TERCERA COORDENADA)

    12EI3/L33(5/4)

    12EI1/L13

    K3,3

    SFy = 0 => (3/5)B + C = (4/5)P3 => P3 = (5/4)((3/5)B + C) => P3 = (3/4)B + (5/4)C

    SFx = 0 =>P2 = A + (4/5)B + (3/5)P3 => P2 = A + (4/5)B + (3/5)(3/4)B + (3/5)(5/4)C

    P2 = A + (4/5)B + (9/20)B + (3/4)C => P2 = A + (5/4)B + (3/4)C

    K3,3 = 12EI1/L13 + 12EI3/L3

    3(5/4)(5/4) + 12EI2/L23(3/4)(3/4)

    K3,3 = 12(2.1x106)((0.0042/43)+(0.0042/53)(5/4)(5/4)+(0.0054/43)(3/4)(3/4))

    K3,3 = 4172.77 T.

    12EI3/L33(5/4) = B

    12EI1/L13 = A

    5337

    P3

    P2

    12EI2/L23(3/4)

    12EI2/L23(3/4) = C

  • 29/01/2016 - UTSLABDOC01 -

    9

    COEFICIENTES DE RIGIDEZ

    K1,1=20160 T.m. K1,2=5670 T.m. K1,3=118 T

    K2,1=5670 T.m. K2,2=14868 T.m. K2,3=-543 T

    K3,1=118 T.m. K3,2=-543 T.m. K2,1=4173 T

    DETERMINACIN DE LAS CARGAS

    Q i

  • 29/01/2016 - UTSLABDOC01 -

    10

    D1 = 1

    D2 = 0

    D3 = 0Q1 = 10.00 (D1+ D2+ D3) T.m.

    Q1 = 10.00 (1 + 0 + 0 ) T.m.

    Q1 = 10.00 T.m.

    D1 = 0

    D2 = 1

    D3 = 0Q2 = -9.00 (D1+ D2+ D3) T.m.

    Q2 = -9.00 (0 + 1 + 0 ) T.m.

    Q2 = -9.00 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    11

    D1 = 0

    D2 = 0

    D3 = 1

    3/4

    Q3 = 4.00 (D1+ D2+ D3) T.

    Q3 = 4.00 (0 + 0 - 3/4 ) T.

    Q3 = -3.00 T.

    DESPLAZAMIENTOS GLOBALES

    Di

  • 29/01/2016 - UTSLABDOC01 -

    12

    20160 D1 + 5670 D2 + 118 D3 = 10.00

    5670 D1 + 14868 D2 - 543 D3 = -9.00

    118 D1 - 543 D2 + 4173 D3 = -3.00

    D1 = 7.0670 X10-4 Rad.

    D2 = -7.3167 X10-4 Rad.

    D3 = -8.3410 X10-4 m.

    DESPLAZAMIENTOS GLOBALES

    DESPLAZAMIENTOS LOCALES

    qi

    qj

    D

  • 29/01/2016 - UTSLABDOC01 -

    13

    DESPLAZAMIENTOS LOCALES

    Elemento 1

    qi = 0 Rad.

    qj = 7.07E-04 Rad.

    D = 8.34E-04 m.

    Elemento 2

    qi = 7.07E-04 Rad.

    qj = -7.32E-04 Rad.

    D = -6.26E-04 m.

    Elemento 3

    qi = 0 Rad.

    qj = -7.32E-04 Rad.

    D = 1.04E-03 m.

    ESFUERZOS LOCALES

    Mi Mj V

  • 29/01/2016 - UTSLABDOC01 -

    14

    Elemento 1 Mi = 4EI1/L1qi + 2EI1/L1qj - 6EI1/L1

    2D

    Mi = (2.1x106)(0.0042)(2(7.07x10-4)/4 - 6(8.34x10-4)/16)

    Mi = 0.36T.m.

    Mj = 2EI1/L1qi + 4EI1/L1qj - 6EI1/L12D

    MJ = (2.1x106)(0.0042)(4(7.07x10-4)/4 - 6(8.34x10-4)/16)

    MJ = 3.47 T.m.

    V = -6EI1/L12qi - 6EI1/L1

    2qj + 12EI1/L13D

    V = (2.1x106)(0.0042)(-6(7.07x10-4)/16 + 12(8.34x10-4)/64)

    V = -0.96T.

    ELEMENTO 2

    Mi = 4EI1/L1i + 2EI1/L1j - 6EI1/L12D

    Mi = (2.1x106)(0.0054)(4(7.07x10-4)/4 + 2(-7.32x10-4)/4 - 6(-6.26x10-4)/16)

    Mi = 6.53T.m.

    Mj = 2EI1/L1i + 4EI1/L1j - 6EI1/L12 D

    MJ = (2.1x106)(0.0054)(2(7.07x10-4)/4 + 4(-7.32x10-4)/4 - 6(-6.26x10-4)/16)

    MJ = -1.63T.m.

    V = -6EI1/L12i - 6EI1/L1

    2j + 12EI1/L13 D

    V = (2.1x106)(0.0054)(-6(7.07x10-4)/16 - 6(-7.32x10-4)/4 + 12(-6.26x10-4)/64)

    V = -1.22T.

  • 29/01/2016 - UTSLABDOC01 -

    15

    ELEMENTO 3

    Mi = 4EI1/L1i + 2EI1/L1j - 6EI1/L12D

    Mi = (2.1x106)(0.0042)(2(-7.32x10-4)/5 - 6(1.04x10- 3)/25)

    Mi = -4.79 T.m.

    Mj = 2EI1/L1i + 4EI1/L1j - 6EI1/L12D

    MJ = (2.1x106)(0.0042)(4(-7.32x10-4)/5 - 6(-1.04x10- 3)/25)

    MJ = -7.37 T.m.

    V = -6EI1/L12i - 6EI1/L1

    2j + 12EI1/L13D

    V = (2.1x106)(0.0042)(-6(-7.32x10-4)/25 + 12(-1.04x10- 3)/125)

    V = 2.43 T.

    DIAGRAMASCortante / Momento Flector / Deformada

  • 29/01/2016 - UTSLABDOC01 -

    16

    0.96 T.

    1.22 T.

    3.47 T.m.

    0.36 T.m.

    1.63 T.m.6.53 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    17

    8.34E-04 m.

    7.07E-04 Rad

    7.07E-04 Rad-7.32E-04 Rad

    -6.26E-04 m

    1.04E-03 m

    7.32E-04 Rad