simulación de ingeniería de plástico con solidworks plastics 2016

29
Joel Casas IngenIero de aplICaCIones Simulación de Inyección de Plásticos con SolidWorks Plastics 2016

Upload: intelligy

Post on 13-Apr-2017

568 views

Category:

Technology


7 download

TRANSCRIPT

Page 1: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Joel Casas IngenIero de aplICaCIones

Simulación de Inyección de Plásticos con SolidWorks

Plastics 2016

Page 2: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Contenido

Proceso General

Impacto

Funcionamiento

Pruebas

Novedades

Page 3: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Proceso General

Page 4: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Diseño de la pieza

• Calidad • Tiempo • Costo • Uso • Requisitos cliente

Page 5: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Diseño del molde

• Núcleo • Cavidades • Platos • Corazones • Enfriadores • Corredores • Ventilación…

Page 6: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Preparación del molde

• Maquinado del molde • Acabados y tratamientos • Parámetros de inyección • Preparar material • Pruebas piloto • Ajustes finales…

Page 7: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Bomba de tiempo

• Llenado corto • Líneas de unión • Flasheo • Balanceo de corredores • Alabeo • Enfriamiento • Estrés residual

Page 8: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Contenido

Proceso General

Impacto

Funcionamiento

Pruebas

Novedades

Page 9: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Proceso General

Retrabajo en Moldes

Fabricación del Molde

Diseño del Molde

Diseño de Pieza

Producción (Inyección)

Costos

Tiempo

Eliminar Retrabajos

Page 10: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Simulación del proceso

Page 11: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Impacto del cambio vs Costo del Cambio

Impacto del cambio Costo del cambio

Diseño de Pieza

Diseño del Molde

Fabricación del Molde

Producción (inyección)

Lanzamiento de Producto

Alto Impacto Alto Costo

Etapas del Proceso

Page 12: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Contenido

Proceso General

Impacto

Funcionamiento

Pruebas

Novedades

Page 13: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Contenido

Proceso General

Impacto

Funcionamiento

Pruebas

Novedades

Page 14: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Llenado – temperatura y presion

Moderador
Notas de la presentación
After completing almost any analysis, the first plot one might look at is the fill time plot, which displays the profile of the melted plastic as it flows through the mold cavity and basically shows you whether or not the part will fill completely. Also displayed in the scale on the left is the amount of time it takes to fill the cavity.
Page 15: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Llenado corto

Moderador
Notas de la presentación
Short shots occur when a mold cavity will not completely fill with melted plastic, as seen here. And frequently, higher injection pressures, faster injection speeds and higher melt temperatures will not solve this problem. That is why it is so important to identify these kinds of problems before the mold is manufactured, because when this is first discovered at the molding machine, it can be very time-consuming and expensive to fix – assuming it’s possible to fix. In this particular case, an increase to the part wall thickness was required to solve the problem.
Page 16: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Lineas de unión

Moderador
Notas de la presentación
Weld lines are areas where 2 or more plastic melt flow fronts come together. They are caused by through-holes in a part, where the plastic flow front would have to go around a mold core pin (or other core feature) and join together on the opposite side. They can also be caused by varying wall thickness that results in multiple flow fronts (2 or more) that flow through a mold cavity and rejoin at some point. And, any time you have 2 or more injection locations into a single mold cavity, you will have at least 1 weld line due to the 2 flow fronts coming together. The ability to predict the formation of weld lines and their location is critical because weld lines are never as strong as areas of a part that do not have weld lines, so they can result in structural defects. And, poor weld line appearance can result in cosmetic defects in a molded part.
Page 17: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Aire atrapado

Moderador
Notas de la presentación
As an injection mold fills with melted plastic, the air in the cavities is displaced by the plastic. The air is typically vented to atmosphere through vents machined into the mold at the parting line, or in some cases down ejector pins. When the air gets pushed to an area of the part where it cannot easily be vented, it's referred to as an "air trap". Air traps usually cause molded part defects that range from unintended through holes to burn marks caused by the combustion of the trapped air. Needless to say, air traps are not a good thing.
Page 18: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Marcas de hundimiento - rechupes

Moderador
Notas de la presentación
Sink marks occur in relatively thick wall sections that are not packed out well enough to compensate for the shrinkage that occurs as the molded part cools down. They are called sink marks because the surface of the part actually sinks in resulting in visible depressions. Sink marks can be improved or eliminated by changing wall thickness, gate location, process parameters or even the material. And because sink marks almost always result in cosmetic defects, it is important to be able to predict them using SolidWorks Plastics.
Page 19: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Puntos de inyeccion múltiples

Moderador
Notas de la presentación
Multiple gates may be required to fill very large parts but they can also be used to balance the pressure within a mold cavity to prevent core-shift and unbalanced filling, as seen here.
Page 20: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Cavidades múltiples

Moderador
Notas de la presentación
Because injection molding is a high-volume manufacturing process, injection molds commonly have multiple cavities, for example, 2, 4, 8, 16, 32 or more. SolidWorks Plastics Premium can be used to analyze and optimize multi-cavity mold layouts to ensure all cavities fill at the same time and same pressure.
Page 21: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Canal de alimentación – no balanceado

Moderador
Notas de la presentación
Family molds are multiple cavity molds that have different geometry, for example, a top and bottom housing. In this example, while both cavities are very similar, they have different volumes. As a result, if the flow path through the runner system is the same for each cavity, the cavities will fill at different times and pressures. SolidWorks Plastics Premium runner balancing can be used to determine runner system dimensions that will result in both cavities filling at the same time. Here we see the unbalanced filling patterns.
Page 22: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Canal de alimentacion – bien balanceado

Moderador
Notas de la presentación
And here we see both cavities now filling at the same time as a result of the runner balancing analysis.
Page 23: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Sobre moldeo – cepillo de dientes

Moderador
Notas de la presentación
Insert overmolding is the process where melted plastic is injected over (or around) some other part that effectively is an “insert” inside of the mold cavity. The insert may be plastic, metal or some other material. A very common insert overmolding application is a toothbrush (seen here) where a very soft and rubbery material is injected over the hard and rigid plastic handle.
Page 24: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Sobre moldeo – conector eléctrico

Moderador
Notas de la presentación
Here we see another insert overmolding application with an electrical connector, where the “inserts” are the copper leads. Additional informoation… <Insert Overmolding starts with multi-body part, but 1 domain must be assigned as the cavity while the other is defined as the insert, meaning you can control the process settings only for the material that fills the cavity. This process is used to manufacture electrical connectors, toothbrushes, packaging caps and lids, etc.>
Page 25: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Análisis de fibra

Moderador
Notas de la presentación
For fiber-filled materials – containing glass fibers, carbon fibers, etc. – this analysis will predict the resulting fiber orientation and mechanical properties of a molded part.
Page 26: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Contenido

Proceso General

Impacto

Funcionamiento

Pruebas

Novedades

Page 27: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

SolidWorks Plastics 2016

• Dominio de colada • Nuevas opciones de solver • Plantilla de informe • Interfaz

Page 28: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

Conclusión

• Mayor calidad • Mayor velocidad • Menor costo • Simplicidad de uso

Page 29: Simulación de Ingeniería de Plástico con SolidWorks Plastics 2016

www.intelligy.com.mx

Joel Casas Correo: [email protected]

Tel: 01 800 410 3554 ext 133

¡Muchas gracias!