sensores

55
Apuntes y prácticas de sensores octubre 09 © 2008, 2009 Jorge Rodríguez Araújo [email protected] Esta obra está bajo una licencia de Creative Commons por la que se da permiso para copiar, distribuir y/o modificar este documento bajo los términos de dicha licencia.

Upload: jorge-rodriguez-araujo

Post on 08-Jun-2015

5.775 views

Category:

Documents


0 download

DESCRIPTION

Apuntes y prácticas de sensores

TRANSCRIPT

Page 1: Sensores

Apuntes y prácticas desensores

octubre 09

© 2008, 2009 Jorge Rodríguez Araújo

[email protected]

Esta obra está bajo una licencia de Creative Commons por la que se da permiso para copiar, distribuir y/o modificar este documento bajo los términos de dicha licencia.

Page 2: Sensores

Índice 1. Introducción...............................................................................1

1.1. Características de los sensores............................................................1Fiabilidad.........................................................................................................................2Confiabilidad....................................................................................................................2

1.2. Modelo metrológico de la diana............................................................21.3. Tipos de salidas....................................................................................3

1.3.1. Salidas digitales..........................................................................................3Digital tipo relé................................................................................................................3Digital de estado sólido....................................................................................................3

1.3.2. Salidas analógicas......................................................................................4

2. Sensores....................................................................................52.1. Sensores internos.................................................................................5

2.1.1. Sensores de presencia................................................................................5Fines de carrera mecánicos.............................................................................................5Relés reed........................................................................................................................5Efecto Hall.......................................................................................................................5Magnetoresistivos............................................................................................................5Inductivos........................................................................................................................6Capacitivos......................................................................................................................6Optoelectrónicos..............................................................................................................6

2.1.2. Sensores de posición..................................................................................7Desplazamiento angular........................................................................................7

Codificadores...................................................................................................................7Resolver...........................................................................................................................8

Desplazamiento lineal...........................................................................................8LVDT................................................................................................................................8Reglas ópticas.................................................................................................................9Reglas magnéticas...........................................................................................................9Magnetoestrictivos..........................................................................................................9

2.1.3. Sensores de velocidad................................................................................92.1.4. Sensores de fuerza.....................................................................................92.1.5. Acelerómetros..........................................................................................102.1.6. Sensores de velocidad angular.................................................................11

Giroscopio electrónico...................................................................................................11Giroscopio óptico...........................................................................................................11

2.1.7. Sensores de orientación...........................................................................11Compás magnético........................................................................................................11Válvula magnética.........................................................................................................12Flux gate........................................................................................................................12

2.2. Sensores externos..............................................................................122.2.1. Técnicas de medición de distancia...........................................................12

Distancia por triangulación............................................................................................12Distancia por tiempo de vuelo.......................................................................................12Distancia por desplazamiento de fase............................................................................13

2.2.2. Sensores de distancia...............................................................................13Sensores de ultrasonidos...............................................................................................13Sensores de infrarrojos..................................................................................................13Láser..............................................................................................................................14Radar.............................................................................................................................14

i

Page 3: Sensores

2.2.3. Técnicas de posicionamiento relativo.......................................................14Odometría......................................................................................................................14Técnicas inerciales.........................................................................................................15

2.2.4. Técnicas de posicionamiento absoluto.....................................................15Posicionamiento basado en marcas.....................................................................15

Triangulación.................................................................................................................15Trilateración...................................................................................................................15

GPS......................................................................................................................15GPS diferencial...............................................................................................................16

2.2.5. Sensores en microbots.............................................................................16Sensor de presencia......................................................................................................16Sensor de distancia........................................................................................................17

2.3. Sensores de Temperatura..................................................................172.3.1. Termorresistivos.......................................................................................17Metálicos.............................................................................................................18Semiconductores.................................................................................................18

Termistores....................................................................................................................18Positancias.....................................................................................................................18Sensores de silicio.........................................................................................................19

Termopares.........................................................................................................192.4. Sensor LDR.........................................................................................192.5. Captador de aceleración piezoeléctrico..............................................202.6. Medida de corriente ...........................................................................20

3. Acondicionamiento..................................................................213.1. Amplificación (Amplificador de instrumentación)...............................21

3.1.1. Parámetros característicos.......................................................................213.1.2. Amplificador de instrumentación basado en tres AO................................21

Circuito..........................................................................................................................213.1.3. Análisis teórico.........................................................................................22

Ganancias de la etapa de entrada.................................................................................22Ganancia de la etapa de salida......................................................................................23Ganancia del AI..............................................................................................................23R de comienzo de saturación.........................................................................................23

3.1.4. Práctica de laboratorio..............................................................................23Circuito con R2 = 220 Ω.................................................................................................23Circuito que sustituye R2 por un potenciómetro de 500 Ω.............................................24

3.2. Filtrado (Filtros activos)......................................................................243.2.1. Introducción..............................................................................................243.2.2. Diagrama de Bode....................................................................................253.2.3. Análisis de un filtro activo.........................................................................27

Circuito..........................................................................................................................27Identificación y análisis..................................................................................................27Montaje y comprobación práctica..................................................................................27Valores teóricos de los condensadores..........................................................................28

3.2.4. Diseño de un filtro activo..........................................................................28Elección de la aproximación..........................................................................................29Cálculo del orden del filtro.............................................................................................29Obtención de la función de transferencia.......................................................................29Transformación del filtro a nuestras especificaciones....................................................29Eleccción de la topología...............................................................................................29Calculo de valores de montaje.......................................................................................29

3.3. Aislamiento (Aislamiento galvánico)...................................................29

ii

Page 4: Sensores

3.3.1. Introducción..............................................................................................293.3.2. Aislamiento óptico....................................................................................303.3.3. Aislamiento óptico de señales digitales....................................................30

Circuito..........................................................................................................................30Cálculos.........................................................................................................................30Mediciones sobre el circuito...........................................................................................31Modificación del circuito para que las señales de entrada y salida estén en fase...........31

3.3.4. Aislamiento óptico de señales analógicas.................................................32Circuito sin realimentación............................................................................................32Cálculos.........................................................................................................................32Circuito realimentado....................................................................................................33Cálculos.........................................................................................................................33

3.4. Circuitos auxiliares.............................................................................353.4.1. Circuito generador de offset.....................................................................35

Circuito..........................................................................................................................35Cálculos.........................................................................................................................35

3.4.2. Fuente de corriente..................................................................................36Circuito..........................................................................................................................36Cálculos.........................................................................................................................36

3.4.3. Fuente de tensión.....................................................................................37Circuito..........................................................................................................................37Cálculos.........................................................................................................................37Montaje práctico............................................................................................................37

4. Adquisición..............................................................................384.1. Introducción.......................................................................................38

4.1.1. Teorema de muestreo..............................................................................384.1.2. Aliasing.....................................................................................................38

4.2. Adquisición de datos..........................................................................384.2.1. Convertidor analógico-digital....................................................................394.2.2. Convertidor digital-analógico....................................................................39

5. Medida de temperatura con PT100.........................................405.1. Introducción.......................................................................................405.2. Acondicionamiento.............................................................................40

5.2.1. Circuito de polarización y puente de medida............................................415.2.2. Etapa de amplificación.............................................................................425.2.3. Etapa de filtrado.......................................................................................44

Alternativa.....................................................................................................................455.3. Adquisición de datos..........................................................................46

5.3.1. Temperatura.............................................................................................46Panel frontal..................................................................................................................46Diagrama de Bloques.....................................................................................................47

6. ¿Cómo funciona el Segway?....................................................486.1. Introducción.......................................................................................486.2. ¿Qué es el Segway?............................................................................486.3. ¿Cómo se maneja?.............................................................................486.4. ¿Cómo funciona?................................................................................49

En parado............................................................................................................49En movimiento....................................................................................................50

iii

Page 5: Sensores

6.5. Conclusión..........................................................................................50

iv

Page 6: Sensores

Introducción

1. IntroducciónUn sensor es un dispositivo que convierte una variable física que se desea medir en una señal

eléctrica que contiene la información correspondiente, ya sea modulada en tensión, corriente o

frecuencia.

Para ello el sensor suele ir acoplado a un circuito

acondicionador de señal, que convierte la señal del

sensor a valores adecuados para que dicha señal se pueda

capturar. En general, este circuito electrónico amplifica,

filtra, adapta impedancias, y modula o demodula la señal.

Finalmente, se procede a a la etapa de adquisición,

para su procesamiento, registro o presentación.

Como etapa intermedia se debe realizar la

calibración o ajuste de la medida del sensor, que suele

incluir la corrección de offset, la corrección de ganancia,

la linealización o el establecimiento de las tablas de equivalencias.

1.1. Características de los sensoresLas principales características a tener en cuenta en la selección de un sensor son:

• Resolución: es la mínima variación, dentro del rango de medida, que es apreciada por el

sensor como un cambio de su salida.

• Precisión: es la tolerancia de la medida, con lo que define los límites del error,

garantizando que la medida se encontrará con toda seguridad en el rango definido.

• Repetibilidad: es el grado de precisión en la repetición de una medida que se realiza de

forma consecutiva y bajo las mismas condiciones, incluida la dirección de variación del

estímulo de entrada.

• Sensibilidad: indica la variación que experimenta la medición con la variación de la

variable medida, o sea, es la razón de cambio de la salida ante los cambios en la entrada, y por

tanto es mejor cuanto mayor sea.

• Exactitud (accuracy): Diferencia entre la salida real y el valor teórico de dicha salida

(valor verdadero). Se suele dar en valor absoluto o relativo.

• Grado de protección (IP: Internation Protection): el grado de protección se designa

como “IPxy”, siendo x ( 1ª cifra ) el indicador del grado de protección contra sólidos [ 0 ( sin

1

SENSORSENSOR

ACONDICIONAMIENTOACONDICIONAMIENTO

ADQUISICIÓNADQUISICIÓN

Page 7: Sensores

Introducción

protección ) - 6 ( protección total )], e y ( 2ª cifra ) el indicador del grado de protección

contra líquidos [0 ( sin protección ) - 8 ( protección contra la inmersión indefinida )].

• Rango (range): Valores entre los cuales se puede realizar una medida. Rango de valores

de la magnitud de entrada comprendido entre el máximo y el mínimo detectables por un

sensor, con una tolerancia de error aceptable.

• Deriva: variación de la salida esperada del sensor debido a cambios de temperatura,

humedad, envejecimiento, etc.

Además, todo dispositivo presenta unas condiciones ambientales de operación, fuera de las

cuales no se garantiza su funcionamiento, y que en el caso de los sensores, aún con un

funcionamiento correcto provocan desviaciones de las medidas que pueden resultar importantes.

Fiabilidad

La fiabilidad establece la probabilidad de que el sistema cumpla su función a lo largo de un

tiempo determinado y bajo unas condiciones de trabajo especificadas. Dependiendo de la criticidad

del sensor sobre el sistema puede ser determinante en la elección.

Confiabilidad

La confiabilidad es la probabilidad de que el sensor funcione dentro de sus especificaciones en

un instante determinado. Y establecerá el grado de confianza de la medida proporcionada por cada

sensor disponible.

1.2. Modelo metrológico de la dianaEl modelo metrológico de la diana ilustra la diferencia entre resolución, precisión y

repetibilidad.

Para ello, el centro de la diana representa el valor verdadero, mientras que los círculos

representan la resolución, siendo mayor cuanto más pequeño sea el radio.

De este modo, la distancia de un punto al centro

de la diana representa la exactitud (accuracy) de la

medida, mientras que la distancia entre puntos

representa la precisión (precision) o el grado de

concordancia entre las medidas, de modo que el error

será más pequeño cuanto menor sea la distancia al

centro y mayor el agrupamiento de las medidas.

Así, cuando se repite un cierto número de veces la medida de un cierto valor, la media de

dichas medidas es el valor que más se acerca al real, dado que según la estadística se trata de un

estimador insesgado de media nula.

2

EXACTO

PRECISO

Page 8: Sensores

Introducción

1.3. Tipos de salidas1.3.1. Salidas digitales

Existen dos tipos de salidas digitales

diferenciadas por el dispositivo que emplean

en la conmutación, lo que les confiere características eléctricas fuertemente diferenciadas.

Digital tipo relé

Este tipo de salidas se produce a través de un relé electromagnético, con lo que se comporta

como un interruptor controlado por el sensor.

Digital de estado sólido

Una salida de estado sólido, al contrario que una tipo relé, no tiene partes mecánicas móviles

sino que utiliza componentes semiconductores, lo que le confiere la capacidad de realizar un número

prácticamente ilimitado de operaciones. Además, se evitan las posibles anomalías que pueden

producirse en un contacto mecánico al abrirse o cerrarse, tales como las debidas a los rebotes de los

contactos o a las interferencias que produce el arco eléctrico.

Las salidas típicas en sensores se diferencian por el número de hilos:

– Salidas a dos hilos: los terminales de alimentación y señal

coinciden, de modo que cuando el sensor está abierto debe

dejar pasar una pequeña corriente necesaria para su

alimentación, del orden de mA, al igual que cuando se

encuentra cerrado debe mantener una tensión residual entre

– Salidas a tres hilos: dos de los terminales son de alimentación,

mientras que el tercero es la señal de salida a la cual se

conecta uno de los terminales de carga.

– Salidas a cuatro hilos: al igual que en los de tres, dos

terminales son de alimentación, y los otros dos proporcionan

dos señales de salida, siendo una la inversa de la otra.

Además, las salidas digitales a tres hilos, las más comunes, se

diferencian según el tipo de transistor que utilicen, dado que determina la posición de la carga:

– Tipo NPN: en este tipo de salidas usan un transistor bipolar NPN en conmutación para

activar la salida conectando o desconectando la carga al positivo de la alimentación.

3

SENSOR

+Vcc

Salida

0

SENSOR

+Vcc

0

SENSOR

+Vcc

- Salida

0

+ Salida

El error es la diferencia entre el valor verdadero y

el valor medido, estando formado por el error de

medida y por los errores sistemáticos y aleatorios.

Page 9: Sensores

Introducción

– Tipo PNP: al cambiar el transistor de salida por uno PNP, la carga debe ir conectada entre los

terminales de salida y negativo de alimentación (referencia).

1.3.2. Salidas analógicas

Las salidas analógicas pueden ser en tensión, en corriente o en frecuencia, teniéndose que:

– La señal de salida se da en forma de nivel de tensión cuando la distancia de transmisión es

corta (menor de 10 m), ya que la caída de tensión en los hilos será pequeña y la baja

inmunidad al ruido no afectará. Aquí, la impedancia de carga ( Z i ) debe ser muy superior

a la impedancia de salida del sensor ( Zo ).

– La señal de salida se da en forma de corriente cuando la distancia de transmisión es mayor

que en el caso anterior, dado que al ser altamente inmune al ruido, admite longitudes de

cableado muy superiores a los de salida en tensión. Aquí, al contrario que en el caso anterior,

la impedancia de carga debe ser muy inferior a la de la salida.

– La señal de salida se da en forma de frecuencia cuando la inmunidad al ruido resulta crítica.

4

SENSOR

+Vcc

0

SalidaPNPca

rga

SENSOR

+Vcc

0

SalidaNPN

carg

a

Page 10: Sensores

Sensores

2. SensoresSiguiendo un criterio de clasificación típico de robótica, los sensores se dividen entre

propioceptivos, sensores internos dado que permiten conocer el estado del robot, y perceptivos,

sensores externos dado que permiten detectar y reconocer el entorno.

2.1. Sensores internos2.1.1. Sensores d e presencia

Fines de carrera mecánicos

Son dispositivos de conmutación mecánica que permiten detectar la presencia por contacto.

Por lo tanto, resultan económicos, pero presentan mantenimiento y desgaste.

Relés reed

El relé Reed es un conmutador accionado por la proximidad de un campo magnético.

Está formado por dos láminas ferromagnéticas de baja reluctancia encerradas en una ampolla

de vidrio. Si su configuración es normalmente abierto, cuando se encuentra ante la presencia de un

flujo magnético externo las láminas adquieren polaridades opuestas, se atraen y el interruptor toma

un estado de baja impedancia (ON), mientras que en configuración normalmente cerrado, ante la

presencia de un campo magnético externo las láminas metálicas adquirirán polaridades iguales,

repeliéndose, y pasando el interruptor al estado de alta impedancia (OFF).

Efecto Hall

Son sensores que se basan en el efecto conocido como efecto Hall, donde cuando una

corriente de intensidad I circula por una barra de material semiconductor en presencia de un campo

magnético transversal (B), se genera una tensión transversal proporcional, dado que los portadores

de carga móviles son arrastrados en la dirección perpendicular provocando la aparición de

distribuciones de carga de signos apuestos en los laterales de la barra. A este voltaje proporcional al

campo magnético se lo conoce como tensión Hall.

Magnetoresistivos

Se basan en una propiedad conocida como magnetorresistencia, por la cual, determinados

materiales aumentan su resistencia cuando se encuentran bajo los efectos de un campo magnético

externo. Esto se debe a la desviación de la trayectoria de los electrones que provoca la presencia de

ese campo, siendo un efecto destacable en los materiales ferromagnéticos.

Se utilizan en la medida de pequeños desplazamientos angulares y lineales, como en el caso de

los potenciómetros magnetorresistivos, en los que un imán que funciona como cursor y que se

desplaza sobre la magnetorresistencia provoca variaciones de resistividad que permiten la medición

5

Page 11: Sensores

Sensores

del desplazamiento.

También se utilizan para la medición de la corriente que atraviesa un conductor, como en los

interruptores que detectan cortes de corriente en circuitos electrónicos.

Inductivos

Se emplean en la detección sin contacto de objetos metálicos a pequeñas distancias, siendo

esta de aproximadamente el diámetro de la bobina sensora, aunque depende del material (mayor

cuanto más resistivo sea el material) y la forma.

El dispositivo genera un campo

magnético (100 kHz a 1 Mhz) que ante la

presencia de un objeto metálico, induce

corrientes de Foucault en la superficie del

mismo, con lo que se puede detectar la

variación de inductancia que provocan esas

pérdidas por corrientes inducidas. Esta

variación es comparada con un umbral para

que se active como sensor todo o nada.

Capacitivos

Se emplean para detectar elementos sin

contacto, tanto metálicos como no metálicos,

pero a muy pequeña distancia

(aproximadamente la mitad del diámetro del

sensor, aunque depende del material y la

forma).

Para esto, miden la variación de capacidad que provoca la intrusión de un objeto en su

entorno. Dado que el objeto varía la permitividad eléctrica del medio, lo que se traduce en una

variación del comportamiento dieléctrico del medio, que puede ser detectado por la comparación

con un determinado umbral.

También se emplean para la detección de posiciones angulares (receptores de radio) gracias a

que permiten detectar cambios de área, para la medición de pequeños desplazamientos mecánicos o

para la medida de niveles de líquidos conductores gracias a que detectan variaciones de distancia, y

para la medida del nivel de líquidos no conductores por medio de la variación dieléctrica.

Optoelectrónicos

Mediante el empleo de una fotocélula se detecta la luz emitida por la fuente, detectándose

cuando se interrumpe ese flujo. Para evitar interferencias de la iluminación ambiental se emplea luz

6

Se llaman corrientes de Foucault a las corrientes

inducidas sobre el volumen de una pieza metálica

cuando se encuentra bajo el efecto de una campo

magnético variables, ya sea porque la pieza se

mueve en un campo magnético fijo, o porque este

es variable.

Estas corrientes se traducen en pérdidas por

calentamiento debidas al efecto Joule.

Cuando se coloca una pieza de metal en un campo

magnético variable con el tiempo B(t), se genera

un campo eléctrico que produce un movimiento

de las cargas libres en el conductor metálico,

generando corrientes, según las expresión:

∮ E d l=− ddt∫ B d S

Page 12: Sensores

Sensores

polarizada.

Se diferencian tres tipos principales de sensores optoelectrónicos:

• Barrera fotoeléctrica: el emisor y el receptor se encuentran separados.

• De reflexión sobre espejo: el emisor y el receptor se encuentran juntos. La reflexión es

directa, por medio de un catadióptrico, que presenta la particularidad de reflejar la luz en la

misma dirección en que incide.

• De reflexión sobre objeto: también conocidos como de reflexión difusa, dado que el haz

de luz es reflejado por el propio objeto. Como la reflexión depende del objeto, los de color

blanco serán detectados a mayores distancias que los negros, dado que un objeto más oscuro

presenta una mayor absortibidad.

Además, existen las denominadas cortinas ópticas, formadas por una serie de barreras

fotoeléctricas, con lo que se detectan la posición y el tamaño del objeto introducido en su interior.

2.1.2. Sensores d e posición

Aunque los potenciómetros fueron muy empleados gracias a su simplicidad y bajo coste han

sido relegados debido a sus inconvenientes. La disminución de su vida útil debido al desgaste que

provoca la existencia de partes móviles, la producción de ruido eléctrico, y su velocidad de

funcionamiento limitada.

Desplazamiento angular Codificadores

Los codificadores generan señales digitales según la posición en la que se encuentren,

pudiendo ser angulares o lineales, y están realizados en diferentes tecnologías, siendo los ópticos los

más comunes, pero también existen con codificación magnética y con sensores de efecto Hall como

los empleados en automoción.

Un codificador emplea un disco marcado para identificar la posición, pudiendo ser

incremental, si la posición se establece de forma relativa (medida de incrementos de posición), o

absoluto, si la posición se establece de forma absoluta por medio de un código de posición en el

disco.

En los codificadores incrementales se emplean discos con dos pistas concéntricas desfasadas

media marca, con lo que se puede determinar el sentido de giro, dado que una señal irá adelantada

respecto a la otra según el disco gire a derechas o a izquierdas. También suelen disponer de una

señal de paso por cero, que produce un pulso a cada vuelta.

Mediante la conexión de una de las pistas a la entrada de contaje y la otra a la entrada de

selección de cuenta ascendente o descendente de un contador reversible se puede conocer la

7

Page 13: Sensores

Sensores

posición. Pero la configuración anterior presentará errores si el encoder se encuentra variando en

torno a una misma posición, de modo que habrá que utilizar decodificadores de cuadratura.

En los encoders ópticos un disco translúcido es marcado con una serie de bandas opacas

distribuidas uniformemente que interceptan el paso de la luz de un grupo emisor-receptor de luz,

generando de este modo una serie de pulsos al girar el disco en el caso de los incrementales. En los

codificadores absolutos se genera un código binario según la posición en que se encuentre en cada

instante, mediante n pistas concéntricas que codifican cada posición. En estos últimos, para evitar

errores de lectura de posición debido a la transmisión asincrónica de los bits se emplea el código

Gray, en el que sólo existe un bit de diferencia entre dos posiciones consecutivas cualesquiera.

Resolver

El resolver permite la medida de la posición angular con una resolución infinita, pero dada su

naturaleza analógica, sólo resulta adecuado cuando se requiere dicha precisión.

Está formado por una bobina móvil conectada al eje de giro que actúa como primario al ser

excitada por una señal senoidal V 1=Asen t que induce sobre dos bobina fijas desfasadas 90º

(secundarios), las tensiones V A=Asen sen t y V B=Acos sen t , con lo que se tiene

que V A

V B=tg depende del ángulo girado, lo que permite resolver la posición.

Desplazamiento lineal LVDT

El transformador diferencial de variación lineal (LVDT) se emplea en la medida de distancias

muy pequeñas, en las que se requiere gran precisión, elevada

sensibilidad y robustez, gracias a la ausencia de rozamiento. Consta de

un núcleo ferromagnético unido a un vástago que recibe el movimiento

y que se desplaza entre un devanado primario y dos secundarios

situados de forma simétrica con el primario. De este modo, dado que el

primario se encuentra alimentado en alterna, en los secundarios se

induce una tensión de valor similar cuando el núcleo ferromagnético se

encuentra en la posición central, mientras que al moverse, la inducción

en uno de los secundarios aumenta mientras que en el otro disminuye, siendo las tensiones inducidas

proporcionales al desplazamiento del eje.

Este tipo de sensores recibe el nombre de reluctivos por basarse en al variación de la

reluctancia magnética de un circuito transformador.

8

LVDT

Page 14: Sensores

Sensores

Reglas ópticas

Funcionan igual que los codificadores ópticos, pero en lugar de un disco utilizan una regla.

Reglas magnéticas

La regla magnética (Inductosyn) presenta una serigrafía en forma de onda rectangular que es

alimentada por una señal senoidal y que por tanto inducirá una tensión sobre los seguidores que

actuarán como bobinas sensoras, presentando un acoplamiento máximo cuando se encuentre

alineado con las pistas de la regleta. Así se pueden contar las variaciones entre acoplamiento máximo

y mínimo que se producen según avanza el sensor a lo largo de la regla, y de este modo obtener la

posición.

Magnetoestrictivos

Son sensores de desplazamiento lineal

que fundamentan su funcionamiento en la

magnetoestricción.

El sensor consiste en un imán que se

desplaza sobre un vástago provocando la

estricción del material en el punto sobre el

que se encuentra. Esta singularidad provoca

que el sonido, generado por un emisor situado

en uno de los extremos del vástago, rebote, de modo que la diferencia de tiempo entre la emisión

de la onda y su recepción es proporcional a la distancia hasta el imán, y proporcionará la distancia.

2.1.3. Sensores d e velocidad

Los sensores de velocidad son poco empleados, dado que lo normal es emplear los sensores

de posición para averiguar la velocidad. Los principales son el tacodinamo y el alternador.

2.1.4. Sensores d e fuerza

En robótica se emplean los sensores de fuerza para determinar las fuerzas y pares ejercidos

sobre el elemento terminal durante la ejecución de una tarea. Aunque también se emplean en la

percepción de la forma o posición de un objeto, por medio de la medida de la fuerza ejercida en la

superficie de contacto sobre un cierto número de captadores puntuales.

9

La magnetoestricción es la propiedad por la que

determinados materiales ferromagnéticos sufren

una reducción de sección (estricción) cuando se

encuentran sometidos a la acción de un campo

magnético (efecto Villari).

Esta propiedad se emplea en la generación y

detección de ultrasonidos.

Page 15: Sensores

Sensores

Los principales sensores de fuerza se

basan en la piezorresistividad y utilizan para

ello las galgas extensiométricas.

Las galgas experimentan una variación

de su resistencia eléctrica al sufrir una

deformación. Así, al fijarse a un elemento

mecánico sobre el que se quiere medir el

esfuerzo, miden la deformación que depende

de la carga aplicada.

Pueden ser metálicas o

semiconductoras, estando las primeras

formadas por una lámina de hilo metálico

dispuesto en forma de zigzag sobre un soporte

elástico, y las segundas por una pista de

semiconductor insertada en un núcleo de

silicona.

Las galgas metálicas presentan el inconveniente de tener una baja sensibilidad, pero a cambio

soportan una gran deformación y son más robustas.

Las semiconductoras, sin embargo, son más sensibles y tienen menor tamaño, pero son más

delicadas, su respuesta no es lineal y depende fuertemente de la temperatura.

Debido a que su utilización requiere un montaje y calibración meticulosos, las galgas se

encuentran, habitualmente, constituyendo un conjunto integrado en lo que se conoce como células

de carga. En ellas, la galga se une a una viga que actuará como elemento sensor, convirtiendo la

fuerza o par exterior en una deformación que le es transmitida a la galga que se encuentra fijada en

ella, de modo que la salida de la célula proporciona la medida buscada.

Por tratarse de elementos resistivos se montan en puente de Wheastone para compensar los

errores debidos a variaciones de temperatura.

2.1.5. Acelerómetros

Los acelerómetros miden la aceleración lineal de un móvil solidario con ellos en un

determinado eje del espacio.

El mayor inconveniente que presentan reside en el calibrado, y en el error cometido si se

quiere obtener a partir de ellos la velocidad, y mucho más para la posición.

10

La piezorresistividad es la propiedad por la que

algunos materiales, conductores y

semiconductores, cuando se someten a un

esfuerzo que los deforma dentro de su zona

elástica, varían su resistencia. Dado que aunque la

resistividad ( ) depende de la temperatura, si

se mantiene constante, la resistencia sólo

dependerá de los parámetros geométricos del

material, y por tanto su variación será debida a la

deformación.

R= lS

Esta propiedad se emplea en la construcción de

galgas extensiométricas, que en su montaje

industrial se denominan células de carga.

Page 16: Sensores

Sensores

2.1.6. Sensores d e velocidad angular

Los sensores de velocidad angular o giroscopios detectan el giro en un eje.

Aunque en un principio eran dispositivo mecánicos, han sido sustituidos por los piezoeléctricos

o los ópticos, de los cuales, los láser son los que ofrecen la mayor precisión, y que por tanto son

empleados en aplicaciones de mayor responsabilidad, como en aviación.

Una de las características más importantes a tener en cuenta en este tipo de dispositivos es la

deriva, dado que con el paso del tiempo pueden falsear enormemente la medida, haciéndola

inservible.

Giroscopio electrónico

Los giroscopios electrónicos son dispositivos de estado sólido basados en la aceleración de

Coriollis. En ellos, un material piezoeléctrico se hace oscilar a la frecuencia de resonancia, de modo

que al girar, la fuerza de Coriollis (proporcional a la velocidad angular) provoca la aparición de una

diferencia de potencial debida a la desviación del prisma, permitiendo la medida de la velocidad de

rotación.

Giroscopio óptico

El giroscopio óptico está formado por

una bobina de fibra óptica por donde se hace

circular dos haces láser en sentidos opuestos

para generar un patrón de interferencia,

siendo el desfase proporcional al

desplazamiento angular o giro de la bobina.

Aunque no superan la sensibilidad de

los giroscopios de masas (mecánicos), ni la

precisión de los basados en láser (ópticos), presentan la ventaja de ser más sencillos, baratos, rápidos

(respuesta a altas velocidades de giro) y de menor tamaño y peso.

2.1.7. Sensores d e orientación

Los sensores de orientación o compases miden la orientación con relación al polo Norte

magnético terrestre.

Compás magnético

El compás magnético, más conocido como brújula magnética, indica la posición del polo Norte

geográfico.

Para esto, emplea una aguja magnetizada, que al permitirle girar libremente se alinea con el

campo magnético terrestre, indicando la posición del polo Norte magnéticos. Dado que lo que se

11

Efecto sagnac: Se genera un patrón de

interferencia estable mediante dos haces de luz de

igual frecuencia y sentidos opuestos al circular por

una fibra óptica enrollada. De este modo, al variar

la posición del detector se pueden contar las

bandas y por tanto determinar la velocidad

angular.

Page 17: Sensores

Sensores

quiere es la orientación del polo Norte geográfico, hay que corregir la distancia angular del polo

magnético al geográfico, lo que recibe el nombre de declinación. Para esto se sitúa la aguja sobre un

círculo graduado en el cual se ha tenido en cuenta la corrección entre nortes.

Válvula magnética

La válvula magnética es un dispositivo electrónico que se emplea para conocer la orientación.

Emplea una barra ferromagnética alrededor de la cual se encuentran enrolladas dos bobinas.

Una de las bobinas funciona como conductora (drive) y otra como sensora. Cuando la bobina

conductora se encuentra activada, el material está saturado y el campo magnético terrestre no pasa

por la barra. Si la bobina conductora actúa de forma alternada, el campo magnético terrestre

describe ciclos a través del hierro generando un campo magnético alternante que inducirá una

corriente alterna en la bobina sensora, de tal modo que la amplitud de la corriente será mayor

cuanto más alineada se encuentre la barra de hierro con el campo magnético terrestre.

Flux gate

El compás tipo “Flux gate” está formado por un toroide ferromagnético alrededor del cual se

encuentran enrolladas dos bobina en cruz, de modo que la orientación respecto al campo magnético

terrestre provocará una variación del ángulo de desfase existente entre las dos bobinas sensoras.

2.2. Sensores externos2.2.1. Técnicas d e medición d e distancia

Los sensores emplean una serie de técnicas para la medición de la distancia a un objeto.

Distancia por triangulación

El haz reflejado por el objeto es desviado de tal modo que puede ser medido por un array de

fotodetectores que permitirá determinar la distancia.

La distancia se obtendrá por semejanza de triángulos, de modo que:

Dw= f

d

Hay que resaltar que este tipo de medida presenta una exactitud que disminuye con la

distancia.

Distancia por tiempo de vuelo

Esta técnica consiste en la medida del tiempo transcurrido entre la emisión de la señal y la

12

fw

d

DLÁSER

Page 18: Sensores

Sensores

recepción de la señal reflejada para determinar la distancia al objeto. Así, la distancia vendrá dada

por la expresión:

D= v⋅t2

Distancia por desplazamiento de fase

La medición del desfase ( ) entre la señal emitida y el eco recibido permite la

determinación de la distancia al objeto, que será proporcional a este..

=2⋅tT =2

2dc1f

=4 dc f

Como el desfase máximo que proporciona una medida unívoca de distancia es de 180º, el

rango de medida depende de la modulación de la señal emitida, de modo que este irá desde unos

pocos centímetros hasta varias decenas de metros.

2.2.2. Sensores d e distancia Sensores de ultrasonidos

Los sensores de ultrasonidos emplean un tren de pulsos de ultrasonidos para medir la distancia

al objeto por tiempo de vuelo.

El empleo de ultrasonidos provoca que la precisión sea baja, ya sea por las diferentes

características de reflexión que presenta cada objeto, o por la variabilidad de la velocidad de

propagación del sonido con las condiciones ambientales.

La atenuación del sonido (proporcional al cuadrado de la distancia) limita la distancia de

detección a un rango de entre 10 cm y 5 m.

Pueden existir problemas de crosstalk (acoplamiento), dado que se pueden detectar ecos

procedentes de otros dispositivos cuando estos se sitúan próximos, ante lo cual, se emplean

soluciones en las que se activan de forma alternada aquellos sensores que se sitúan perpendiculares.

Como ventajas ofrecen un bajo precio y consumo.

Sensores de infrarrojos

Los sensores de infrarrojos detectan la presencia de obstáculos mediante la emisión y

detección de la luz infrarroja reflejada por el objeto. Debido a que la distancia se mide por la

desviación del haz, su alcance se encuentra limitado a unos pocos centímetros. Además, pueden

aparecer problemas de interferencias con la luz ambiental, y existe influencia del color y las

propiedades reflectivas de la superficie.

13

Page 19: Sensores

Sensores

Láser

Los sensores láser presentan una elevada precisión y un elevado alcance, aunque existen

objetos que resultan indetectables al no presentar reflexión.

En distancias medias miden la distancia por medida de desfase, mientras que en grandes

distancias (> 50 m) lo hacen por medida del tiempo de vuelo.

Radar

El radar es un sensor de distancia y

velocidad, dado que detecta la distancia por

desplazamiento de fase y mide la velocidad

por efecto Doppler.

Para ello emite una onda

electromagnética modulada en frecuencia, y

mediante la medida del desfase entre la señal

emitida y la recibida obtiene la distancia,

mientras que con la variación de frecuencia

obtiene la velocidad relativa del objeto.

La medida de distancia por

desplazamiento de fase se realiza teniendo en

cuenta que el desfase es proporcional a la

distancia a la que se encuentra el objeto.

La medida de velocidad por efecto

Doppler responde a la variación de frecuencia

que experimenta una onda cuando entre

observador y objeto existe una diferencia de velocidad.

2.2.3. Técnicas d e posicionamiento relativo Odometría

Se llama odometría a la medida relativa de la posición y la orientación del robot a partir de la

medida de la rotación de las ruedas, por medio de las ecuaciones cinemáticas.

Como ventajas ofrece precisión y exactitud suficiente en distancias cortas sin necesidad de

emplear sistemas externos adicionales.

El inconveniente reside en que el error crece indefinidamente con la distancia recorrida, con lo

que si se quiere precisar la localización hay que corregir la estimación con datos del exterior.

Mientras que los errores sistemáticos, aquellos causados por la diferencia entre el robot real y

14

Efecto Doppler: Cuando existe un movimiento

relativo entre el emisor de ondas y el observador,

la frecuencia de la onda observada es diferente de

la frecuencia de la onda emitida por la fuente.

f O=v±vO

v±v Ef E

Mayorfrecuencia

Menorfrecuencia

Page 20: Sensores

Sensores

el modelado, son predecibles y por tanto se pueden corregir, los errores no sistemáticos no, dado

que están causados por la interacción entre el vehículo y el entorno. Aquí es donde entran las

técnicas inerciales.

Técnicas inerciales

Las técnicas inerciales son aquellas en las que la posición y orientación del robot se realiza a

partir de sensores que miden la velocidad angular (giroscopios) y la aceleración (acelerómetros).

Como ventajas, ofrecen la independencia de las ecuaciones cinemáticas, con lo que eliminan la

aparición de errores sistemáticos y siempre posibilitan la obtención de una estimación.

Pero el inconveniente está en que la necesidad de resolver una integral para la obtención de la

posición genera un error acumulativo con el tiempo.

Lo habitual es emplearlas para corregir los errores odométricos graves, dado que si la

discrepancia entre la velocidad angular estimada y medida es superior a un determinado valor,

prevalece la medida del giroscopio.

2.2.4. Técnicas d e posicionamiento absoluto

Posicionamiento basado en marcas

El posicionamiento basado en marcas emplea una serie de balizas o marcas que se encuentran

en lugares fijos y conocidos del entorno para estimar la posición absoluta.

Para la realización de esta estimación de posición se emplean dos métodos fundamentales, la

triangulación y la trilateración.

Triangulación

En la triangulación se miden los ángulos entre el eje longitudinal del vehículo y las direcciones

de las marcas detectadas.

Así, en navegación se miden los ángulos respecto a la orientación del buque en los que se

localiza cada uno de los faros, y una vez localizados tres faros, mediante el trazado de los arcos

capaces en la carta desde la localización de los faros se obtiene la posición del buque.

Trilateración

En la trilateración se miden las distancias respecto a tres puntos conocidos, lo que determina

una posición unívoca en el espacio.

Por ejemplo, en el Atlántico norte se empleó un sistema llamado LORAN, que mediante la

medida del desfase entre las señales de tres estaciones de radio obtenía la posición al conocer las

distancias entre el buque y la estación.

GPS

El sistema de posicionamiento global (GPS), como su propio nombre indica, proporciona la

15

Page 21: Sensores

Sensores

posición de un receptor en el planeta.

Para esto emplea una red de satélites no geostacionarios con los que se determina la posición

de un receptor por trilateración.

El posicionamiento en el globo terráqueo requiere la resolución de cuatro variables, la

longitud, la latitud, la altitud y el tiempo, para lo cual se requiere que el receptor establezca

comunicación con un mínimo de cuatro satélites.

Se necesita conocer el tiempo para establecer la posición de los satélites, que se encuentran

sincronizados por medio de relojes atómicos con estaciones en tierra.

La estimación de la distancia entre receptor y satélite se realiza mediante técnicas de medición

de tiempo de vuelo, lo que posibilita la localización en tiempo real, dado que cada satélite determina

una esfera y la intersección de las esferas, la localización del receptor. Como existe un grado de

incertidumbre en la medida de esa distancia, lo que en realidad se tiene es una región donde se

encuentra con toda certeza.

Los satélites se comunican con los receptores mediante el empleo de códigos

pseudoaleatorios que permiten una identificación unívoca de cada satélite e impiden la utilización

indebida (pirateo) del sistema.

Las principales fuentes de error son la refracción y reflexión sufridas al atravesar la atmósfera y

la denominada dilución geométrica de la posición, donde debido a la excesiva proximidad de los

satélites, se pierde precisión en el posicionamiento.

Existen tres variantes de GPS, el comercial, que presenta la menor precisión, el GPS diferencial,

destinado a usos de mayor precisión, y el militar, que puede llegar a una precisión de unos pocos

centímetros.

GPS diferencial

En el GPS diferencial se emplean estaciones en tierra para corregir la posición, lo que

disminuye el rango de error del sistema hasta menos de un metro.

Las estaciones envían a los receptores la corrección que deben aplicar a la medida de los

satélites, pues la posición de dichas estaciones es conocida.

2.2.5. Sensores en microbots

Dos sensores típicos usados en microbots son el de presencia, para detectar líneas y el de

distancia, para detectar choque.

Sensor de presencia

Se trata de un fotodector, donde un emisor infrarrojo proyecta un haz que al ser reflejado por

el objeto es detectado por el receptor que se encuentra al lado.

16

Page 22: Sensores

Sensores

En este caso la detección de presencia se reduce a no más de un centímetro en el mejor de los

casos.

Sensor de distancia

Se trata de un sensor infrarrojo con detección de distancia por triangulación. En el, una banda

de fotosensores detectan la desviación del haz que saliendo del sensor es reflejado por un objeto,

con lo que la precisión no es uniforme en el rango de medida, siendo inversa de la distancia.

La distancia vendrá dada por semejanza de

triángulos.

Dw= f

d

Este tipo de sensores se emplea en medidas a cortas distancias, dado que en el mejor de los

casos su distancia de detección no supera el metro.

El problema a la hora de realizar una medida de distancia con este sensor reside en la forma

de la curva de calibración, pues resulta imposible, sin conocer la evolución histórica de los valores de

distancia, saber si un objeto se encuentra a más o a menos de los 8 cm en torno a los que se

encuentra el punto de inflexión. Debido a esto, se suele restringir su rango de uso a un entorno de

entre 10 cm y 60 cm.

2.3. Sensores de Temperatura2.3.1. Termorresistivos

Los sensores termorresistivos son aquellos que utilizan la variación de su resistencia eléctrica

para medir la temperatura.

17

fw

d

DInfrarojo

0 20 40 60 80 100 1200

0,5

1

1,5

2

2,5

3

3,5Sharp GP2D12

Distancia [cm]

Tens

ión

[V]

Page 23: Sensores

Sensores

Metálicos

Las termorresistencias o resistencias detectoras de temperatura (RTD) están formadas por

metales, los cuales, presentan un margen elevado de temperatura con una resistencia que sigue una

ley de variación lineal con esta, tal que:

Rt=Ro⋅1T El aumento de la temperatura provoca un aumento de la resistencia según el valor de su

coeficiente de temperatura ( ).

El material del conductor debe tener un coeficiente de temperatura elevado, una resistividad

alta y una relación lo más lineal posible entre la resistencia y la temperatura, siendo normalmente, los

materiales utilizados, el platino, el niquel y el cobre, y se encapsulan en cerámica dada su alta

resistencia a la temperatura.

Como ventajas ofrecen altas temperaturas de operación, y un elevado margen de

temperaturas. Buena linealidad en un amplio margen de operación. Mayor intercambiabilidad. Mejor

estabilidad a altas temperaturas.

Como inconvenientes ofrecen su baja sensibilidad, su mayor coste y lentitud de respuesta.

Además, requieren la conexión de 3 o 4 hilos.

Semiconductores

Los semiconductores poseen una respuesta no lineal con coeficiente de temperatura positivo (

PTC ) o negativo ( NTC ) y peor precisión, pero una mayor sensibilidad.

Te rm istores

Los termistores o NTC (coeficiente de temperatura negativo) se fabrican con óxidos metálicos

pulverizados y presentan un coeficiente negativo elevado.

Como ventajas presentan un aumento de la sensibilidad y valores elevados de resistencia, con

un menor tiempo de respuesta, y reducido tamaño.

Como inconvenientes están la no linealidad de su comportamiento y el margen estrecho de

temperaturas de funcionamiento. Además, las series de fabricación no son uniformes con lo que su

intercambiabilidad es menor y con corrientes grandes presentan un efecto de autocalentamiento.

Se usan principalmente en termómetros de bajo coste, en compensación de temperatura y

protección de circuitos electrónicos, en el accionamiento retardado de relés.

Positancias

Las positancias o PTC (coeficiente de temperatura positivo) tienen un elevado coeficiente de

temperatura en un margen muy estrecho de temperaturas y se realizan con titanatos de bario y

estroncio pulverizado.

18

Page 24: Sensores

Sensores

Sus principales aplicaciones son en termostatos, alarmas de temperatura, medidas de nivel,

pero sobre todo como elemento protector para limitar la corriente y como estabilizador de la misma,

realizando la protección térmica de motores y compensando la temperatura en circuitos con

transistores.

Sensores de silicio

Los sensores de silicio tienen un coeficiente de temperatura positivo y superior al de los

sensores metálicos.

Sus ventajas son su alta resistencia y reducida variación térmica, elevada sensibilidad (mayor

que las metálicas), buena intercambiabilidad y sobre todo, bajo coste.

Entre los inconvenientes están el estrecho margen de temperaturas, su peor linealidad, peor

precisión, baja estabilidad y respuesta lenta.

Se emplean en termómetros electrónicos digitales y para la compensación de temperatura en

circuitos integrados.

Termopares

Los termopares proporcionan una media diferencial de temperatura, o sea la medida

proporcionada es respecto a una temperatura de referencia.

Su funcionamiento se basa en el efecto termoeléctrico, por el que la unión de los extremos de

dos metales distintos genera una corriente cuando sus uniones se encuentran a diferente

temperatura. Siendo la tensión, proporcional a la diferencia de temperaturas según el efecto Seebeck

(combinación del efecto Thompson y Peltier).

Efecto Peltier: es la emisión o absorción de calor que se produce al circular corriente por un

circuito formado por dos conductores diferentes unidos entre si. Según la dirección de la corriente

una unión se enfría y la otra se calienta.

Efecto Thompson: es el fenómeno de la absorción o la emisión de calor cuando circula una

corriente por un conductor homogéneo que es sometido a un gradiente de temperatura. El calor

liberado es proporcional a la corriente, y cambia de signo si cambia el sentido de la corriente.

Efecto Seebeck: es la combinación del efecto Peltier y del efecto Thompson. Cuando dos

conductores diferentes se unen en sus extremos y se mantienen estos a distinta temperatura, se

genera una corriente continua que aumenta según aumenta la diferencia de temperatura entre las

uniones.

2.4. Sensor LDREl LDR (Light Dependent Resistor) es una fotorresistencia, o sea, una resistencia cuya

conductividad aumenta con la intensidad de una radiación incidente.

19

Page 25: Sensores

Sensores

Cada LDR es sensible a un determinado margen de longitudes de onda. Dado que presentan

un elevado tiempo de respuesta (típicamente de 200 ms) es importante tener en cuenta que este

varía, acortándose cuanto más grande sea la resistencia de carga, y alargándose con la disminución

de la temperatura ambiente y la intensidad de la iluminación, así como con la secuencia histórica,

donde aumenta notablemente cuando se ha encontrado a niveles de iluminación bajos.

El tiempo de respuesta a la iluminación depende de la intensidad de iluminación, de la

secuencia histórica, de la resistencia de carga y de la temperatura ambiente; siendo menor el tiempo

de respuesta según aumentan estas.

2.5. Captador de aceleración piezoeléctricoAlgunos cuerpos cristalinos poseen la propiedad de producir cargas eléctricas en su interior

cuando se someten a un esfuerzo aplicado en la dirección adecuada. Este fenómeno es conocido

como efecto piezoeléctrico o piezoelectricidad.

Así, los cristales piezoeléctricos son especialmente adecuados para la medición de fuerzas, y

por consiguiente para construir acelerómetros con la ayuda de una pequeña masa.

2.6. Medida de corriente Entre las soluciones existentes para la medida de intensidades destacan: el uso del Shunt, que

es una resistencia de valor óhmico muy bajo, el uso del trafo de intensidad, cuya

relación de transformación es igual al número de espiras del secundario entre el

número de espiras del primario, o el uso de la célula Hall.

20

Page 26: Sensores

Acondicionamiento

3. Acondicionamiento

3.1. Amplificación (Amplificador de instrumentación)Los amplificadores de instrumentación presentan unas características prácticamente ideales,

dado que:

– Su impedancia de entrada es infinita (Zi = ∞).

– Su impedancia de salida es nula (Zo = 0).

– Su ganancia es determinada y estable.

– Su ancho de banda es ilimitado (BW = ∞ ).

– Su razón de rechazo en modo común es infinita (RRMC = ∞ ).

3.1.1. Parámetros característicos

– Tensión en modo común en entrada ( VCM )

CMRR=V e

V CM

– Tensión de aislamiento ( Viso ): Diferencia de tensión entre los terminales de referencia de

la etapa de entrada y salida.

Relación de Rechazo del Modo de Aislamiento IMRR=V e

V iso

– Tensión de entrada diferencial ( Ve )

V s=V e±V CM⋅CMRR±V iso⋅IMRR⋅A

– Corrientes de fugas ( Leakage Current ): Corriente que circula entre la entrada y la salida

debido a la diferencia de potencial ( Viso ) y caracterizada por la impedancia Rf ⋳ CC f .

I f=V iso

RF

1R f C f 2

típico R f=1014 y C f=2 pF

3.1.2. Amplificador de instrumentación basado en tres AO Ci rcuito

21

Page 27: Sensores

Acondicionamiento

3.1.3. Análisis teórico Ganancias de la etapa de entrada

Si V2=0 , Va−V1

R1=V1−0

R2 y 0−VbR3

=V1−0R2 , entonces:

Va=1 R1R2 V1 y Vb=− R3

R2 V1Si V1=0 ,

Vb−V2R3

=V2−0R2 y

0−VaR1

=V2−0R2 , entonces:

Vb=1 R3R2 V2 y Va=− R1

R2 V2Ahora por superposición:

Va=1 R1R2 V1− R1

R2V2

Vb=1 R3R2 V2− R3

R2V1

Como R1=R2=R :

Vd '=Vb−Va=12RR2 V2−V1=Ad⋅Vd ; Ad=12⋅10k220

=91,91

Vcm'=VbVa2

=V2V12

=Acm⋅Vcm ; Acm=1

22

Page 28: Sensores

Acondicionamiento

Ganancia de la etapa de salida

Si Vb=0 , Vo−0R5

=0−VaR4 , entonces: Vo=−R5

R4 Va

Si Va=0 , Vo− R7

R6R7 VbR5

= R7R6R7 Vb−0

R4, entonces:

Vo=1 R5R4 R7

R6R7 VbAhora por superposición:

Vo=1 R5R4 R7

R6R7 Vb− R5R4

Va

Como R4=R5=R6=R7=R :

Vo=Vb−Va=As⋅Vd ' ; As=1 Ganancia del AI

Vo=12RR2 ⋅Vd ; A=12RR2 =91,91La ganancia teórica del Amplificador de Instrumentación es de 91,91 para una R2=220

y de 41 para una R2=500 R de comienzo de saturación

Como la tensión de saturación ideal del amplificador es en este caso Vsat=15V y la señal

de entrada Vd es una tensión senoidal de 100mV de valor de pico y frecuencia 1kHz; tenemos que

la ganancia de saturación es A≥150 . Entonces:

R2sat≤ 20k150−1

=134,23

3.1.4. Práctica de laboratorio Ci rcuito con R2 = 220 Ω

Tras someter el circuito de la figura a una tensión de entrada en modo diferenecial de tipo

senoidal, amplitud 100mV y frecuencia 1kHz pudimos medir a la salida una señal amplificada de valor

de pico 9,6 V, lo que nos da una ganancia de 96, frente a los 91,91 teóricos.

Esta variación con respecto a los cálculos teóricos puede ser debida a diversos factores:

– En primer lugar, y como causa principal la imprecisión en la regulación del

generador de ondas, ya que la señal que este nos da es de muy baja calidad;

23

Page 29: Sensores

Acondicionamiento

contiene excesivo ruido.

– Otros factores son las tolerancias de las resistencias y los operacionales reales

frente a los teóricos ideales.

Circuito que sustituye R2 por un potenciómetro de 500 Ω

Con una resistencia de 500 Ω y el mismo tipo de señal a la entrada, pudimos medir

a la salida un valor de tensión de pico de aproximadamente unos 4,4 V, lo que nos

daría una amplificación de 44.

Si disminuimos el valor del potenciómetro aumentaremos la ganancia hasta llegar a la

saturación del amplificador, que en la práctica se produjo a una tensión de aproximadamente 14 V,

con un valor de R = 148,3 Ω. Si comparamos este valor con el obtenido de forma teórica vemos que

es algo superior, aunque debemos tener en cuenta que el valor de tensión de saturación para un

amplificador operacional ideal es igual a la tensión de alimentación, o sea 15 V, con lo cual la

ganancia a de ser mayor a la que se da en la práctica, y por tanto la R a de ser menor.

3.2. Filtrado (Filtros activos)3.2.1. Introducción

Un filtro es un circuito electrónico que atenúa determinadas componentes de frecuencia de la

señal de entrada sin introducir ninguna nueva.

24

Page 30: Sensores

Acondicionamiento

TipoFunciones de transferencia

1er orden 2o orden

– Filtro paso bajo ( Low-pass filter ): atenúa

todas las frecuencias a partir de la

frecuencia de corte.

Ks

K

s20

Qs0

2

– Filtro paso alto ( High-pass filter ): atenúa

todas las frecuencias hasta la frecuencia de

corte.

K ss

K s2

s20

Q s02

– Filtro paso banda ( Band-pass filter ):

atenúa todas las frecuencias que no están

entre las crecuencias de corte.

K s

s20

Qs0

2

– Filtro rechazo de banda ( Notch-filter ):

atenúa todas las señales de frecuencias

comprendidas entre las de corte.

Ks0

2

s20

Qs0

2

Tabla 1: Funciones de transferencia

Teniendo en consideración la clasificación dada, es evidente que en un filtro pueden

distinguirse hasta tres zonas, conocidas como banda pasante (Pass Band), de rechazo (Stop Band) y

de transición (Transition Band). Cada una de estas bandas quedará delimitada por la frecuencia de

corte (Cutoff Frecuency) correspondiente, que a su vez se definen a través de un determinado nivel

de atenuación.

Además, como en todo dispositivo electrónico, habrá que tener en cuenta el tiempo de

propagación, que provocará un determinado desfase entre las señales de entrada y salida.

Realmente, el parámetro más característico de un filtro es el ancho de banda (BW: Bandwidth)

dado que define el rango de frecuencias de funcionamiento. Viene dado por el rango de frecuencias

entre la frecuencia de corte inferior y la superior.

BW= f H− f L

Siendo las frecuencias de corte aquellas a la cuales la ganancia cae 1

2 (-3 dB) de su valor.

3.2.2. Diagrama de Bode

Es una doble representación gráfica donde por un lado se muestra el módulo de la función (

∣H ∣ ) y por otro la fase ( ), siendo H =∣H ∣⋅e j . El módulo se

25

Page 31: Sensores

Acondicionamiento

representa a través del logaritmo de la ganancia, y la fase a través del ángulo en grados, estando el

eje de frecuencias en escala logarítmica, dado que se quieren representar datos que varían entre sí

varios órdenes de magnitud.

Es una representación frecuencial de la función de transferencia mediante dos curvas en

función de la frecuencia en escala logarítmica. La primera es la relación de amplitudes en dBs y la

segunda el ángulo de fase en grados.

El eje logarítmico representa los datos separándolos en décadas, dado que:

log N⋅10D=log N D

donde el orden de magnitud ( D ) establece un desplazamiento separado una década (

D=i ) de la siguiente ( D=i1 ) y los puntos correspondientes en un mismo orden de

magnitud (década) tienen el mismo espacio para ser representados que los pertenecientes a una

década superior. Así, 20 dB/dec = 6 dB/octava donde una década es una variación de frecuencia de

10f y una octava es una variación de frecuencia de 2f.

En el diagrama de Bode el módulo se representa en dB, o sea se representa en lugar de

∣H ∣ , 20⋅log H para poder visualizar funciones de transferencia que pueden

variar en varios órdenes de magnitud.

Se descompone la función de transferencia en sus formas canónicas:

a) Proporcional: W s =A

b) Factor integrador: W s = Ask

c) Factor diferencial: W s =A⋅sk

d) Sistema de primer orden en le numerador: W s = s±1

e) Sistema de primer orden en el denominador: W s = 1 s±1

f) Sistema de segundo orden en el numerador: W s =2 s2±2 s1

g) Sistema de segundo orden en el denominador: W s = 12 s2±2 s1

26

Page 32: Sensores

Acondicionamiento

3.2.3. Análisis de un filtro activo Circuito

Identificación y análisis

El circuito de la figura presenta una topología de un filtro activo paso bajo, basado en una

fuente de tensión controlada en tensión (Sallen-Key).

Como para este tipo de filtro tenemos la siguiente función de transferencia:

F s=

1R1R2C1C2

s2C2 R1C2 R2R1R2C1C2 s 1

R1R2C1C2

Entonces: c2= 1

R1R2C1C2 y c= 110k⋅10k⋅220n⋅100n

=674,20 rad / s

Por tanto la frecuencia de corte teórica de este filtro es:

f c=c

2=674,20

2⋅=107,30Hz

Montaje y comprobación práctica

Mediante el generador de funciones y el osciloscopio se pudo comprobar el tipo de filtro

(frecuencias no atenuadas) y frecuencia de corte práctica (atenuación de 3 dB) para este circuito.

Obteniéndose los siguientes resultados:

f (Hz) Vo (V)10 520 4,950 4,40

100 3,68200 3,08500 2,641000 2,56

Como trabajamos con una tensión de entrada V e=5V la atenuación de 3 dB se produce a

27

Page 33: Sensores

Acondicionamiento

V o=52

=3,54V valor que obtuvimos a una frecuencia de f c=112Hz

Como podemos observar en la tabla, efectivamente se trata de un filtro paso bajo, pues por

encima de los 100 Hz se produce una fuerte atenuación de la señal de entrada.

Valores teóricos de los condensadores

Suponiendo una frecuencia de corte de 100 Hz, tenemos que para este filtro la función de

transferencia es:

F s= 454545,45s2909,09 s454545,45

y c=674,20 rad / s

Normalizando1 la función de transferencia obtenemos:

F snor=454545,45

454545,45 snor2 674,20⋅909,09 snor454545,45

= 1snor2 1,35 snor1

Como ahora nuestra f c=100Hz , tenemos que c=2⋅⋅100=628,32 rad / s

Desnormalizando, nos queda:

F s= 1s2

394786,021,35 s

628,321

= 394786,02s2848,23 s394786,02

Ahora, para tomando resistencias de valor 10k, nos dan unos condensadores de valores

teóricos:

C2= 848,2320000⋅394786,02

=107,42nF

C1= 1394786,02⋅10k⋅10k⋅107,42k

=235,81nF

3.2.4. Diseño de un filtro activo

Diseño de un filtro activo paso alto con las siguientes características:

– Amax = 0,5 dB

– Amin = 35dB (a 10 Hz)

– f c = 225 Hz

– Ganancia en banda pasante plana (K=1)

1 snor=sc

28

Page 34: Sensores

Acondicionamiento

Elección de la aproximación

Como se quiere banda pasante plana debemos tomar la aproximación de Butterworth.

Cálculo del orden del filtro

n=log[10 Amin

10 −1/10 Amax

10 −1]2⋅log w c /w s

c=2⋅⋅225=1413,72 rad / s s=2⋅⋅10=62,83 rad / s

n=1,64≈2 Obtención de la función de transferencia

Como n=2 Butterworth nos da los coeficientes a1=2 y a2=1 . Quedando la

función de transferencia de un filtro paso bajo normalizado.

F snor=1

12⋅snorsnor2

Transformación del filtro a nuestras especificaciones

Desnormalizando la función mediante snor=c /s (ya que queremos pasar a un filtro paso

alto de c≠1 ) obtenemos:

F s= s2

s21999,30⋅s1998604,24 Eleccción de la topología

Se opta por la topología Sallen-Key (fuente de tensión controlada en tensión), que para un

filtro paso alto es la correspondiente a la siguiente figura,

y cuya función de transferencia para K=1 y C1=C2=C es:

F s= s2

s2 2 R1R1R2C

s 1R1R2C2

Calculo de valores de montaje

Tomando C1=C2=100 nF calculamos R1 y R2, obteniendo:

R1=5001,74=5k y R2=10003,50=10k

3.3. Aislamiento (Aislamiento galvánico)3.3.1. Introducción

A la hora de realizar el aislamiento eléctrico entre dos etapas, mejor dicho, aislamiento

galvánico entre dos etapas de un circuito, se busca garantizar un determinado nivel de tensión para

29

Page 35: Sensores

Acondicionamiento

el cual no existe ruptura dieléctrica entre emisor y receptor. Para este fin se diferencian tres

alternativas básicas que resuelven el acoplamiento:

– Por transformador de aislamiento

– Por acoplamiento óptico

– Por acoplamiento capacitivo

3.3.2. Aislamiento óptico

Aunque los optoacopladores presentan una respuesta en frecuencia limitada, y su respuesta no

es lineal presentan innumerables ventajas que los hacen ser una de las opticiones preferentes en

sistemas digitales.

Los parámetros característicos fundamentales son:

– La relación de transferencia de corriente (CTR: Current Transfer Ratio): no es constante dado

que el fotoemisor no es lineal y la ganancia del fototransistor es función de IL.

CTR=I L

I F

– Razón de rechazo en modo común (CMRR: Common Mode Rejection Ratio):

CMRR=I dI c

CMR=20⋅log CMRR dB

3.3.3. Aislamiento óptico de señales digitales Circuito

Acoplamiento óptico de una señal digital con valores 0V y 5V, utilizando el optoacoplador

4N25.

Cálculos

Cálculo de R1 para que la corriente máxima a través del diodo LED sea de 20mA, suponiendo

que la excursión de la tensión de entrada se encuentra entre 0V y 5V.

30

Page 36: Sensores

Acondicionamiento

Viendo la gráfica de IF frente a VF tenemos que para IF=20mA, VF=1,2V. Entonces, como

VinMAX=5V.

R1=5−1,20,02

=190 Entre las resistencias disponibles tomamos R=220.

Cálculo de R2 para que el transistor se sature con una corriente IF=20mA.

Como la relación de transferencia de corriente mínima para este optoacoplador es

CTRMIN=20%, tenemos que para IF=20mA:

IC=CTR100

I F=20100

0,02=4mA

Despreciando VCE, tenemos: R2=5

0,004=1250

Mediciones sobre el circuito

Este circuito nos proporciona aislamiento galvánico ya que no hay conexión física para la

trasferencia electríca entre la entada y la salida del circuito, ya que esta transferencia se realiza por

pedio de radiación electromagnética (luz) que emite un LED y es captada por un fototransistor que

actúa como receptor.

Este tipo de optoacopladores presentas dos inconvenientes principales, la falta de linealidad de

transmisión de señal y la lentitud de respuesta (a frecuencias altas no es capaz de transmitir la señal).

Modificación del circuito para que las señales de entrada y salida estén en fase

Este circuito presenta un desfase debido a que a 0V de entrada el transistor está en corte y por

lo tanto a la salida tenemos los 5V de alimentación, mientras que a 5V de entrada, el transistor está

en saturación y tenemos a la salida los 0,2V de este estado.

31

Page 37: Sensores

Acondicionamiento

3.3.4. Aislamiento óptico de señales analógicas Circuito sin realimentación

Amplificador lineal de aislamiento con ganancia unidad que permite trabajar con señales

analógicas en el rango 0V a 5V.

Cálculos

Cálculo de R1 para que la corriente máxima a través del diodo LED sea de 20mA, suponiendo

que la tensión de entrada se encuentra entre 0V y 5V.

Viendo la gráfica de IF frente a VF tenemos que para IF=20mA, VF=1,3V. Entonces, como

VinMAX=5V.

R1=5−1,30,02

=185 Entre las resistencias disponibles tomamos R=220.

Representación de IP2(Vin) para K2=0,007.

32

Page 38: Sensores

Acondicionamiento

Cálculo de R2 para que en el rango lineal dVout/dVin=1.

Circuito realimentado

Cálculos

Cálculo de R3 teniendo en cuenta que para VIN=2,5V la corriente IF=10mA.

33

0 1 2 3 4 5 60

0,02

0,04

0,06

0,08

0,1

0,12

0,14Ip2(Vin)

Vin (V)

Ip2

(mA

)

Page 39: Sensores

Acondicionamiento

Como IP1=VIN/R3 y obtenemos de la gráfica que para IF=10mA, IP1=75uA. Entonces:

R3=2,575

=33300 Entre las resistencias disponibles tomamos R=3k3.

Cálculo de R2 para que la relación VOUT/VIN=1 cuando IF=10mA.

Tenemos que V O

V I=K 2⋅R2K1⋅R3

=1 , entonces como K 1=2,533k

⋅0,01=0,0076 y,

tenemos que R2=33k=R3 para que la ganancia sea 1.

3.4. Circuitos auxiliares3.4.1. Circuito generador de offset

Circuito

Cálculos

Cálculo del rango de tensiones que se pueden aplicar a la entrada 3 del operacional (V3).

Si el potenciómetro está a 0: V 3=13⋅[12−−12]−12=−4V34

Page 40: Sensores

Acondicionamiento

Si el potenciómetro está a 1k: V 3=23⋅24−12=4VEntonces el rango de tensiones aplicables en 3 es: V 3=[−4 ,4 ] V

Cálculo de la expresión de Vout=f(Vin,Vpot).

0−V in

10k0−V pot

10k=V out−010k

Entonces la expresión de Vout es: V out=−V ¿V pot

3.4.2. Fuente de corriente Circuito

Cálculos

Cálculo de R1 para que la tensión en 3 (V3) varíe aproximadamente entre 0,2 y 2,3 V.

Si el potenciómetro se encuentra a 0: V 3=0,2=100

1k1R1⋅12 ⇒ R1=4900

Si el potenciómetro se encuentra a 1k: V 3=2,3=1k1

1k1R1⋅12 ⇒ R1=4639

Entonces, entre las resistencias disponibles tomamos: R=4k7

Cálculo de R2 para que la corriente que circula a su través (I2) varíe entre 2 y 20 mA.

Despreciando la caida de tensión VBE tenemos que R2=V 3

I 2.

35

Page 41: Sensores

Acondicionamiento

R2=0,20,002

=100 R2=2,30,02

=115

Entonces, tomamos: R=100

Cálculo del rango de variación de R3 en el que se mantiene I=10 mA.

Si la fuente de intensidad se ajusta para suministrar a la carga 10 mA, tenemos una caida de

tensión en la resistencia R2 de 1 V. Despreciando la caida de tensión colector emisor, tendríamos una

caida de tensión máxima en la carga R3 de 11 V. Por lo tanto, la carga máxima que podría soportar

esta fuente con una intensidad de regulación de 10 mA sería R3=110,01

=1100 .

Entonces, rango teórico de carga a 10 mA: R3=[0 ,1k1 ]

El rango medido sobre el circuito práctico fue [0 , 1181]. El que esté por encima del límite

teórico es debido a la imprecisión en la regulación de la fuente de corriente, ya que una variación de

+- 1 mA causa una variación en la carga máxima de -+ 100 Ω.

3.4.3. Fuente de tensión Circuito

Cálculos

Cálculo de R2 para que la tensión de salida (Vout) sea de aproximadamente 10 V.

V=5,10,7=5,8V out−V

R2=V−04k7 ⇒ R2=

10−5,85,8

⋅4k7=3403,5 R=3k3

Cálculo de R1 para que por los diodos circule una corriente (ID) de aproximadamente 8 mA.

36

Page 42: Sensores

Acondicionamiento

R1=V out−V

I D=10−5,80,008

=525 R=500

Montaje práctico

El problema que presenta este circuito, es que al encontrarse en la práctica la salida requerida

(Vout) y la tensión de saturación del operacional (10,5 V aprox.) tan cerca, a veces se satura,

obteniendose a la salida -10,5 V, mientras que funcionando correctamente, se obtienen 9,35 V.

37

Page 43: Sensores

Adquisición

4. Adquisición

4.1. IntroducciónEl primer paso a la hora de trabajar con una señal en un procesador digital es proceder a su

muestreo, que consiste en la toma de valores representativos de la señal continua a intervalos

regulares de tiempo (período de muestreo T).

Para que el muestreo sea útil debe permitir la reconstrucción de la señal, o sea, generarla a

partir de los valores discretos capturados.

Para garantizar que la información representa realmente la señal muestreada, de modo que

esta pueda ser reconstruida a partir de sus muestras se debe verificar el teorema de muestreo.

4.1.1. Teorema de muestreo

El teorema de muestreo de Shanon nos dice que para que un proceso de reconstrucción sea

coherente con la señal de origen, la señal tiene que ser muestreada a una frecuencia superior al

doble de su frecuencia más alta.

f m2 f 0

Donde la frecuencia ( f 0 ) es la frecuencia del mayor armónico de la descomposición de la

señal en serie de Fourier.

4.1.2. Aliasing

Si no se cumple el teorema de muestreo, se produce el fenómeno de aliasing, que se muestra

en forma de componentes adicionales, de frecuencias superiores a la mitad de la frecuencia de

muestreo, que se introducen en la señal muestreada.

A la frecuencia natural que garantiza la reconstrucción de una señal de período de muestreo T

se la denomina frecuencia de Nyquist ( N ).

N=2 f 0=T

Debido a que una señal analógica, por su propia naturaleza, no puede presentar un espectro

limitado a un determinado ancho de banda, se debe realizar una etapa de filtrado previa a su

muestreo, para evitar que la señal se vea distorsionada por componentes de alta frecuencia no

deseadas.

4.2. Adquisición de datosLa adquisición está formada por dos etapas fundamentales: la del muestreador o mantenedor

38

Page 44: Sensores

Adquisición

(Sample & Hold), que se encarga de mantener estable el valor a capturar, y la del convertidor

analógico-digital (CAD), que transforma un valor analógico en su correspondiente valor digital.

4.2.1. Convertidor analógico-digital

Los parámetros más característicos de un CAD son la resolución, número de bits (m) utilizados

para representar la señal analógica de entrada , y el tiempo de conversión, intervalo de tiempo desde

la orden de inicio de conversión hasta que se activa la señal de fin de conversión.

LSB=FSR2m

Rango de señal de entrada (FS)

Uno de los métodos más usados en la conversión analógica digital es el de aproximaciones

sucesivas, que combina rapidez y sencillez.

4.2.2. Convertidor digital-analógico

Se ha montado un convertidor digital-analógico (DAC) directo de 3 bits basado en una red en

escalera R/2R mediante suma de tensiones y realizado con componentes discretos.

Analizando el circuito montado tenemos que: Vs=V ref⋅N2n

Dado que V ref=3V : Vsmin=0V y Vsmax=3⋅78=2,625V

FSR=Vsmax−Vsmin=2,625V

Entonces la resolución teória o LSB es:

LSB=FSR2n

=2,6258

=0,328V

Finalmente, los valores de tensión medidos en el circuito para cada una de las entradas fueron:

Entrada Vo (V)0 000 01 001 0,3762 010 0,7453 011 1,1264 100 1,4945 101 1,8706 110 2,2457 111 2,622

39

0 1 2 3 4 5 6 7 8

0

0,5

1

1,5

2

2,5

3

Función de transferencia

Entrada

Vo (V

)

Page 45: Sensores

Medida de temperatura con PT100

5. Medida de temperatura con PT100

5.1. IntroducciónEntre los sensores más usados para la medida de temperaturas próximas a la ambiental

destacan a nivel industrial los termopares en medidas diferenciales y las PT100 en absolutas.

Uno de los termopares más común es el tipo J, formado por una unión de hierro-Constantan2,

cuyo rango de medida va de -184 ºC a 760 ºC.

La PT100 es una resistencia de platino cuyo valor óhmico a 0 ºC es de 100 Ω, motivo por el

cual se denomina PT100. Se trata de un sensor resistivo de temperatura (RTD) dado que su

resistencia experimenta una variación lineal con la temperatura, de tal modo que mientras que a 0 ºC

vale 100 Ω, a 100 ºC vale 138,5 Ω.

R=R0⋅T

R0=100 =0,388

5.2. AcondicionamientoPara realizar la medida de la PT100 se sigue el esquema típico de acondicionamiento de un

sensor: alimentación, amplificación y filtrado.

Dado que la medida del sensor se produce en forma de variación de resistencia, se emplea

para su medida un circuito configurado en puente de Wheastone alimentado por una fuente de

intensidad, para de este modo poder medir la variación de resistencia.

Para que la variación de medida sea apreciable para la instrumentación se realiza una etapa de

2 El Constantán es una aleación de cobre y niquel

40

100,00 105,00 110,00 115,00 120,00 125,00 130,00 135,000

102030405060708090

PT100Curva de calibración

R [Ω]

T [º

C]

Page 46: Sensores

Medida de temperatura con PT100

amplificación y filtrado, y de este modo

adaptar la medida al rango de adquisición de

nuestra tarjeta.

5.2.1. Circuito de polarización y puente de medida

Utilizamos una fuente de intensidad en topología de fuente flotante alimentando un puente

de Wheastone.

La fuente se ajusta a través de RajusteI, y como en nuestro caso la tensión de referencia

tomada fue de 5 V y la intensidad con la que queríamos alimentar el puente era de 8 mA tuvo que

tener un valor entorno a 625 Ω.

Si analizamos un puente de Wheastone obtenemos que:

PT100=R0 1x

K= R11R13

= RajusteWR0

Vd=V K⋅xK1K1x

y como: x≪K1 y K=1 (resistencias iguales)

Entonces tenemos una tensión de salida proporcional a los cambios de resistencia, ya que:

41

Esquemático 1: Puente de Wheastone alimentado por fuente de intensidad en topología de fuente flotante

Puente de Wheatstone: configuración en puente

de elementos resistivos para la medida estable de

variaciones de resistencia (sustituyendo a la

conexión en divisor de tensión).

Page 47: Sensores

Medida de temperatura con PT100

Vd=V4⋅x

Simulaciones de nuestro puente de medida hechas mediante ORCAD:

5.2.2. Etapa de amplificación

Para esta etapa montamos un amplificador de instrumentación de ganancia variable ajustable

por medio del potenciómetro R2, tal y como se muestra en el siguiente esquemático.

42

Simulación 1: Salida diferencial e intensidad que atraviesa la PT100 cuando el puente se encuentra compensado

Ti me0s 2ms 4ms 6ms 8ms 10ms

V(V+, V-) -I (PT100)0

2. 0m

4. 0m

Simulación 2: Salidas diferenciales correspondientes a valores equiespaciados del rango de variación óhmica [110,140]

Ti me0s 2ms 4ms 6ms 8ms 10ms

V(V+, V-)0V

50mV

100mV

Page 48: Sensores

Medida de temperatura con PT100

Si analizamos este circuito considerando amplificadores operacionales ideales tenemos que la

ganancia del mismo, viene dada por la ecuación:

G=−1 R1R3R2

Entonces, con este circuito podríamos tener ganancias desde 41 para R2 = 500 Ω, hasta de

más de 400. Lo que nos permite trabajar con señales de hasta 250 mV sin sobrepasar los 10 V de

salida.

En la figura siguiente podemos ver una simulación del circuito, realizada en ORCAD, en la que

se ha tomado una R2 = 220 Ω y una señal de entrada senoidal de 1 kHz y 100 mV de amplitud.

43

Simulación 3: Señales de entrada y salida de un AI de ganacia G=92 Ti me

0s 0. 5ms 1. 0ms 1. 5ms 2. 0ms 2. 5ms 3. 0msV(VAI N+) V(VAOUT)

-10V

0V

10V

Esquemático 2: Amplificador de instrumentación de ganancia regulable por potenciómetro

Page 49: Sensores

Medida de temperatura con PT100

5.2.3. Etapa de filtrado

La tarjeta de adquisición de la que disponemos en el laboratorio (NI USB-6008 DAQ) posibilita

la captura de una entrada analógica a 10 kS/s, por lo tanto, sabemos por el teorema de muestreo de

Nyquist que evitaremos el aliasing con un filtro paso bajo de frecuencia de corte inferior a 5 kHz

(filtro Antialiasing para una entrada analógica con esta tarjeta de adquisición).

Para el filtrado de la señal proporcionada por este sensor, optamos por un filtro activo paso

bajo de primer orden, con frecuencia de corte de 50 Hz (frecuencia de corte típica para medidas con

sensores analógicos)3.

Si analizamos este circuito considerando que el amplificador operacional es ideal tenemos que

su función de transferencia viene dada por:

G s =− R2R11R2C s

Como queremos una ganancia 1, igualamos las resistencias, y como queremos una frecuencia

de corte ( ∣G s ∣=−3dB ) de 50 Hz y disponemos de un condensador de 100 nF, entonces:

R= 1C 2 fc

=31831 En la figura siguiente podemos ver una simulación del circuito montado, realizada en ORCAD.

3 Permite apreciar variaciones cada 20 ms. Mucho más que suficiente para mediciones de éste tipo.

44

Esquemático 3: Filtro activo paso bajo de primer orden y frecuencia de corte 50 Hz

Page 50: Sensores

Medida de temperatura con PT100

Alternativa

Como alternativa se presenta la opción de utilizar un filtro paso bajo de segundo orden, que

en este caso presenta una frecuencia de corte de 100 Hz.

45

Simulación 4: Diagrama de amplitud de Bode de filtro paso bajo con fc = 48 Hz Frequency

100mHz 1. 0Hz 10Hz 100Hz 1. 0KHzDB(V(VFout)/V(VFi n))

-40

-20

0

Esquemático 4: Filtro activo paso bajo de segundo orden y frecuencia de corte 100 Hz

Simulación 5: Bode correspondiente al filtro con fc = 100 Hz Frequency

1. 0Hz 10Hz 100Hz 1. 0KHz 10KHzDB(V(Vout)/V(Vi n))

-100

0

100

Page 51: Sensores

Medida de temperatura con PT100

5.3. Adquisición de datos5.3.1. Temperatura

Panel frontal

46

Page 52: Sensores

Medida de temperatura con PT100

Diagrama de Bloques

47

Page 53: Sensores

¿Cómo funciona el Segway?

6. ¿Cómo funciona el Segway?

6.1. IntroducciónHace unos años apareció un vehículo de

transporte personal llamado Segway que

prometía la revolución, pero que sin embargo se

quedó en un artículo de lujo para Geeks, debido

a su elevado precio.

Independientemente de esto, representa

un alarde tecnológico para dar solución a un

problema muy interesante, ¿cómo mantiene la

estabilidad un vehículo de tan solo dos ruedas?

6.2. ¿Qué es el Segway?El Segway es un vehículo de transporte

personal, de reducidas dimensiones y alta

movilidad, que gracias a su configuración

monoeje diferencial le permite disponer de un

radio de giro cero.

De este modo se tiene un vehículo cuya

tracción y dirección se encuentra en un mismo

eje.

6.3. ¿Cómo se maneja?Toda la maniobravilidad de este vehículo

no sería lo mismo si no fuese porque el avance y

el retroceso se controla mediante la simple

inclinación del cuerpo, hacia adelante y hacia

atrás, deteniéndose cuando la persona se

encuentra erguida.

Un manillar, que sirve como apoyo en

posiciónn normal, permite el giro gradual del

vehículo según se incline a derecha o a izquierda

según el giro que se desee.

48

Page 54: Sensores

¿Cómo funciona el Segway?

6.4. ¿Cómo funciona?

Ahora bien, la pregunta es cómo funciona,

mejor dicho, ¿cómo mantiene la estabilidad si

sólo dispone de un eje?

Dando por hecho que la posición inicial

fuese la de equilibrio sobre el vehículo, se tiene

que, cuando la persona se incline se producirá

un desplazamiento de su centro de gravedad

que provocará la aparición de un par que hará

que la plataforma gire sobre el eje de las ruedas,

produciéndose la caída.

Aquí llega la hora de plantearse las dos

situaciones en las que se debe resolver el

problema, en parado y en movimiento. Y es

cuando me planteo las posibles soluciones.

– En parado ... ¿por compensación de par?

– En movimiento ... ¿por compensación de

velocidad angular?

En parado

Cuando el vehículo se encuentra parado,

si descansase libremente sobre el eje de las

49

Page 55: Sensores

¿Cómo funciona el Segway?

ruedas, se caería, salvo en el caso improbable de

que por algún extraño milagro encontrase una

posición de equilibrio inestable, donde el centro

de gravedad de la máquina se encuentra

alineado en la vertical.

Por ello, los motores han de establecer un

cierto par que evite que el vehículo gire sobre el

eje.

En movimiento

Cuando la persona se inclina hacia

adelante se caería, pero si el vehículo produce

un movimiento de avance se corrige la

desalineación del centro de gravedad de la

persona respecto a la vertical, impidiendo que

esta caiga y haciendo que el vehículo avance, y

lo mismo hacia atrás.

Así, se tiene que al girar las ruedas se

compensa el par de vuelco y se produce el

movimiento de avance, al igual que una persona

al andar mueve las piernas tras haberse inclinado

levemente .

6.5. ConclusiónSe tiene entonces que, para mantener la estabilidad, antes de que las ruedas empiecen a rodar

se debe controlar el par que ejercen los motores, mientras que al empezar a girar hay que controlar

la velocidad de giro, lo que además provoca el movimiento.

Y aunque todo esto sólo son conjeturas extraídas partiendo de la única base de la información

disponible en la página web oficial del producto (http://www.segway.es), parece razonable el elevado

precio del producto, dado el esfuerzo de control requerido para su funcionamiento y el fuerte I+D

para su desarrollo.

50