resumen de formulas en circuitos electricos de ca

22
11/01/2010 Página 1 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS APUNTES DE CLASE SOBRE ANÁLISIS DE CIRCUITOS EN CA RESUMEN DE FÓRMULAS Y EJEMPLOS NUMÉRICOS EN CIRCUITOS ELÉCTRICOS DE CORRIENTE ALTERNA GENERACIÓN Y CARACTERÍSTICAS DE LA ONDA SENOIDAL MODELOS MATEMÁTICOS EN EL DOMINIO DEL TIEMPO Y EN FASORES VALORES PROMEDIO Y EFICACES POTENCIAS EN EL DOMINIO DEL TIEMPO Y EN FORMA COMPLEJA EJEMPLOS NUMÉRICOS – FORMULARIO DE TRIGONOMETRÍA - FACTORES DE CONVERSIÓN PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ CÓDIGO: 00076 UFPS DEPARTAMENTO: ELECTRICIDAD Y ELECTRÓNICA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER UNIDAD 1 ADICIONAL

Upload: richard-calvache

Post on 11-Jan-2016

230 views

Category:

Documents


0 download

DESCRIPTION

Resumen de Formulas en Circuitos Electricos de CA

TRANSCRIPT

Page 1: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 1 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

APUNTES DE CLASE SOBRE ANÁLISIS DE CIRCUITOS EN CA

RESUMEN DE FÓRMULAS Y EJEMPLOS NUMÉRICOS EN

CIRCUITOS ELÉCTRICOS DE CORRIENTE ALTERNA

GENERACIÓN Y CARACTERÍSTICAS DE LA ONDA SENOIDAL MODELOS MATEMÁTICOS EN EL DOMINIO DEL TIEMPO Y EN FASORES

VALORES PROMEDIO Y EFICACES POTENCIAS EN EL DOMINIO DEL TIEMPO Y EN FORMA COMPLEJA

EJEMPLOS NUMÉRICOS – FORMULARIO DE TRIGONOMETRÍA - FACTORES DE CONVERSIÓN

PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ CÓDIGO: 00076 UFPS

DEPARTAMENTO: ELECTRICIDAD Y ELECTRÓNICA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIDAD 1 ADICIONAL

Page 2: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 2 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

a

φ

GENERADOR ELEMENTAL La figura representa el corte de una máquina bipolar (dos polos) considerado como generador elemental. El conductor que se arrolla alrededor de los polos refuerza el campo magnético producido por estos cuando la bobina es sometida a un voltaje continuo (estator, inductor). La espira que está horizontal gira en sentido antihorario alrededor de un eje que no aparece en la figura y está aislado eléctricamente de este (rotor, inducido). El generador representado aquí se le denomina generador elemental o de una sola espira. En un generador comercial el número de espiras aumenta con una distribución adecuada alrededor del eje y teniendo en cuenta los polos del estator, aumentando la magnitud del voltaje generado.

v(t) = )wt(SenVv);(SenV2 máx)t(1 =θ ,

La posición inicial de la espira es la mostrada en la figura (horizontal) y empieza a girar en sentido antihorario con una velocidad angular w. A medida que transcurre el tiempo adquiere un desplazamiento angular θ , luego θ = w * t . Para una máquina tetrapolar (cuatro polos), figura 2. Los lados de la espira que producen fuerza electromotriz o voltaje pasan frente a un polo norte y a un polo sur dos veces por cada revolución del eje o de la espira, o sea que, la onda representativa de la fuerza electromotriz o voltaje generado estará compuesta de dos ciclos por cada revolución del eje.

v(t) = )2(SenV2 1 θ A la derecha de la figura se encuentra el lugar geométrico o gráfico del voltaje de la espira con relación al desplazamiento angular t*w=θ Finalmente el voltaje generado por una máquina de p pares de polos podrá ser

Vab

Vb

Va

φ φ

0° π

π / 2 360° eléctricos

Una revolución = 360° mecánicos

π / 2 π 3 π / 2 2 π 0°

Vab = Va + Vb = Vmax Sen( wt )

Vmax

3 π / 2

θ = w t v(t)

w3π / 2

π π/2

v

0° π 2 π 3 π 4 π

360° Eléctricos

1 Rev = 360° Mecánicos 720° Eléctricos

Page 3: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 3 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

representado por el modelo matemático siguiente:, en donde p es el número de pares de polos de la máquina. )pwt(SenVv máx)t( =

VELOCIDAD DE UNA MÁQUINA ELÉCTRICA El número de ciclos es una medida de la frecuencia con que se presenta la onda de voltaje y esta es igual al

número de pares de polos, esto es: revoluciónporciclos f = polos depares p . La frecuencia en ciclos por revolución, se le puede cambiar las unidades a ciclos por segundo o hertz, esto es:

⎟⎠⎞

⎜⎝⎛=

revoluciónciclospf x ⎟

⎠⎞

⎜⎝⎛

utominrevoluciónRPM x ⎟⎟

⎞⎜⎜⎝

⎛segundo

utomin601 )hertz()( segundo

ciclos o 60

RPMpf =

La fórmula aquí obtenida relaciona la velocidad con la frecuencia de cualquier máquina eléctrica, ya sea generador o motor. Para un generador, en donde la energía que entra a la máquina es mecánica y la que sale es eléctrica, la fórmula nos entrega la frecuencia de la onda de voltaje de salida en función del número de pares de polos en el estator y la velocidad del generador en revoluciones por minuto. Lo anterior significa que si desea una sola frecuencia de salida para todos los generadores, por ejemplo 60 hertz, debe existir una relación adecuada entre el número de pares de polos del generador (que depende de la construcción) y la velocidad a la cual se debe girar el generador dependiendo de la construcción de la máquina: Para un motor, en donde la energía que entra a la máquina es eléctrica y la que sale es mecánica, la fórmula nos entrega la velocidad de salida del motor (RPM) en función del número de pares de polos en el estator y la

frecuencia de la onda del voltaje de entrada, o sea: p60*fN RPM = , Como la frecuencia de la onda de voltaje

del sistema de distribución de energía eléctrica en Colombia es 60 c/s, la fórmula que determina la velocidad de

los motores eléctricos quedará expresada por: p

3600N =RPM .

De la fórmula anterior se puede deducir que la velocidad para los motores de corriente alterna depende principalmente de la construcción del estator (número de pares de polos) y que a medida que aumenta el número de polos disminuye la velocidad. Las diferentes velocidades a las cuales girará un motor dependiendo de la construcción del mismo, están indicadas en la tabla anteriormente presentada para el generador, pues se rigen por la misma fórmula. Para un motor de corriente alterna su velocidad se puede variar o cambiando el número de polos o variando la frecuencia en el voltaje de aplicación.

p60*fNRPM = ;

60RPMN = w ( seg

rev ) = Pf ; w ( seg

rad ) = P

f 2 π

Para un par de polos : w = 2πf

MÁQUINA Bipolar

Tetrapolar Exapolar

VELOCIDAD (RPM) 3600 1800 1200

Page 4: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 4 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

CARACTERÍSTICAS DE LA ONDA SENOIDAL Modelo Matemático: v(t) = Vmáx Sen(wt) = Vmáx Sen(θ) Donde: v(t) es el valor instantáneo del voltaje en voltios ; t es el tiempo en segundos Vmáx es el valor máximo que toma la onda del voltaje en voltios ; wt=θ , es el desplazamiento angular w es la velocidad angular o frecuencia angular (radianes / segundo)

VALOR MEDIO DE UNA FUNCIÓN DEL TIEMPO Y POTENCIA MEDIA

∫∫Δ

Δ=

−=

t

0)t(

2

1)t(

12medio dtf

t1dtf

)tt(1V ∫=

T

0)t(m dt

T1 pp

Interpretación: El valor medio de una corriente eléctrica se asocia a la transferencia de carga. En los procesos electromagnéticos está asociado a la transferencia de masa (Iones)

VALOR EFICAZ DE UNA CORRIENTE O VOLTAJE PERÍODICO

∫=T

0

2)t(efic dt)(

T1V v

Interpretación: El valor eficaz de una corriente eléctrica se asocia a la transferencia de energía EJEMPLO: Determinar la potencia media en un periodo para la siguiente forma de onda de potencia.

)wt(Senpmáx)t( =p , para w/t0 π≤≤

0)t( =p , para w/2tw/ π≤≤π w/2T π=

⎥⎥

⎢⎢

⎡+

π=

π= ∫ ∫∫

π π

π

πw

0

w2

w

máx

w2

0)t(m dt0dt)wt(Senp

2wdtp

w2

1p = π/pmáx = máxp318.0

v(t)

3π/2 3π/2w 3T/2 12.495ms

2π θ = w t (radianes) 2π/w t = θ/w (segundos) T T = 2π/w (periodos) 16.66 ms. Para w = 60 Hz

π. π/w T/2 8.33ms.

π/2 π/2w T/4 4.165ms.

Vmax

0 π/w 2π/w 3π/w t(seg)

Pmax

p(t)

T

Page 5: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 5 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

ONDAS EN FASE

RO: 0NDA MAYOR : vA(t) = 150 Sen (377 t ) ; RO: ONDA MENOR: vB(t) = 100 Sen (377 t ) R1: 0NDA MAYOR : vA(t) = 150 Sen (377 t + 45º) ; R1: ONDA MENOR: vB(t) = 100 Sen (377 t + 45º) R2: 0NDA MAYOR : vA(t) = 150 Cos (377 t ) ; R2: ONDA MENOR: vB(t) = 100 Cos (377 t )

ONDAS DESFASADAS

R0 : ONDA MENOR : vB(t) = 100 Sen (377 t ) ; ONDA MAYOR : vA(t) = 150 Sen (377 t - 60º) R0 : ONDA MENOR : vB(t) = 100 Cos (377 t – 90º ) ; ONDA MAYOR : vA(t) = 150 Cos (377 t - 60º -90º) R1: ONDA MAYOR: vA(t) = 150 Sen (377 t ) ; ONDA MENOR : vB(t) = 100 Sen (377 t + 60º) R2: ONDA MAYOR: vA(t) = 150 Cos (377 t ) ; ONDA MENOR : vB(t) = 100 Cos (377 t + 60º)

RO R1 R2

R1 R2 R0

Page 6: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 6 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

EJEMPLOS DE ONDAS SENOIDALES EN FASE Y DESFASADAS Para el ingreso de la característica ángulo de fase de una onda, en el programa de Multisim, solo acepta valores positivos, sin embargo, en el modelo matemático que el programa considera es el valor negativo del ángulo de fase.

V1100V70.71V_rms60Hz0Deg

V280V56.57V_rms60Hz300Deg

A BT

G

XSC1

XMM1 XMM2

V3150V106.07V_rms60Hz80Deg

A BT

G

XSC2

XMM3

V1 = 100Sen(377t) V2 = 80Sen(377t-300°) = 80Sen(377t+60°)

V3 = 150Sen(377t-80°) = 150Sen(377t+280°)

Referencia Adelantada 60°, a la izquierda de V1

Atrasada 80°, a la derecha de V1

ONDAS Y VALORES EFICACES EN EL CIRCUITO RL EN SERIE

V4120V84.85V_rms60Hz0Deg

L1

7mHR13ohm

A BT

G

XSC3

v I

XWM1

XMM4

XMM5

Para la conexión presentada del circuito RL en serie y los respectivos medidores, estos cumplen con las siguientes funciones: El vatímetro XWM1 mide y presenta la potencia activa o real producida por la fuente de voltaje, la cual es igual a la potencia activa o real absorbida por la carga equivalente y específicamente la consumida por la resistencia. El vatímetro también presenta el factor de potencia de la fuente o de la carga equivalente y es igual al coseno del ángulo de atraso entre el voltaje y la corriente, este ángulo es el mismo que existe entre la onda del voltaje de la fuente y la onda del voltaje a través de la resistencia, ya que el voltaje a través de la resistencia y la corriente que circula por ella están en fase El osciloscopio XSC3 presenta las formas de onda del voltaje generado por la fuente y la forma de onda del voltaje a través de la resistencia. Los voltímetros XMM4 y XMM5 presentan el valor eficaz de los voltajes a través de la inductancia y de la resistencia respectivamente.

Page 7: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 7 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

ONDAS DESFASADAS Y SUMA DE VOLTAJES A continuación se presentan algunas fuentes de voltaje alterno, de diferente magnitud máxima, desfasadas y de igual frecuencia (60 hz), interconectadas con algunos medidores y osciloscopios.

V1100V70.71V_rms60Hz0Deg

V280V56.57V_rms60Hz60Deg

v1 = 100 Sen(377 t), v v2 = 80 Sen(377 t – 60°), v Interconecte las fuentes y los medidores como lo indica la siguiente figura, simule el circuito y determine las lecturas de los voltímetros XMM1 y XMM2, trace las gráficas presentadas por el osciloscopio.

V1100V70.71V_rms60Hz0Deg

V280V56.57V_rms60Hz60Deg

XMM1A B

T

G

XSC1

XMM2

Valores Leídos: Canal A: VAmax = 99.999 v ; Canal B: VBmax = 91.6513 v ; Distancia entre cursores: Δx = 2,2300 ms

vB

vA

Page 8: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 8 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

DESARROLLO ANALÍTICO Los modelos matemáticos de los voltajes presentados por las fuentes son: v1 = 100 Sen(377 t) = 100 Cos(377 t – 90°), dominio del tiempo ; V1 = 100 ∠ - 90°, Fasor v2 = 80 Sen(377 t – 60°) = 80 Cos(377 t – 150°), dominio del tiempo ; V2 = 80 ∠ - 150° , Fasor Los voltajes leídos por el osciloscopio son: vA en el canal A y vB en el canal B Aplicando LVK a un camino cerrado tendremos: vA - v1 = 0 ; luego, vA = 100 Sen(377 t) Aplicando LVK al otro camino cerrado tendremos: vB + v2 - v1 = 0 , o sea, vB = v1 - v2 ; en fasores: VB = V1 – V2 , VB = 100 ∠ - 90° - 80 ∠ - 150° VB = 69.28 + j 60 = 91.64 ∠ - 40.89° Por lo tanto: vB = 91.64 Cos(377 t – 40.89°) = 91.64 Sen(377 t + 49.10°) Luego el osciloscopio traza las gráficas de: vA = 100 Sen(377 t) en el canal A y vB = 91.64 Sen(377 t + 49.10°) en el canal B Lo anterior significa que el trazo de vB está corrido hacia la izquierda de vA , lo que indica que vB está adelantado 49.1° ( 2.23 ms) vA LECTURAS DE LOS VOLTÍMETROS: Voltímetro XMM1: V1 = 70.71 v ; Voltímetro XMM2: VA = 64.80 v

Page 9: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 9 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

FORMAS DE ONDA DE VOLTAJES CON EL OSCILOSCOPIO Los resultados analíticos de los voltajes en el dominio del tiempo pueden ser comprobados con los trazos del osciloscopio, en donde se puede comprobar la magnitud y el desfasamiento con respecto a cualquier referencia que se seleccione. PRIMERA PRÁCTICA: OSCILOSCOPIO XSC1: Canal A ; vBA = 169.7 Sen(377t) v Canal B ; vCA = vBA – vDC = 87.83 Sen(377t + 75°) v OSCILOSCOPIO XSC2: Canal A ; vFE = 169.7 Sen(377t – 60°) v Canal B ; vDC = 169.7 en(377t – 30°) v

V1

169.7V120.00V_rms60Hz0Deg

V2

169.7V120.00V_rms60Hz30Deg

V3

169.7V120.00V_rms60Hz60Deg

A BT

G

XSC1

A BT

G

XSC2

A B CD E F

SEGUNDA PRÁCTICA: OSCILOSCOPIO XSC1: Canal A ; vDC = 169.7 Sen(377t – 30°) v Canal B ; vFE = 169.7 Sen(377t - 60°) v OSCILOSCOPIO XSC2: Canal A ; vAB = -169.7 Sen(377t ) v = 169.7 Sen(377t – 180°) v Canal B ; vFD = vFE – vDC = 87.84 Sen(377t – 135°) v

V1

169.7V120.00V_rms60Hz0Deg

V2

169.7V120.00V_rms60Hz30Deg

V3

169.7V120.00V_rms60Hz60Deg

A BT

G

XSC1

A BT

G

XSC2

A B CD E F

Page 10: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 10 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

PRÁCTICA DE ENSAYO CON EL OSCILOSCOPIO Para el ensayo conectamos una fuente de corriente alterna a tres transformadores, con diferente relación de transformación, en paralelo, de esa forma obtendremos formas de ondas de voltaje con diferentes magnitudes y con posibles desfasamientos de 180º.

T1

2

T2

2.5

T3

3

V190V63.64V_rms60Hz0Deg

A BT

G

XSC1

XMM1XMM2

SOURCE: AC_VOLTAGE_SOURCE

BASIC: TRANSFORMER_VIRTUAL

COMPONENTES

DIFERENTES MAGNITUDES DE VOLTAJES EN FASE O DESFASADAS 180°

A BT

G

XSC2

OBJETIVOS: Tomar Lecturas de voltaje con el voltímetro (Valor eficaz) Trazar formas de onda de voltaje con el osciloscopio (Dominio del tiempo) Determinar de las formas de onda lo siguiente: Valor máximo, Frecuencia (frecuencia angular), Tiempo (Periodo), Desplazamiento angular, Ángulo de fase o desfasamiento entre ondas. Nota: si intercambiamos las conexiones de los medidores podremos presentar otras ondas. Modelo Matemático: : v(t) = Vmáx Sen(wt) = Vmáx Sen(θ) Donde: v(t) es el valor instantáneo del voltaje en voltios ; t es el tiempo en segundos Vmáx es el valor máximo que toma la onda del voltaje en voltios ; wt=θ , es el desplazamiento angular w es la velocidad angular o frecuencia angular (radianes / segundo)

A

A

A

C

A

Sí: F = 60 Hz, C/Seg: w = 377 rad./seg. Periodo = 16.666 mseg. Periodo = 360º eléctricos 1º = 0.046 mseg. 1 mseg. = 21.6º

B

D

v(t)

3π/2 3π/2w 3T/2 12.495ms

2π θ = w t (radianes) 2π/w t = θ/w (segundos) T T = 2π/w (periodos) 16.66 ms., para w = 60 Hz

π. π/w T/2 8.33ms.

π/2 π/2w T/4 4.165ms.

Vmax

Page 11: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 11 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

PRIMERA PRÁCTICA DE ENSAYO EN MULTISIM AGRUPACIÓN DE FUENTES DE VOLTAJE EN SERIE

A continuación se presentan tres fuentes de voltaje en CA, debidamente marcadas con sus nombres, sus terminales y sus respectivos ángulos de fase

V1169.7V120.00V_rms60Hz0Deg

A

B

V2169.7V120.00V_rms60Hz30Deg

C

D

V3169.7V120.00V_rms60Hz60Deg

E

F

La figura siguiente es la red o el esquema eléctrico de las tres fuentes interconectadas en serie. Determine analíticamente el valor y el ángulo de los fasores de voltajes que se presentan entre dos puntos diferentes de la red.

V1

169.7V120.00V_rms60Hz0Deg

V2

169.7V120.00V_rms60Hz30Deg

V3

169.7V120.00V_rms60Hz60Deg

A B CD E F

La figura siguiente es la red dibujada en Multisim, a la cual se le han interconectado voltímetros entre dos puntos diferentes de la red con el fin de medir sus voltajes y compararlos con los obtenidos en el proceso de desarrollo analítico

V1

169.7V120.00V_rms60Hz0Deg

V2

169.7V120.00V_rms60Hz30Deg

V3

169.7V120.00V_rms60Hz60Deg

XMM1 XMM2 XMM3

XMM4

XMM5

XMM6

A B CD E F

VARIABLE DOMINIO DEL TIEMPO VALOR EFICAZ VBA VCD VF E

VBD A VF BD

VF A

VBA , VCD VFE VBD A VF BD VF A

Page 12: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 12 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

INSTRUMENTO LECTURA INSTRUMENTO LECTURA

XMM1 XMM4 XMM2 XMM5 XMM3 XMM6

DESARROLLO ANALÍTICO DE LAS PRÁCTICAS DE ENSAYO

NOTACIÓN CON DOS SUBÍNDICES En la notación de voltaje con dos subíndices, la variable tiene como subíndices los nombres de los nodos a los cuales hace referencia el voltaje indicado, colocando como primer subíndice el nodo al que se le considera como positivo o hacia donde apunta la flecha de voltaje. Modelos Matemáticos de las fuentes: v1 = vBA = 169.7 Sen(377 t), v , con t en seg. = 169.7 Cos(377 t – 90º) ; VBA = 120 ∟- 90º v2 = vDC = 169.7 Sen(377 t – 30º), v , con t en seg. = 169.7 Cos(377 t – 120º) ; VDC = 120 ∟- 120º v3 = vFE = 169.7 Sen(377 t – 60º), v , con t en seg. = 169.7 Cos(377 t – 150º) ; VFE = 120 ∟- 150º Modelos matemáticos negativos de los valores anteriores y con las mismas unidades: vAB = - vBA = 169.7 Sen(377 t + 180º) = 169.7 Sen(377 t - 180º) vCD = - vDC = 169.7 Sen(377 t + 160º) = 169.7 Sen(377 t - 210º) vEF = - vFE = 169.7 Sen(377 t + 120º) = 169.7 Sen(377 t - 240º) Determinación de voltajes: Para determinar los voltajes desconocidos que se presentan, se aplica la ley de Kirchoff, a los caminos cerrados. La suma algebraica de los voltajes alrededor de cualquier camino cerrado es igual a cero. Para el caso no hay caminos cerrados, pero, en lo que se refiere a voltajes, si iniciamos en un nodo cualquiera, sumamos algebraicamente todos los voltajes que se presentan en el camino recorrido terminando en el mismo nodo que se inició, podremos considerar el camino como cerrado. Ejemplo 1. : Seleccionamos el camino que encierra los voltajes: VCA , VCD , VBA Aplicamos Kirchoff, iniciando en el nodo A, avanzando en sentido horario: VCA - VCD - VBA = 0,

Despejando VCA que es el voltaje desconocido, tendremos: VCA = VBA + VCD = 120 ∟- 90º + 120 ∟- 120º. Por lo tanto: VCA = 62.11 ∟- 15º , lo que significa en el dominio del tiempo que el valor del voltaje entre los nodos C y A estará dado por:

vCA = 87.83 Cos(377 t – 15º), v , con t en seg. = 87.83 Sen(377 t + 75º)

Ejemplo 2. : Seleccionamos el camino que encierra los voltajes: VFD , VFE , VDC Aplicamos Kirchoff, iniciando en el nodo BD, avanzando en sentido antihorario: VFD - VFE + VDC = 0.

Despejando VFD que es el voltaje desconocido, tendremos: VFD = VFE – VDC = 120 ∟- 150º - 120 ∟- 120º. Por lo tanto: VFD = 62.11 ∟135º , lo que significa en el dominio del tiempo que el valor del voltaje entre los nodos F y D estará dado por:

vCA = 87.84 Cos(377 t + 135º), v , con t en seg. = 87.84 Sen(377 t - 135º)

VBA VCD

VCA

VDC VFE

VFD

Page 13: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 13 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

RELACIONES ENTRE LAS VARIABLES DEL CIRCUITO ELÉCTRICO, EN EL DOMINIO DEL TIEMPO Y EN EL DOMINIO DE LA FRECUENCIA, PARA ELEMENTOS GENERADORES Y

ELEMENTOS DE CARGA La figura a continuación representa un generador de corriente alterna que le suministra energía a una impedancia Z como carga, Z representa la impedancia equivalente del circuito

IMPEDANCIAS Y ADMITANCIAS (TERMINOS ESCLUSIVOS DEL DOMINIO DE LA FRECUENCIA) En el dominio de la frecuencia, los fasores vienen expresados por: Vf = Vz = Vm ∠ θv o Vefic ∠ θv ; If = Iz = Im ∠ θi o Iefic ∠ θi

Z(w) = Z(w)

Z

IV )w( = |Z| ∠ θz = |Z| e j θz = R + j X, en donde : R es resistencia(Ω) y X es reactancia (Ω)

Y(w) = Z(w)VI )w(Z = |Y| ∠ θy = |Y| e j θy = G + j B, en donde : G es conductancia(S) y B es susceptancia (S)

Nota: Para el cálculo de las impedancias y admitancias, los fasores pueden estar expresados con los valores máximos o con los valores eficaces. POTENCIAS DE UN ELEMENTO GENERADOR EN EL DOMINIO DEL TIEMPO La potencia del elemento generador o del elemento carga en el dominio del tiempo, estará representada por: p(t) = Vm Cos(w t + θv) * Im Cos(w t + θi) , Sí hacemos θz = θv - θi , la expresión se puede escribir como: p(t) = 2

Im mV Cos(θZ) + 2Im mV Cos(θZ) Cos(2 w t + 2 θi) - 2

Im mV Sen(θZ) Sen(2 w t + 2 θi)

Sí Veff = 2mV e Iefic =

2mI , entonces la potencia se puede expresar como:

p(t) = Vefic * Iefic Cos(θZ) + Veff * Iefic Cos(θZ) Cos(2 w t + 2 θi) – Vefic * Iefic Sen(θZ) Sen(2 w t + 2 θi) POTENCIA MEDIA (PROMEDIO, REAL, ACTIVA, CONSUMIDA, ABSORBIDA) P = 2

Im mV Cos(θZ) = 2mV

2mI Cos(θZ) = Vefic * Iefic Cos(θZ). vatios (w)

POTENCIA REACTIVA

Q = 2Im mV Sen(θZ) =

2mV

2mI Sen(θZ) = Vefic * Iefic Sen(θZ). Voltiamperios reactivos (VAR)

POTENCIA APARENTE

|S| = 2Im mV =

2mV

2mI = Vefic * Iefic . Voltiamperios (VA)

p(t) = |S| Cos(θZ) + |S| Cos(θZ) Cos(2 w t + 2 θi) – |S| Sen(θZ) Sen(2 w t + 2 θi) p(t) = P + P Cos(2 w t + 2 θi) – Q Sen(2 w t + 2 θi) POTENCIAS DE UN ELEMENTO GENERADOR EN FORMA COMPLEJA La potencia compleja entregada al elemento se define como: S = Vefic x Iefic * , donde: S es la potencia aparente, Vefic es el fasor de voltaje e Iefic * es el conjugado del fasor de corriente. S = Vefic ∠ θv x Iefic ∠ - θi = Vefic X Iefic ∠ θv - θi = Vefic X Iefic ∠ θz

i(t)

El voltaje instantáneo del generador o fuente es vf(t) La corriente instantánea de la fuente es i(t) El voltaje instantáneo de la carga es vz(t) La corriente instantánea de la carga es i(t) El generador está produciendo mientras que la carga o

impedancia está absorbiendo vf (t) = vz (t) = Vm Cos(w t + θv) ; i(t) = Im Cos(w t + θi)

vf (t) vz (t) Z

Page 14: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 14 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

Por lo tanto, la fórmula de potencia compleja quedará:

En donde S es la potencia aparente en VA ; P = Vefic X Iefic Cos(θZ ) es la potencia real o activa Q = Vefic X Iefic Sen(θZ) es la potencia reactiva. En resumen:

POTENCIAS DE UN ELEMENTO DE CARGA EN EL DOMINIO DEL TIEMPO RESISTENCIA SOLA : θZ = 0 ; pR(t) = VR * IR + VR * IR Cos(2 w t + 2 θi) = P + P Cos(2 w t + 2 θi)

P = VR * IR = R

2RV = IR

2 * R = VR2 * G =

G

2RI (w) ; Q = 0 (VAR) ; |S| = VR * IR (VA)

En donde: VR e IR , son valores eficaces INDUCTANCIA SOLA: Sí θv = 0,entonces, θi = - 90° y θz =θv - θi = 90° ; pL(t) = VL* IL Sen(2wt)

P = 0 (w) ; Q = VL * IL = L

2L

XV

= IL2 * XL (VAR inductivos) ; |S| = VL* IL (VARL)

En donde: VL e IL, son valores eficaces y XL = 2 π f L CAPACITANCIA SOLA: Sí θv = 0, entonces, θi = +90° y θz =θv - θi = - 90° ; pC(t) = -VC* IC Sen(2wt)

P = 0 (w) ; Q = - VC * IC = - C

2C

XV

= - IC2 * XC (VAR capacitivos) ; |S| = - VC * IC (VARC)

En donde: VC e IC, son valores eficaces y XC = Lf2

POTENCIAS DE UN ELEMENTO DE CARGA EN FORMA COMPLEJA RESISTENCIA SOLA : θZ = 0 S = Vefic ∠ θv X Iefic ∠ -θi = Vefic X Iefic ∠ 0 = P + j Q = VR efic X IR efic + j 0 INDUCTANCIA SOLA: Sí θv = 0,entonces, θi = - 90° y θz =θv - θi = 90° S = Vefic ∠ θv X Iefic ∠ -θi = Vefic X Iefic ∠ 90° = P + j Q = 0 + j VLefic X ILefic CAPACITANCIA SOLA: Sí θv = 0, entonces, θi = +90° y θz =θv - θi = - 90°

S = Vefic ∠ θv X Iefic ∠ -θi = Vefic X Iefic ∠ -90° = P - j Q = 0 - j VCefic X ICefic

S = Vefic X Iefic Cos(θZ ) + j Vefic X Iefic Sen(θZ)

S = Vefic X Iefic Cos(θv - θi) + j Vefic X Iefic Sen(θv - θi)

S = Vefic X Iefic Cos(θZ ) + j Vefic X Iefic Sen(θZ)

S = P + j Q

Page 15: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 15 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

ECUACIONES DIFERENCIALES, SOLUCIONES Y POTENCIAS EN LOS CIRCUITOS ELÉCTRICOS

CIRCUTO RL EN SERIE: Dominio del tiempo:

ECUACIÓN DIFERENCIAL GENERAL: t d

d (t)i+

LR

i(t) = L(t)

v,

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), la ecuación diferencial

quedará: t d

d (t)i+

LR

i(t) = L

) t Cos(wV Vo θ+

Cuya Solución es: i(t) = 22

o

(wL) R

V

+Cos(wt + θV- tan – 1( R

wL )) + K e - LR t,

Dominio de la frecuencia, o método fasorial para determinar la respuesta permanente:

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), el fasor de voltaje con valor eficaz es: Vefic = 2

V0 ∠ θv

Impedancia total: Z∠ θz = )( tan (wL) R RL w1 -22 ∠+ ; por lo tanto, el fasor de la corriente será:

Iefic = z

efic

ZV

θ∠= )( tan-

Z RL w1 -

v2

V0

θ∠ = 22

0

(wL) R 2

V

+∠ θv – tan- 1( R

L w ) y la solución de la corriente

permanente en el dominio del tiempo será: ) )( tan- t Cos(w (wL) R

V R

L w1 -

22

0) t ( vi θ+

+=

POTENCIAS EN EL CIRCUITO RL EN SERIE: EXPRESIONES COMPLEJAS: SZ = Vefic x Iefic

* = Vefic x Iefic Cos(θz) + j Vefic x Iefic Sen(θz) Como Vefic = VR efic + VL efic e Iefic = IR efic = IL efic , entonces: SZ = VR efic x IR efic

* + VL efic x IL efic* = P + j Q ; P = VR efic x IR efic

* ; j Q = VL efic x IL efic*

FÓRMULAS:

Potencia aparente: S = 2

V0 * 22

0

(wL) R 2

V

+∠ tan- 1( R

L w ) = 22

20

(wL) R 2

V

+ ∠ tan- 1( R

L w )

S = 22

20

(wL) R 2

V

+Cos(tan- 1( R

L w )) + j 22

20

(wL) R 2

V

+Sen(tan- 1( R

L w ))

Potencia real o activa: P = 22

20

(wL) R 2

V

+Cos(tan- 1( R

L w )) = VR efic X IR efic = R

2ficReV

= IRefic 2 * R

Potencia reactiva: Q = 22

20

(wL) R 2

V

+Sen(tan- 1( R

L w )) = VLefic X ILefic = L

2Lefic

XV

= ILefic2 * XL

Io

vL(t) vR(t)

i(t)

iR(t)

iL(t)

R

L t =

v(t)

Page 16: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 16 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

CIRCUTO RC EN SERIE: Dominio del tiempo:

ECUACIÓN DIFERENCIAL GENERAL: td

d )t(Ci + RC1

iC(t) = R1

td d )t(v

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), la ecuación diferencial

quedará: td d )t(Ci +

RC1

iC(t) = R

) t Sen(w wV Vo θ+. Cuya Solución es:

iC(t) = 22

o

)wC1( R

V

+Cos(wt + θV- tan – 1( RwC

1 )) + K e- t RC1

Dominio de la frecuencia, o método fasorial para determinar la respuesta permanente:

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), el fasor de voltaje con valor eficaz es: Vefic = 2

V0 ∠ θv

Impedancia total: Z∠ θz = )( tan- )c w

1( R C R w11 -22 ∠+ ; por lo tanto, el fasor de la corriente será:

Iefic = z

efic

ZV

θ∠= )( tan

Z wRC11 -

v2

V0

+θ∠ = 2

C w12

0

)( R 2

V

+∠ θv + tan- 1( C R w

1 ) y la solución de la corriente

permanente en el dominio del tiempo será: ) )( tan t Cos(w )

C w1( R

V C R w

11 -

22

0) t ( +θ+

+= vi

POTENCIAS EN EL CIRCUITO RC EN SERIE: EXPRESIONES COMPLEJAS: SZ = Vefic x Iefic

* = Vefic x Iefic Cos(θz) - j Vefic x Iefic Sen(θz) Como Vefic = VR efic + VC efic e Iefic = IR efic = IC efic , entonces: SZ = VR efic x IR efic

* + VC efic x IC efic* = P - j Q ; P = VR efic x IR efic

* ; - j Q = VC efic x IC efic*

FÓRMULAS:

Potencia aparente: S = 2

V0 * 2

C w12

0

)( R 2

V

+∠ - tan- 1( R

L w ) = 2

C w12

20

)( R 2

V

+∠ - tan- 1( C R w

1 )

S = 22

20

)C w

1( R 2

V

+Cos( tan- 1( C R w

1 )) - j 22

20

)C w

1( R 2

V

+Sen( tan- 1( C R w

1 ))

Potencia real o activa: P = 22

20

)C w

1( R 2

V

+Cos(tan- 1( C R w

1 )) = VR efic X IR efic = R

2ficReV

= IRefic 2 * R

Potencia reactiva: Q = 22

20

)C w

1( R 2

V

+Sen(tan- 1( C R w

1 )) = VCefic X ICefic = c

2Cefic

XV

= Icefic2 * Xc

Io

+ vC(t) Vo

-

vR(t)

i(t)

iR(t)

iC(t)

R

C t = 0

v(t)

Page 17: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 17 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

CIRCUITO RLC EN SERIE: Dominio del tiempo: ECUACIÓN DIFERENCIAL GENERAL:

2(t)

2

td d i

+ LR

td d (t)i

+ LC1 i(t) =

L1

td d ev

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), la ecuación diferencial quedará:

2(t)

2

td d i

+ LR

td d (t)i

+ LC1 i(t) =

L) t Cos(w wV Vo θ+

Cuya solución es: ) )(tan - t w Cos( )

wC1 - (wL R

E R

wC1 - wL1 -

22

o)t ( vi θ+

+= + ihomg (t)

En donde la respuesta natural o de la homogénea correspondiente ihomg (t) se obtiene a partir de la tabla

En donde: α = L2

R, en rad/seg : Coeficiente De Amortiguamiento ; WO =

LC

1 , en rad/seg : Frecuencia De Resonancia

Wd = ( ) ( )22o -W α , en rad/seg = Wd = ( ) ( )22L

RLC1 - , en rad/seg : Frecuencia De Resonancia Amortiguada

Dominio de la frecuencia, o método fasorial para la respuesta permanente:

Para un voltaje alterno, v(t) = Vo Cos(w t + θv), el fasor de voltaje con valor eficaz es: Vefic = 2

V0 ∠ θv

Impedancia total: Z∠ θz = )R

- wL( tan )

c w1-(wL R C w

11 -22 ∠+ ; por lo tanto, el fasor de la corriente será:

Iefic = z

efic

ZV

θ∠= )

RwL

( tan- Z

wC1

1 -v

2V0 −

θ∠ = )

C w1 - (wL R2

V

22

0

+∠ θv - )

R - wL

( tan C w1

1 - y la

solución de la corriente permanente en el dominio del tiempo será:

) )R

- wL( tan- t Cos(w

)C w

1 - (wL R

V C w

11 -

22

0) t ( vi θ+

+=

POTENCIAS EN EL CIRCUITO RLC EN SERIE: EXPRESIONES COMPLEJAS: SZ = Vefic x Iefic

* = Vefic x Iefic Cos(θz) - j Vefic x Iefic Sen(θz) Como Vefic = VR efic + VL efic + VC efic e Iefic = IR efic = IL efic = IC efic, entonces: SZ = VR efic x IR efic

* + VL efic x IL efic* + VC efic x IC efic

* = P + j (QL – QC) ; P = VR efic x IR efic*

j QL = VL efic x IL efic* ; - J QC = VC efic x IC efic

*

CASO FRECUENCIA NATURAL

RESPUESTA NATURAL ihomg (t)

SOBREAMORTIGUADO

uando R < CL

21

S1, S2 = - α ± 2

o2 w - α

K1 e S1 t + K2 e S2 t

CRÍTICMENTE AMORTIGUADO

Cuando R = CL

21

S1, S2 = - α

(K1 + K2 t ) e- α t SUBAMORTIGUADO

uando R > CL

21

S1, S2 = - α ± 22

o - w α = - α + j wd

e- α t (K1 Cos(wd t) + K2 Sen(wd t)

vC vL

i

ve vR

Page 18: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 18 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

Potencia aparente: S = 2

V0 * )

C w1 - (wL R2

V

22

0

+ ∠ )

R - wL

( tan C w1

1 -

S = )

C w1 - (wL R 2

V

22

20

+∠ )

R - wL

( tan C w1

1 -

S= )

C w1 - (wL R 2

V

22

20

+ ))

R - wL

(Cos(tan C w1

1 - + j )

C w1 - (wL R 2

V

22

20

+ ))

R - wL

(Sen(tan C w1

1 -

Potencia real o activa: P = )

C w1 - (wL R 2

V

22

20

+ ))

R - wL

(Cos(tan C w1

1 -

P = VR efic X IR efic = R

2ficReV

= IRefic 2 * R

Potencia reactiva: Q = )

C w1 - (wL R 2

V

22

20

+ ))

R - wL

(Sen(tan C w1

1 -

Q = (VLefic X ILefic - VCefic X ICefic) = Iefic (VLefic - ILefic ) = [L

2Lefic

XV

- c

2Cefic

XV

] = Iefic2 ( XL - Xc)

EJEMPLOS NUMÉRICOS SOBRE POTENCIAS: 1. CIRCUITO RLC EN SERIE COMO CIRCUITO EQUIVALENTE DE CARGA: Un circuito RLC en serie, en donde R = 3Ω , L = 18.56 mh , C = 884.1 uf , está conectado a un generador cuyo voltaje en los terminales es v = 70.7 Cos(377 t) V. Realice un completo análisis de impedancias, voltajes, corrientes y potencias del circuito. DESARROLLO: Sí v = 70.7 Cos(377 t) V. V = 50 ∠ 0° V , w = 377 rad/seg , F = 60 hertz Resistencia y Reactancias: R = 3Ω ; XL = 377 * 18.56 x 10- 3 = 7Ω ; XC = 6 -10 x 18.56 * 377

1 = 3Ω

Impedancias: ZR = 3 ∠ 0° Ω ; ZL = j 7 = 7 ∠ 90° Ω ; ZC = j

3− = - j 3 = 3 ∠ -90° Ω

Impedancia Equivalente o Total: ZT = Ze = 3 + j 7 + (- j 3) = 3 + j 4 = 5 ∠ 53.13° Ω ; [Z] = 5 ; Corriente del circuito:

IT = IR= IL= IC = °∠

°∠13.535050 = 10 ∠ - 53.13° , luego la corriente en el dominio del tiempo

será : i = 14.142 Cos(377 t – 53.13°) A .

Page 19: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 19 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

Potencia instantánea: Sí v = 70.7 Cos(377 t) V, e i = 14.142 Cos(377 t – 53.13°) A , entonces θv = 0° , θi = - 53.13° , θz = 53.13°, por lo tanto, la potencia instantánea quedará expresada por: p(t) = (50)(10)Cos(53.13°) + (50)(10)Cos(53.13°) Cos(754 t +106.26°) - (50)(10)Sen(53.13°) Sen(754 t +106.26°) p(t) =500Cos(53.13°) +500Cos(53.13°) Cos(754 t +106.26°) - 500Sen(53.13°) Sen(754 t +106.26°) en donde, la Potencia Aparente suministrada por el generador o absorbida por la carga es: S = 500 VA, simplificando la expresión anterior, la potencia instantánea quedará: p(t) = 300 +300 Cos(754 t +106.26°) - 400 Sen(754 t +106.26°) en donde, la Potencia Reactiva total suministrada por el generador o absorbida por la carga es: QT = 400 VARL, y la Potencia Media o Activa total suministrada por el generador o consumida por la carga es: P = 300 W Potencia Compleja total: Potencia aparente: S = V x I * = 50 ∠ 0° x 10 ∠ 53.13° = 500 ∠ 53.13° = 300 + j 400 Potencia real : P = 300 w ; Potencia reactiva : Q = 400 VARL ; Factor de potencia: FP = 0.6 en atraso Potencia Compleja en la carga: Resistencia: VR = IR x ZR = 10 ∠ - 53.13° x 3 ∠ 0 = 30 ∠ - 53.13° S = 30 ∠ - 53.13° x 10 ∠ 53.13° = 300 ∠ 0º ; S = 300 VA ; P = 300 w ; Q = 0 VAR

Inductancia: VL = IL x ZL = 10 ∠ - 53.13° x 7 ∠ 90° = 70 ∠ 36.87° S = 70 ∠ 36.87° x 10 ∠ 53.13° = 700 ∠ 90º ; S = 700 VA ; P = 0 w ; Q = 700 VARL

Capacitancia: VC = IC x ZC = 10 ∠ - 53.13° x 3 ∠ -90° = 30 ∠ - 143. 13° S = 30 ∠ - 143.13° x 10 ∠ 53.13° = 300 ∠ - 90º ; S = 300 VA ; P = 0 w ; Q = 300 VARC

Potencia total en la carga: S = 300 ∠ 0º + 700 ∠ 90º +300 ∠ - 90º = 300 + j 400 = 500 ∠ 53.13° VA = 300 + j 400 2. CIRCUITO RL EN SERIE COMO CIRCUITO EQUIVALENTE DE CARGA DEL CASO INMEDIATAMENTE

ANTERIOR Un generador de voltaje alterno, presenta un voltaje entre sus terminales igual a: vg = 70.7 Cos(377 t) v, con t en seg. A los terminales del generador está conectada una carga de 500 VA, con un factor de potencia de 0.6 en atraso. Determine todas las características del circuito equivalente. DESARROLLO: Como el factor de potencia de la carga es de 0.6 en atraso, el circuito equivalente de la carga puede ser un circuito RL en serie. Datos del problema: vg = 70.7 Cos(377 t) v, Vg = 50 ∠ 0° ; S = 500 VA ; FP = 0.6 en atraso ; θZ = 53.13º O sea que: S = 500 ∠ 53.13º = 300 + j 400 , por lo tanto, P = 300 w y Q = 400 VARL

Corriente en el circuito, corriente a través del generador o a través de la carga: iT = iz = ig

Como: Sg = Vg x IT* = Sz = Vz x IT

*, ya que, Vg = Vz , entonces: IT* =

g

g

VS

= 0º 50

53.13º 500∠

∠ = 10 ∠ 53.13º

Eso significa que: IT = 10 ∠ - 53.13º. Por lo tanto, en el dominio del tiempo, la corriente total del circuito será: ig = iz = 14.142 Cos (377 t – 53.13º) CARACTERÍSTICAS DEL CIRCUITO EQUIVALENTE DE CARGA A PARTIR DEL VOLTAJE Y DE LA CORRIENTE:

Impedancia total de la carga: Zequiv = z

z

IV =

53.13º-100º 50

∠∠ = 5 ∠ 53.13º Ω = 3 + j 4 ; R = 3 Ω ; ZL = j 4 Ω

XL = 4 Ω ; L = 377

4 = 10.61 mh

Page 20: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 20 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

CARACTERÍSTICAS DEL CIRCUITO EQUIVALENTE DE CARGA A PARTIR DE LAS POTENCIAS: Los fasores de corrientes son: IR = IL = IT = 10 ∠ - 53.13º RESISTENCIA:

Como P = VR x IR* , entonces, VR = *

RIP =

53.13º100 300 o

∠∠ = 30 ∠ - 53.13º

ZR = R

R

IV =

53.13º- 1053.13º- 30

∠∠ = 3 ∠ 0º , luego R = 3 Ω

REACTANCIA INDUCTIVA:

Como Q = VL x IL* , entonces, VL = *

LIQ =

53.13º1090 400 o

∠∠ = 40 ∠ 36.87º

ZL = L

L

IV =

53.13º- 1036.87º 40

∠∠ = 4 ∠ 90º = j 4, luego XL = 4 Ω ; L =

3774 = 10.61 mh

3°. Un generador de voltaje alterno, presenta un voltaje entre sus terminales igual a: v = 179.6 Cos (377 t) v, con t en seg. A los terminales del generador está conectado un sistema de carga compuesto por un motor de inducción monofásico en paralelo con una estufa eléctrica. Las características del motor son: Cuando se le conecta a un voltaje de 127 ∠ 0°, RMS, circula por él una corriente de 22.04 A , con un factor de potencia de 0.82 en atraso. Las características de la estufa son: Resistencia interna de la estufa igual a 13.44 Ω ; Inductancia interna de la estufa igual a cero. DESARROLLO: DETERMINACIÓN DE TODAS LAS CARACTERÍSTICAS DEL MOTOR Angulo de desfasamiento Cos (θ) = 0.82; θ = 34.91°; Voltaje aplicado al motor Vm = 127 ∠ 0°, RMS.

Corriente que circula por el motor Im = 22.04 ∠ -34.91° ; im = 31.16 Cos(377 t – 34.91º) A Cálculos: Impedancia equivalente del motor Zm = 5.762 ∠ 34.91° Ω = 4.725 + j 3.29 Resistencia equivalente del motor Rm = 4.725 Ω ; Reactancia equivalente del motor XLm = 3.290 Ω ( L = 8.746 mh) Voltajes de los elementos equivalentes: VRm = R x Im = 4.725 x 22.04 ∠ -34.91° = 104.13 ∠ -34.91° VLm = XL x Im = j 3.29 x 22.04 ∠ -34.91° = 72.51 ∠ 55.09° Potencias: Potencia real del motor: P = VRm x Im* = 104.13 ∠ -34.91° x 22.04 ∠ 34.91° = 2296 ∠ 0° = 2296 w Potencia reactiva del motor: Q = VLm x Im* = 72.51 ∠ 55.09° x 22.04 ∠ 34.91° = 1600 ∠ 90° = 1600 VARL Potencia aparente del motor: Sm = Vm x Im

* = 127 ∠ 0° x 22.04 ∠ 34.91° = 2800 ∠ 34.91° = 2296 + j 1602 Potencia real del motor Pm = 2296 w : Potencia reactiva del motor Qm = 1602 VARL Sm = 2800 VA; Factor de potencia FP = 0.82 en atraso DETERMINACIÓN DE TODAS LAS CARACTERÍSTICAS DE LA ESTUFA ELÉCTRICA Angulo de desfasamiento Cos (θ) = 0 ; θ = 0° ; Voltaje aplicado a la estufa VE = 127 ∠ 0°, RMS.

Resistencia equivalente de la estufa RE = 13.44 Ω ; Reactancia equivalente de la estufa XE = 0 Ω ( L = 0h)

Cálculos: Impedancia equivalente de la estufa ZE = 13.44 ∠ 0° Ω

Corriente que circula por la estufa IE = E

E

ZV =

0º13.440º 127

∠∠ = 9.44 ∠ 0° v ; iE = 13.35 Cos(377 t ) A

Potencia aparente de la estufa: SE = VE x IE* = 127 ∠ 0° x 9.44 ∠ 0° = 1200 ∠ 0° = 1200

Potencia real de la estufa PE = 1200 w : Potencia reactiva de la estufa QE = 0 VARL SE = 1200 VA; Factor de potencia FP = 1.0

Page 21: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 21 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

DETERMINACIÓN DEL CIRCUITO EQUIVALENTE DE LA CARGA TOTAL

Voltaje aplicado a la carga V = 127 ∠ 0°, RMS. ; Potencia aparente de la carga ST = Sm + SE = 2800 ∠ 34.91° + 1200 ∠ 0° ST = 2296 + j 1602 + 1200 = 3496 + j 1602 = 3845.5 ∠ 24.61° VA

ST = 3846 VA ; PT = 3496 w ; QT = 1200 VARL ; FP = 0.90 en atraso Corriente total en el circuito, corriente a través del generador o a través de la carga total: iT = iz = ig

Como: Sg = Vg x IT* = Sz = Vz x IT

*, ya que, Vg = Vz , entonces: IT* =

g

g

VS

= 0º 12724.61º 5.3845

∠∠ = 30.3 ∠ - 24.61º

Eso significa que: IT = 30.3 ∠ - 24.61º. Por lo tanto, en el dominio del tiempo, la corriente total del circuito será: ig = iz = 42.85 Cos (377 t – 24.61º) A Comprobación de la Ley de Kirchhoff: ig = iz = iT = im + iE 42.85 Cos (377 t – 24.61º) A = 31.16 Cos(377 t – 34.91º) A + 13.35 Cos(377 t ) A

Impedancia equivalente de la carga Z = Z

Z

IV =

.24.61º-30.30º 127

∠∠ = 4.191 ∠ 24.61° Ω = 3.810 + j 1.745

Resistencia equivalente de la carga RT = 3.810 Ω Reactancia equivalente de la carga XT = 1.745 Ω ( Le = 4.629 mh) RESPUESTAS: FUENTE: v = 179.6 Cos (377 t) v, V = 127 ∠ 0°, RMS. F = 60 hertz CARGA: RT = 3.810 Ω , LT = 4.629 mh ; XT = 1.745 Ω ; Zcarga = 3.810 + j 4.629 = 4.191 ∠ 24.61° Ω CORRIENTE EN EL CIRCUITO: i(t) = 30.3 2 Cos( 377 t – 24.58°) A = 42.85 Cos( 377 t – 24.58°) A VOLTAJES EN EL CIRCUITO EQUIVALENTE: Resistencia equivalente: VR = R x IR = 3.810 x 30.3 ∠ -24.61° = 115.44∠ -24.61° v, en el dominio del tiempo: vR = 115.44 2 Cos( 377 t – 24.61°) = 163.25 Cos( 377 t – 24.61°) v Inductancia equivalente: VL = j Xe x IL = j 1.745 x 30.3 ∠ -24.61° = 52.87∠ 65.39° v, en el dominio del tiempo: vL = 52.87 2 Cos( 377 t + 65.39°) = 74.76 Cos( 377 t + 65.39°) v Comprobación de la Ley de Kirchhoff: vfuente = vcarga = vR + vL 179.6 Cos (377 t) = 163.25 Cos (377 t – 24.61°) + 74.76 Cos (377 t + 65.39°) POTENCIAS EN EL CIRCUITO: Potencia aparente total producida por la fuente y absorbida por la carga: ST = PT + j QT = 3846 ∠ 24.61° VA

Potencia de la resistencia equivalente: P = VR x IR* = 115.44∠ -24.61° x 30.3 ∠ 24.61° = 3498 ∠ 0° w

Potencia de la inductancia equivalente: P = VL x IL* = 52.87∠ 65.39° x 30.3 ∠ 24.61° = 1601 ∠ 90° VARL

Potencia aparente: S = 3498 ∠ 0° + 1601 ∠ 90° = 3498 + j 1601 = 3847 ∠ 24.61° Clasificación de las potencias: Potencias de las cargas individuales: Potencia real del motor: Pm = 2296 w ; Potencia reactiva del motor: Qm = 1600 VAR Potencia real de la estufa: Pc = 1200 w ; Potencia reactiva de la estufa: Qc = 0 VAR Potencia real de la carga total: PT = 3496 w ; Potencia reactiva de la carga total: QT = 1600 VAR

Page 22: Resumen de Formulas en Circuitos Electricos de CA

11/01/2010 Página 22 de 22 Profesor: Luis Rodolfo Dávila Márquez CÓDIGO: 00076 UFPS

FORMULARIO DE TRIGONOMETRÍA Sen (w t) = Sen (w t ± n 360º), en donde n es un número entero Cos (w t) = Cos (w t ± n 360º), en donde n es un número entero

)180()()90()(°±=−

°+=wtCoswtCos

wtSenwtCos

)180wt(Sen)wt(Sen)90wt(Cos)wt(Sen°±=−

°−=

2)2(Cos1)(Cos2 θ+

)(Sen)(Cos)(Cos)(Sen)(Sen βα±βα=β±α 2

)2(Cos1)(Sen 2 θ−=θ

)(Sen)(Sen)(Cos)(Cos)(Cos βαβα=β±α m )wt(Sen)(CosV)wt(Cos)(SenV)wt(SenVv mmm)t( θ+θ=θ+=

))(tanwt(Sen))(CosV())(SenV()wt(SenVv 12m

2mm)t( θ+θ+θ=θ+= −

)( tan dondeen , )- t Cos(w B A t)Sen(w B t)Cos(wA AB1 -22 =δδ+=+

)( tan dondeen , ) t Sen(w B A t)Sen(w B t)Cos(wA BA1 -22 =ββ++=+

FACTORES DE CONVERSIÓN DE UNIDADES

LONGITUD ANGULO

1 m = 102 cm = 39.37 pulg = 6.214x 10-4 mill 1 mill = 5280 pie = 1.60934 Km

1 pulg = 2.540 cm ; 1 pie = 0.3048 m

1 radián = 57.3º 1º = 1.74x10-2 rad

1´ = 2.91x10-4 rad ; 1´´ = 4.85x10-6 rad

ÁREA VOLUMEN

1 m2 = 104 cm = 1.55x10-5 pulg2 10.76 pie2 1 pulg2 = 6.452 cm2

1 pie2 = 144 pulg2 = 9.29x10-2 m2

1 m3 = 106 cm3 = 103 litros = 35.3 pie3 = 6.1x104 pulg3

1 pie3 = 2.83x10-2 m3 = 28.32 litros 1 pulg3 = 16.39 cm3

VELOCIDAD ACELERACIÓN

1 m/s = 102 cm/s = 3.281 pie/s 1 pie/s = 30.48 cm/s

1 Km/min = 60 Km/h = 16.67 m/s 1 m/s2 = 102 cm/s2 = 3.281 pie/s2

1 pie/s2 = 30.48 cm/s2

MASA FUERZA

1 Kg m = 103 g = 2.205 lb m 1 lb m = 453.6 g = 0.4536 Kg m = 0.0311 slug

1 uma = 1.6604x10-27 Kg m

1 N = 105 dina = 0.2248 lb f = 0.102 Kg f 1 dina = 10-5 N = 2.248x10-6 lb f

1 lb f = 4.448 N = 4.448x105 dina