quimica general

58
Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste QUIMICA GENERAL Ingeniería en Electrónica, Ingeniería Eléctrica, Ingeniería en Agrimensura Licenciatura en Física, Prof. en Física

Upload: dylan-brown

Post on 03-Jan-2016

65 views

Category:

Documents


1 download

DESCRIPTION

Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste. QUIMICA GENERAL. Ingeniería en Electrónica, Ingeniería Eléctrica, Ingeniería en Agrimensura Licenciatura en Física, Prof. en Física. UNIDAD I. NOCIONES BÁSICAS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: QUIMICA GENERAL

Facultad de Ciencias Exactas y Naturales y Agrimensura

Universidad Nacional del Nordeste

QUIMICA GENERAL

Ingeniería en Electrónica, Ingeniería Eléctrica, Ingeniería en AgrimensuraLicenciatura en Física, Prof. en Física

Page 2: QUIMICA GENERAL

UNIDAD I

NOCIONES BÁSICAS

Page 3: QUIMICA GENERAL

¿Por qué Química en las carreras de Ingeniería y

Ciencias Exactas?Aporta: Conceptos básicos significativos para entender

las propiedades de los materiales, sus formas de conservación, deterioro y posibles formas de contaminación ambiental.

La posibilidad de que el futuro profesional pueda comunicar a los especialistas los problemas relacionados con la Química de los materiales.

Una formación básica adecuada para que como ciudadano responsable ayude a formar opinión consciente en su entorno.

Page 4: QUIMICA GENERAL

¿De qué se ocupa la química?

Química: Es la ciencia que estudia la

composición y estructura de la materia y los cambios que puede sufrir. El centro de esta ciencia es la reacción química

Page 5: QUIMICA GENERAL

Ciencia central?

Todo lo que podemos observar y medir en el mundo macroscópico, los químicos tratan de explicarlo en un nivel microscópico y representarlo en un nivel simbólico.

La química permite entender nuestro mundo y su funcionamiento.

Page 6: QUIMICA GENERAL

La química en el 2023Los biomateriales avanzarán debido a la investigación básica que se está llevando a cabo ahora en dendrímeros, polímeros conductores de la electricidad, polímeros que pueden sufrir transiciones de fase y muchos otros. Estos tendrán aplicaciones en nuevos dispositivos para suministrar fármacos, y en la creación de nuevos tejidos tales como piel, cartílagos o incluso nervios.Robert S. Langer. Massachusetts Institute of Technology

Dentro de 25 años el motor de combustión interna será una pieza de museo, la tecnología de las pilas habrá resuelto finalmente el problema del transporte con energía eléctrica. Habremos resuelto el problema de una energía solar barata; lo suficientemente barata como para considerar una locura construir una planta de energía de cualquier otro tipo.Richard E. Smalley. Rice University

Page 7: QUIMICA GENERAL

La investigación en catálisis es más bien un asunto de prueba y error. Cuando descubrimos un nuevo catalizador lo explotamos tanto como podemos. Pero no sabemos de donde vendrá el siguiente. La unión de la química combinativa y los métodos de cálculo puede llevarnos a un punto donde se pueda disponer de una biblioteca de catalizadores designados para hacer determinadas cosas. Esto tiene una implicación tremenda porque nos va a permitir producir compuestos a la carta.Theodore Brown. University of Illinois

Antes de 25 años, las fibras de carbono o de nitruro de boro de perfección molecular y longitud variable, se llegarán a producir en millones de toneladas por año.Richard E. Smalley. Rice University

La química en el 2023

Page 8: QUIMICA GENERAL

Pienso que el coche eléctrico es el invento que la química puede hacer realidad. Los coches eléctricos restablecerán la belleza de las ciudades del mundo. Es verdaderamente importante la investigación básica en nuevas baterías, nuevos catalizadores que darían un gran impulso a esa tecnología.Stephen J. Lippard. Massachusetts Institute of TechnologyDe hecho, si estos eminentes científicos tienen razón, los próximos 10 años serán una época dorada para la química. Durante este periodo, la química desvelará muchos de los secretos de la biología, creará materiales con propiedades casi mágicas, y contribuirá a la producción de alimentos y energía capaz de sustentar a la población del mundo y sostener sus actividades económicas.

La química en el 2023

Page 9: QUIMICA GENERAL

Sistemas materiales La materia es el componente físico del

universo. Es cualquier cosa que tiene masa y ocupa espacio. Toda la materia está formada por sustancias químicas

Page 10: QUIMICA GENERAL

La enorme variedad de materia, se debe a las combinaciones de sustancias básicas o elementales, llamadas elementos químicos.

Los cuerpos son porciones limitadas de materia con forma propia.

Según su estado físico: la materia se presenta como sólido, líquido o gas. El término vapor designa a la forma gaseosa de una sustancia que es normalmente un sólido o un líquido (por ejemplo, vapor de agua).

Sistemas materiales

Page 11: QUIMICA GENERAL

Según su composición la materia se clasifica en elementos, compuestos o mezclas. La mayor parte de las formas de materia con que comúnmente nos encontramos (aire, nafta, etc.) no son químicamente puras sino mezclas. Una sustancia pura es materia que tiene una composición fija y propiedades características ejemplos H2O, NaCl.

Sustancia: Es una clase homogénea de materia de composición química invariable. Las sustancias puras se clasifican en:

Sistemas materiales. Clasificación

ElementosCompuestos

Page 12: QUIMICA GENERAL

Los elementos no se pueden descomponer en sustancias más simples mediante reacciones químicas, Ej. Hidrógeno y oxígeno gaseosos.

Los compuestos se pueden descomponer mediante reacciones químicas, para formar sustancias más simples. Por ej., mediante electricidad el agua se descompone, formando H2 y O2. Un compuesto siempre contiene el mismo % en peso de cada elemento que lo forma. Cualquier muestra de agua contiene 11,19 % en peso de H y 88,81% en peso de O. Ley de la composición constante o ley de las proporciones definidas.

Sistemas materiales. Sustancias puras

Page 13: QUIMICA GENERAL

Una mezcla es una porción de materia formada por dos o más sustancias.

Sistemas materiales. Mezclas

ALas mezclas tienen composiciones variables.

ASe pueden separar mediante cambios físicos. Mezclas homogéneas: sólo tienen una fase;

poseen las mismas propiedades en toda la muestra, aunque pueden ser distintas a las propiedades de otras muestras. Las mezclas homogéneas se llaman soluciones.

Mezclas heterogéneas: tienen más de una fase. No tienen las mismas propiedades en toda la muestra.

Page 14: QUIMICA GENERAL

Separación de mezclas

Filtración Destilación simple

Algunos métodos

Se basa en diferencias en el tamaño de partícula o diferencias en la solubilidad.

Se basa en diferencias en los puntos de ebullición.

Page 15: QUIMICA GENERAL

Separación de mezclas Cromatografía

se basa en diferencias de la capacidad que tienen las sustancias para adherirse a las superficies.

Page 16: QUIMICA GENERAL

Propiedades de la materia Las propiedades son las características que permiten

reconocer y distinguir una sustancia de otra y se clasifican en propiedades físicas y en propiedades químicas.

Las propiedades físicas son aquellas que podemos observar o medir sin cambiar la identidad y la composición de la sustancia. Por ejemplo: color, olor, densidad, PF, PE. La determinación de estas propiedades están asociadas a cambios físicos (no hay cambio de una sustancia en otra sustancia).

Las propiedades químicas se refieren a la capacidad de una sustancia de transformarse en otras. La determinación de estas propiedades están asociadas a cambios químicos (se transforman una o más sustancias formando otras ).

Page 17: QUIMICA GENERAL

Las propiedades (temperatura, punto de fusión y densidad) que no dependen de la cantidad de materia analizada son llamadas Propiedades Intensivas y muchas de ellas sirven para identificar las sustancias. (Por ej. densidad, punto de fusión, punto de ebullición).

- Las propiedades intensivas no son aditivas (no se pueden sumar).

Las Propiedades Extensivas de las sustancias son aquellas que dependen de la cantidad de la muestra presente (por ejemplo masa y volumen).

- Los valores de una misma propiedad extensiva se pueden sumar (son aditivas).

Propiedades de la materiaLas propiedades también se clasifican de acuerdo con su dependencia con la masa de la muestra.

Page 18: QUIMICA GENERAL

Masa y peso Masa (m) es una medida de la cantidad de materia

que contiene un cuerpo y no varía con su posición. Peso (P) es la fuerza de atracción que ejerce la

tierra sobre un cuerpo por acción de la gravedad y

varía con la distancia al centro de la tierra.

P

P m g mg

Masa es la relación entre la fuerza aplicada y la aceleración adquirida

Page 19: QUIMICA GENERAL

La energía se define como la capacidad para realizar un trabajo o transferir calor. Hay de diferentes formas: energía calórica, energía eléctrica, energía cinética, energía potencial.

Concepto de energía y principios de conservación

Principio de Conservación de la Masa: en toda reacción química no hay un cambio observable en la masa del sistema, es decir la suma de las masas de reactivos es igual a la suma de las masas de los productos. Principio de Conservación de la Energía: Este principio expresa que la energía no puede crearse ni destruirse en una reacción química o proceso físico, solo puede convertirse de una forma a otra.

Page 20: QUIMICA GENERAL

Entre la energía y la masa de un sistema material, hay una equivalencia dada por la ecuación de

Einstein:

Relación entre masa y energía

Debido al valor tan elevado de c, los pequeños cambios de masa, van acompañados de grandes cambios de energía.

2

8

E=m c

donde E es la energía; m es la masa del cuerpo

y c es la velocidad de la luz: 3.10 m/s

Principio de equivalencia entre masa y energía de Einstein

2cΔmΔE2cΔmΔE

cteΔmΔE

ΔmΔE

Page 21: QUIMICA GENERAL

Definición. La partícula más pequeña que puede existir de un elemento, conservando la identidad química del elemento recibe el nombre de átomo

Átomo

1. Cada elemento se compone de partículas extremadamente pequeñas, llamadas átomos.

2. Los átomos de un dado elemento son idénticos; los átomos de elementos diferentes son diferentes y tienen propiedades distintas (incluida la masa).

3. Los átomos no se crean ni destruyen en las reacciones químicas, ni se transforman en átomos diferentes.

Teoría atómica de Dalton

Page 22: QUIMICA GENERAL

Átomo

Cuando se combinan átomos de más de un elemento se forman compuestos. Un dado compuesto siempre tiene el mismo número relativo y clase de átomos.

Teoría atómica de Dalton

Hoy se sabe, que los átomos tienen una estructura interna y están constituidos por partículas de menor tamaño.Estas partículas, que constituyen el átomo, se denominan partículas subatómicas.

Page 23: QUIMICA GENERAL

Átomo. Partículas subatómicas

Modelo de Rutherford

En 1911, Rutherford postuló, que la mayor parte de la masa del átomo y toda su carga positiva, reside en una región muy pequeña, extremadamente densa a la que llamó núcleo. La mayor parte del volumen total del átomo era espacio vacío, en el que los electrones se movían alrededor del núcleo.Las tres partículas que determinan el comportamiento químico son: el protón, el neutrón y el electrón.Los protones y neutrones forman un cuerpo central, compacto, llamado núcleo del átomo. Este modelo de un átomo, se llama Modelo Nuclear .

Page 24: QUIMICA GENERAL

Partícula Símbolo Carga Masa

Electrón e- -1 9,109.10-28 g

Protón p+, H+ +1 1,673.10-24 g

Neutrón n 0 1,675.10-24 g

Partículas subatómicas

En la naturaleza no existe una partícula que tenga una cargaeléctrica inferior a la del electrón, por eso se dice que

es launidad de carga eléctrica.

El electrón fuera del átomo es estable.El protón fuera del átomo es estableEl neutrón fuera del átomo no es estable. A los 20

minutosaproximadamente se descompone dando 1p+ y 1 e-

Page 25: QUIMICA GENERAL

Átomo

Page 26: QUIMICA GENERAL

Otras partículas subatómicas

Neutrinos: partículas que no poseen carga eléctrica con la característica de que cuando están en reposo, no tiene masa entonces son todo energía. Fuente: el sol Positrones: son partículas que tienen una masa igual a la del electrón, y una carga eléctrica igual a la del electrón pero positiva, son estables fuera del núcleo. Fuente: pulso láser. Mesones: son partículas que tienen masas intermedias entre la del electrón y la del protón, algunos poseen cargas eléctricas positivas y otros negativas, otros no tienen carga. Todos los mesones son inestables fuera del núcleo. Por descomposición de los mesones se forman los neutrinos.

Page 27: QUIMICA GENERAL

Carga nuclear y número másicoCarga Nuclear o Número Atómico (Z)

El número atómico, es el número de protones que tiene el núcleo de un átomo de un elemento químico. Se simboliza con Z. Z es una propiedad característica de cada

elemento químico. Su valor se saca de la tabla periódica. Su valor indica la posición que ocupa el elemento

en la TP.Número másico (A)Es un Nº (no una masa), que indica la cantidad de protones y neutrones presentes en el núcleo de un átomo de un determinado elemento.A = nº de protones + nº de neutrones = Z + n

Page 28: QUIMICA GENERAL

Isótopos Los átomos de un mismo elemento pueden tener distintos números másicos.Isótopos son átomos del mismo elemento que tienen igual número de protones pero distinto número de neutrones. Poseen idéntico Z y diferente A. La composición de un núcleo atómico se indica mediante su símbolo nuclear o símbolo isotópico Ej.:Ne: 20Ne 21Ne 22Ne; O: 16O 17O 18O; C: 12C 13C 14C (radiactivo)

XoX AA

Z

Algunos isótopos tienen nombres específicos, por ejemplo:

Protio Deuterio Tritio

A = 1 A = 2 A = 3

Z = 1 Z = 1 Z = 1

n = 0 n = 1 n = 2

11H

21H

31H

Page 29: QUIMICA GENERAL

Isótopos

Page 30: QUIMICA GENERAL

Masa atómicaMasa atómica relativa (MAR) Es un número adimensional que indica cuántas veces más pesado es el átomo del elemento que la uma.

masa absoluta del átomoMAR =

uma

En la tabla periódica figuran las masas atómicas relativas; esto quiere decir que sus valores fueron determinados en relación a la masa absoluta de otro átomo que se toma como referencia.

Para elaborar una escala de masa atómica relativa, es necesario definir una unidad de referencia, la que se calcula en base a la masa del 12C.

Esa unidad es la uma (unidad de masa atómica).

12 -241uma u masa de 1 átomo de C = 1,66054.10 g

12

Page 31: QUIMICA GENERAL

Masa atómica

Para elaborar una escala de masa atómica relativa, es necesario definir una unidad de referencia, la que se calcula en base a la masa del 12C.

Esa unidad es la uma (unidad de masa atómica).

12 -241uma u masa de 1 átomo de C = 1,66054.10 g

12

Page 32: QUIMICA GENERAL

Masa molecular

Masa Molecular Relativa:La masa molecular relativa de una sustancia es el

cocienteentre la masa media de una molécula y la uma. Indica cuántas veces más pesada es la molécula de

la sustancia que la uma. Las masas moleculares relativas se calculan

sumando las masas atómicas relativas de los átomos que componen una fórmula química.

Moléculas Una molécula es una partícula discreta formada por dos o más átomos unidos entre si por fuerzas llamadas enlaces químicos.

Page 33: QUIMICA GENERAL

Constante de Avogadro (NA) es una constante que indica el número de átomos de carbono que hay en exactamente 12 g de 12C. NA = 6,022.1023 mol-1

Mol es la cantidad de materia que contiene tantos entes elementales como átomos de carbono hay exactamente en 12 g de 12C. Los entes elementales pueden ser átomos, moléculas, iones, grupos de átomos, electrones u otras partículas. Experimentalmente se comprobó que este número es 6,022.1023 átomos.

Nº de Avogadro. Mol y Masa molar

Masa Molar (M): es la masa en g de un mol de átomos, moléculas, iones, o unidades fórmulas. La masa molar es numéricamente igual a la Masa molecular relativa o a la masa atómica relativa, de la especie considerada, pero expresada en g/mol.

Page 34: QUIMICA GENERAL

MEDICIONESUnidades de medidasUso de los números- cifras

significativasAnálisis dimensional

Page 35: QUIMICA GENERAL

Sistema de Unidades Un sistema de unidades es un conjunto de

unidades básicas o fundamentales que se toman como referencia; cada una de las unidades fundamentales representa una cantidad física determinada; las unidades que no aparecen entre las fundamentales se denominan unidades derivadas. Se forman combinando las unidades básicas según relaciones algebraicas que enlazan las magnitudes correspondientes.

Las mediciones en el mundo científico habitualmente se expresan en el sistema métrico, o su sucesor modernizado, el Sistema Internacional de Unidades (SI).

Este sistema se basa en siete unidades fundamentales que se enumeran en la tabla siguiente:

Page 36: QUIMICA GENERAL

Unidades SI fundamentales

Cantidad física Nombre de la unidad

Abreviatura

Longitud Metro m

Masa Kilogramo kg

Tiempo Segundo s

Corriente eléctrica Amper A

Temperatura Kelvin K

Intensidad luminosa

Candela cd

Cantidad de sustancia

Mol mol

Page 37: QUIMICA GENERAL

Unidades básicas en diferentes sistemas de

unidadesDimensión SI MKS CGS EEUU

Longitud m m cm pie

Tiempo s s s s

Masa kg UTM g lbm

Temperatura K ºC ºC ºF

Calor J kcal cal BTU

Page 38: QUIMICA GENERAL

Unidades derivadas

Cantidad física Nombre símbolo

Área Metro cuadrado m2

Volumen Metro cúbico m3

Densidad Kg por metro cúbico

kg/m3

Fuerza Newton N (kg.m/s2)

Presión Pascal Pa (N.m-2)

Energía Julio J (kg m2 s-2)

Carga eléctrica Coulombio C (A.s)

Diferencia de potencial

Voltio V (J.C-1)

Resistencia Ohmio (V.A-1)

Page 39: QUIMICA GENERAL

Los sistemas métrico y SI son sistemas decimales, en los que se utilizan prefijos para indicar fracciones y múltiplos de diez. Con todas las unidades de medida se usan los mismos prefijos.

Las unidades se multiplican y se dividen como números.

Los símbolos que representan a las unidades se escriben con minúscula, excepto cuando proceden de nombres propios. Se usa la letra mayúscula L para litro porque el 1 se confunde con l.

Los nombres de las unidades, así como de sus múltiplos y submúltiplos, se escriben con minúscula. El grado Celsius es una excepción.

Puntualizaciones

Page 40: QUIMICA GENERAL

Cuando un símbolo con dos letras procede de un nombre propio, la letra inicial es mayúscula. Por ejemplo Pa (en honor a Blaise Pascal).

Los símbolos nunca se escriben en plural, ni llevan punto final, salvo que estén al final de una frase.

Entre el número y el símbolo debe dejarse un espacio salvo en las medidas angulares.

Puntualizaciones

Page 41: QUIMICA GENERAL

Múltiplos y submúltiplos

Prefijo Símbolo

Significado

Ejemplo

Tera T 1012 1 terametro(TM) =1x1012

m

Giga G 109 1 gigametro(Gm)=1x109

m

Mega M 106 1 megametro(Mm)= 1x106 m

Kilo K 103 1kilómetro(Km) = 1x103

m

deci d 10-1 1decímetro(dm) = 1x10-1

m

centi c 10-2 1centímetro(cm)= 1x10-2

m

mili m 10-3 1milímetro(mm) = 1x10-3

m

micro µ 10-6 1micrómetro(mm) =1x10-

6 m

nano n 10-9 1nanómetro(nm) = 1x10-9

m

pico p 10-12 1picómetro(pm) = 1x10-12

m

Page 42: QUIMICA GENERAL

Uso de los números

Usamos notación científica o exponencial cuando tratamos con números muy grandes y muy pequeños: Por ej.:

Escribir tantos ceros se evita usando notación científica: se escribe el número en forma exponencial y se coloca un dígito no nulo a la izquierda de la coma decimal. Así tenemos 6,02 x 1023 átomos en 197 g de oro y la masa de un átomo de oro es de 3,27 x 10-22 g.

197 g de Au (1 mol) ~ [602000000000000000000000 átomos ]1 átomo de Au ~ 0,000000000000000000000327 gramos.

Generalmente los números obtenidos en mediciones en el laboratorio no son números discretos ó naturales sino números continuos. Ej de número discreto sería la cantidad de visitas de una página web: 5302 (no tendría sentido dar un número decimal 5302,10 visitas).

Page 43: QUIMICA GENERAL

Ej. de número continuo podría ser la medida de una hoja de papel con una regla, cuya división mínima es de un milímetro. Si una persona nos da una medida de 351 mm ello no significa que la longitud de la hoja sea exactamente ese valor sino que es un valor como mínimo mayor que es mayor que 351mm y menor que 352 mm.

Entre esos dos valores hay un número infinito de números (por ejemplo: 351,5; 351,001; 351,103,etc.) entre los cuáles estaría el valor real.

También podríamos dar el valor de la medida cómo: (351 1) mm.

Uso de los números

Page 44: QUIMICA GENERAL

Es decir, toda medición implica una estimación lo que arrastra consigo un error inherente al sistema de medición empleado y a la propia persona que hace la medida. Así las cifras significativas se definen como los dígitos que la persona que hace la medición considera correctos.

La exactitud se refiere al grado en que un valor medido concuerda con el valor correcto.

Mientras que la precisión se refiere al grado en que las medidas individuales concuerdan entre sí.

Veamos la diferencia entre ambos conceptos en la siguiente figura:

Precisión y exactitud

Page 45: QUIMICA GENERAL

Precisión y exactitud

L

A B C

En la figura A tanto la exactitud como la precisión son pobres.

En la figura B se ha mejorado la precisión pero la exactitud sigue siendo pobre.

En la figura C tanto la exactitud como la precisión son aceptables.

La figura B representa la obtención de medidas precisas pero inexactas.

Page 46: QUIMICA GENERAL

Precisión y exactitud

El que las medidas sean precisas (si realizamos una medida n veces la variación del valor obtenido es mínima) no garantiza que sean exactas. Por ej. si utilizamos una balanza mal calibrada, los datos pueden ser precisos pero inexactos. Se dice entonces que estamos cometiendo un error sistemático. Sin embargo si obtenemos datos con una exactitud alta, entonces también tendremos una buena precisión.

Page 47: QUIMICA GENERAL

EjemploTenemos una pieza de hierro con un peso real de 1500 gramos y pedimos a cuatro estudiantes que midan tres veces el peso de la pieza con una balanza de tipo romano y que nos den el valor promedio

Estudiante 1

Estudiante 2

Estudiante 3

Estudiante 4

1ª pesada 1497g 1494g 1502g 1501g

2ª pesada 1496g 1498g 1498g 1499g

3ª pesada 1498g 1506g 1501g 1500g

Promedio 1497g 1499g 1500g 1500g

Los datos del estudiante 2 son los que tienen menor precisión, ya que los valores de las tres pesadas difieren del valor promedio más que los de los otros estudiantes.

Page 48: QUIMICA GENERAL

EjemploEstudiante 1

Estudiante 2

Estudiante 3

Estudiante 4

1ª pesada 1497g 1494g 1502g 1501g

2ª pesada 1496g 1498g 1498g 1499g

3ª pesada 1498g 1506g 1501g 1500g

Promedio 1497g 1499g 1500g 1500g

Los datos más precisos son los de los estudiantes 1 y 4. Pero los del estudiante 1 son menos exactos al estar más lejos del valor real. Los datos del estudiante 4 son más exactos y más precisos que los del estudiante 3. Obsérvese que para valorar la precisión comparamos las medidas con el valor promedio de las mismas, mientras que para valorar la exactitud la comparación se hace con el valor real.

Page 49: QUIMICA GENERAL

Cualquier dígito distinto de cero es significativo. 351 mm tiene tres cifras significativas 1124 g tiene cuatro cifras significativas

Los ceros utilizados para posicionar la coma, no son cifras significativas. 0,00593, tres cifras significativas (en notación científica 5,93 x 103 )

Los ceros situados entre dígitos distintos de cero son significativos 301 mm tiene tres cifras significativas 1004 g tiene cuatro cifras significativas

Uso de cifras significativas. Reglas

Page 50: QUIMICA GENERAL

Si un número es mayor que la unidad, todos los ceros escritos a la derecha de la coma decimal cuentan como cifras significativas 3,501m tiene cuatro cifras significativas 9,050g tiene cuatro cifras significativas 

Para números sin coma decimal, los ceros ubicados después del último dígito distinto de cero pueden ser o no cifras significativas. Así 23000 cm puede tener 2 cifras significativas (2,3.104), 3 (2,30.104) ó 4 cifras significativas (2,300 104). Sería más correcto indicar el error, por ejemplo 23000 1 (5 cifras significativas)

Uso de cifras significativas. Reglas

Page 51: QUIMICA GENERAL

En la multiplicación y división el número resultante no tiene más cifras significativas que el número menor de cifras significativas usadas en la operación.

Ejemplo:

¿Cuál es el área de un rectángulo de 1,23 cm de ancho por 12,34 cm de largo?. La calculadora nos da 15,1783 cm2 pero como el ancho sólo tiene tres cifras significativas escribiremos 15,2 cm2.

Cálculos con cifras significativas

Page 52: QUIMICA GENERAL

En la adición y sustracción, el último dígito retenido en la suma o diferencia está determinado por la posición del último dígito dudoso.

Ejemplo: 37,24 cm + 20,2cm = 57,4 cm

Cálculos con cifras significativas

Redondeo. Reglas Si el número que se elimina es menor que 5, la cifra

precedente no cambia. Por ej., 7,34 se redondea a 7,3.

Cuando es mayor que 5, la cifra precedente se incrementa en 1, por ejemplo 7,37 se redondea a 7,4.

Cuando el número que se elimina es 5, la cifra precedente se sustituye por la cifra par más próxima, por ejemplo, 7,45 se redondea a 7,4 y 7,35 a 7,4.)

Page 53: QUIMICA GENERAL

Es importante que las mediciones sean cuidadosas y un uso apropiado de cifras significativas para dar números exactos. Sin embargo, para que las respuestas tengan sentido deberán expresarse en las unidades correctas. Uno de los procedimientos que se utilizarán para resolver problemas que incluyan conversión de unidades se denomina método del factor unitario o de análisis dimensional. Esta técnica se basa en la relación que existe entre diferentes unidades que expresan la misma cantidad física.

Análisis dimensional

1 km = 1000 m ó 1 km = 1.103 mDe acuerdo con esto, podemos inferir que su relación es igual a 1: 1km 1000m

1 11000m 1km

Page 54: QUIMICA GENERAL

Esta relación que podemos leer como " 1 km por cada 1000 m", es lo que denominaremos "factor unitario" (significa igual a uno), ya que el numerador y el denominador están indicando la misma cantidad. La utilidad de los factores unitarios es que permiten efectuar conversiones entre diferentes unidades que miden la misma cantidad. El factor de conversión es una fracción cuyo numerador y denominador son la misma cantidad expresada en diferentes unidades.

Análisis dimensional

El factor unitario tiene números exactos, de modo que no se ve afectado el número de cifras significativas en el resultado final.

Page 55: QUIMICA GENERAL

La distancia entre dos átomos de hidrógeno en una molécula de hidrógeno es de 74 picómetros. Conviértase esta distancia a metros. El problema es: ? m = 74 pm.

1pm= 1.10-12 m El factor unitario es:

12

1211

1.10 m 1

1pm

1.1074pm 7,4.10 m

1pm

Ejemplo

Page 56: QUIMICA GENERAL

La densidad de la plata es 10,5 g/cm3. Conviértase la densidad a unidades de kg/m3. El problema puede enunciarse como ?Kg/m3 = 10,5 g/cm3. Por tanto se necesitan dos factores unitarios: uno para convertir g a Kg y el otro para convertir cm3 a m3. Se sabe que 1kg = 1000g y que 1cm= 1 x 10-2 m, por tanto se pueden generar los siguientes factores unitarios:

Otro ejemplo

Page 57: QUIMICA GENERAL

Bibliografía• Atkins, P. y Jones, L. “Principios de Química. Los caminos del

descubrimiento”. Editorial Panamericana. 2006.• Atkins, P. y Jones, L. “Química. Moléculas. Materia. Cambio”.

Ediciones Omega S.A. Barcelona. España. 1998• Brown, T., LeMay, H., Bursten, B. “Química la Ciencia Central”.

Prentice Hall Hispanoamericana S.A. México. 1998.• Burns. “Fundamentos de Química”. Prentice Hall. 1996.• Chang, R. “Química”. McGraw-Hill Interamericana de México,

S.A. de C. V. México. 2006.• Whitten, K., Davis, R., Peck, M. Química General.

McGraw-Hill/Interamericana de España S.A.U. 1998http://www.uv.es/~borrasj/EQEM_web_page/EQEM_index.htmlhttp://www.educared.net/aprende/anavegar3/premiados/ganadores/d/456/http://www.puc.cl/sw_educ/qda1106/frame_contenidos.htm

Page 58: QUIMICA GENERAL

FIN