practica 1 termo t

9
INSTITUTO TECNOLOGICO DE OAXACA DEPARTAMENTO DE QUIMICA Y BIOQUIMICA TERMODINAMICA MOTORES NOMBRE: Raymundo Vázquez Jesús

Upload: giovanni-herrera-carapia

Post on 14-Dec-2015

233 views

Category:

Documents


2 download

DESCRIPTION

tutorial de termo 1

TRANSCRIPT

Page 1: Practica 1 Termo t

INSTITUTO TECNOLOGICO DE OAXACA

DEPARTAMENTO DE QUIMICA Y BIOQUIMICA

TERMODINAMICA

MOTORES

NOMBRE: Raymundo Vázquez Jesús

OBJETIVO:

Page 2: Practica 1 Termo t

Determinar experimentalmente las partes y funciones de diferentes tipos de motores.

MARCO TEORICO:

MOTOR DIESEL

El motor diésel es un motor térmico que tiene combustión interna alternativa que se produce por el autoencendido del combustible debido a altas temperaturas derivadas de la compresión del aire en el interior del cilindro, según el principio del ciclo del diésel.

El motor diésel fue inventado en el año 1893, por el ingeniero alemán Rudolf Diesel, empleado de la firma MAN, que por aquellos años ya estaba en la producción de motores y vehículos de carga rango pesado.

Rudolf Diesel estudiaba los motores de alto rendimiento térmico, con el uso de combustibles alternativos en los motores de combustión interna. Su invento le costó muy caro, por culpa de un accidente que le provocó lesiones a él y a sus colaboradores y que casi le costó la vida porque uno de sus motores experimentales explotó.

Durante años Diesel trabajó para poder utilizar otros combustibles diferentes a la gasolina, basados en principios de los motores de compresión sin ignición por chispa, cuyos orígenes se remontan a la máquina de vapor y que poseen una mayor prestación. Así fue como a finales del siglo XIX, en el año 1897, MAN produjo el primer motor conforme los estudios de Rudolf Diesel, encontrando para su funcionamiento, un combustible poco volátil, que por aquellos años era muy utilizado, el aceite liviano, más conocido como fuel oil que se utilizaba para alumbrar las lámparas de la calle.

PRINCIPIO DE FUNCIONAMIENTO

Page 3: Practica 1 Termo t

Un motor diésel funciona mediante la ignición (encendido) del combustible al ser inyectado muy pulverizado y con alta presión en una cámara (o precámara, en el caso de inyección indirecta) de combustión que contiene aire a una temperatura superior a la temperatura de auto combustión, sin necesidad de chispa como en los motores de gasolina. Ésta es la llamada auto inflamación.

La temperatura que inicia la combustión procede de la elevación de la presión que se produce en el segundo tiempo del motor, la compresión. El combustible se inyecta en la parte superior de la cámara de combustión a gran presión desde unos orificios muy pequeños que presenta el inyector de forma que se atomiza y se mezcla con el aire a alta temperatura y presión (entre 700 y 900 °C). Como resultado, la mezcla se inflama muy rápidamente. Esta combustión ocasiona que el gas contenido en la cámara se expanda, impulsando el pistón hacia abajo.

Esta expansión, a diferencia del motor de gasolina es adiabática generando un movimiento rectilíneo a través de la carrera del pistón. La biela transmite este movimiento al cigüeñal, al que hace girar, transformando el movimiento rectilíneo alternativo del pistón en un movimiento de rotación.

Para que se produzca la auto inflamación es necesario alcanzar la temperatura de inflamación espontánea del gasóleo. En frío es necesario pre-calentar el gasóleo o emplear combustibles más pesados que los empleados en el motor de gasolina, empleándose la fracción de destilación del petróleo fluctuando entre los 220 °C y 350 °C, que recibe la denominación de gasóleo o gasoil en inglés.

VENTAJAS Y DESVENTAJAS

Comparados con los motores a gasolina, la principal ventaja de los motores diésel es su bajo costo de operación, debido al precio del combustible que necesita para funcionar (DIESEL 2). Existe una creciente demanda del mercado por motores de este tipo, especialmente en el área de turismo (desde la década de 1990, en muchos países europeos ya supera la mitad). Actualmente en los vehículos pequeños se está utilizando el sistema common-rail. Este sistema brinda una gran ventaja, ya que se consigue un menor consumo de combustible, mejorando las prestaciones del mismo; menor ruido (característico de estos motores) y una menor emisión de gases contaminantes.

Las desventajas iniciales de estos motores (principalmente valor de adquisición, costos de mantenimiento, ruido y menos prestaciones) se están reduciendo debido a mejoras tecnológicas que se han hecho con el tiempo, en su diseño original sobre todo en inyección electrónica de combustible y mejoras en sistema de

Page 4: Practica 1 Termo t

alimentación de aire forzado con accesorios como el turbocompresor. El uso de una precámara para los motores de automóviles, se consiguen prestaciones semejantes a las de los motores de gasolina, pero se presenta el inconveniente de incremento del consumo de combustible, con lo que la principal ventaja de estos motores prácticamente desaparece. Durante los últimos años el precio del combustible ha superado a la gasolina común por al aumento de la demanda. Este hecho ha generado quejas de los consumidores de gasóleo, como es el caso de transportistas, agricultores o pescadores.

APLICACIONES

1. Maquinaria agrícola de cuatro tiempos (tractores, cosechadoras)2. Propulsión ferroviaria 2T3. Propulsión marina de cuatro tiempos hasta una cierta potencia, a partir de

ahí dos tiempos4. Vehículos de propulsión a oruga5. Automóviles y camiones (cuatro tiempos)6. Grupos generadores de energía eléctrica (centrales eléctricas y de

emergencia)7. Accionamiento industrial (bombas, compresores, etc., especialmente de

emergencia)8. Propulsión aérea

MOTOR OTTO

Un motor de explosión es un tipo de motor de combustión interna que utiliza la explosión de un combustible, provocada mediante una chispa, para expandir un gas empujando así un pistón. Hay de dos y de cuatro tiempos. El ciclo termodinámico utilizado es conocido como Ciclo Otto.

Este motor, también llamado motor de gasolina o motor Otto, es junto al motor diésel, el más utilizado hoy en día para mover vehículos autónomos de transporte de mercancías y personas.

1. Motor Otto de ciclo convencional2. Motor de ciclo Miller3. Motor de mezcla pobre

Page 5: Practica 1 Termo t

La gasolina, la cual se obtiene mediante la destilación fraccionada del petróleo, fue descubierta en 1857. Más adelante, en 1860, Jean Joseph Etienne Lenoir creó el primer motor de combustión interna quemando gas dentro de un cilindro. Pero habría que esperar hasta 1876 para que Nikolaus August Otto construyera el primer motor de gasolina de la historia, de cuatro tiempos, que fue la base para todos los motores posteriores de combustión interna. En 1886 Karl Benz comienza a utilizar motores de gasolina en sus primeros prototipos de automóviles.

Actualmente, algunos motores de explosión pueden funcionar también con etanol, gas natural comprimido, gas licuado del petróleo y/o hidrógeno-electricidad, además de gasolina.

El motor convencional del tipo Otto es de cuatro tiempos (4T), aunque en fuera borda y vehículos de dos ruedas hasta una cierta cilindrada se utilizó mucho el motor de dos tiempos (2T). El rendimiento térmico de los motores Otto modernos se ve limitado por varios factores, entre otros la pérdida de energía por la fricción, la refrigeración y falta de constancia en las condiciones de funcionamiento.

La termodinámica nos dice que el rendimiento de un motor alternativo depende en primera aproximación del grado de compresión. Esta relación suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano para evitar el fenómeno de la detonación, que puede producir graves daños en el motor. La eficiencia o rendimiento medio de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.

Casi todos los motores de este tipo se fabrican para el transporte y deben trabajar suministrando diferentes potencias en cada momento. Debido a esto el rendimiento de los mismos cae bruscamente al trabajar con carga parcial, ya que, cuando esto sucede, la cámara de compresión mantiene su volumen, dando una compresión final baja y transformando gran parte de la energía en calor.

FUNCIONAMIENTO

1. Tiempo de admisión - El aire y el combustible mezclados entran por la válvula de admisión.

2. Tiempo de compresión - La mezcla aire/combustible es comprimida y encendida mediante la bujía.

Page 6: Practica 1 Termo t

3. Tiempo de combustión - El combustible se inflama y el pistón es empujado hacia abajo.

4. Tiempo de escape - Los gases de escape se conducen hacia fuera a través de la válvula de escape.

El combustible se inyecta pulverizado y mezclado con el gas (habitualmente aire u oxígeno) dentro de un cilindro. La combustión total de 1 gramo de gasolina se realizaría teóricamente con 14,8 gramos de aire pero como es imposible realizar una mezcla perfectamente homogénea de ambos elementos se suele introducir un 10% más de aire del necesario (relación en peso 1/16), a veces se suele inyectar más o menos combustible, esto lo determina la sonda lambda (o sonda de oxígeno) la cual envía una señal a la ECU. Una vez dentro del cilindro la mezcla es comprimida. Al llegar al punto de máxima compresión (punto muerto superior o PMS) se hace saltar una chispa, producida por una bujía, que genera la explosión del combustible. Los gases encerrados en el cilindro se expanden empujando un pistón que se desliza dentro del cilindro (expansión teóricamente adiabática de los gases). La energía liberada en esta explosión es transformada en movimiento lineal del pistón, el cual, a través de una biela y el cigüeñal, es convertido en movimiento giratorio. La inercia de este movimiento giratorio hace que el motor no se detenga y que el pistón vuelva a empujar el gas, expulsándolo por la válvula correspondiente, ahora abierta. Por último el pistón retrocede de nuevo permitiendo la entrada de una nueva mezcla de combustible.