movimiento

28
Instituto Universitario Tecnológico “Antonio José de Sucre” Extensión Barquisimeto Física I Bachilleres: Adriana, Ordóñez Sección: S2

Upload: adrianaordez

Post on 13-Aug-2015

17 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Movimiento

Instituto Universitario Tecnológico

“Antonio José de Sucre”

Extensión Barquisimeto

Física I

Bachilleres:

Adriana, Ordóñez

Sección: S2

Barquisimeto; Julio 2015

Page 2: Movimiento

Trabajo y Energía

Trabajo

El trabajo realizado por una fuerza es el producto entre la fuerza y el desplazamiento realizado en la dirección de ésta. Como fuerza y desplazamiento son  vectores y el trabajo un escalar (no tiene dirección ni sentido) definimos el diferencial de trabajo como el producto escalar dW=F.dr. El trabajo total realizado por una fuerza que puede variar punto a punto a lo largo de la trayectoria que recorre será entonces la integral de línea de la fuerza F a lo largo de la trayectoria que une la posición inicial y final de la partícula sobre la que actúa la fuerza.

Energía cinética

Si realizamos un trabajo W sobre una partícula aislada, ésta varia su velocidad a lo largo de la trayectoria de modo que podemos relacionar el  trabajo W con la variación de la energía cinética de la partícula mediante la expresión:

Fuerzas conservativas:

Una fuerza es conservativa si el trabajo total que realiza a lo largo de una trayectoria cerrada, es decir regresando  a la misma posición de la que parte, es cero. Esta afirmación es equivalente al hecho de que si el trabajo necesario para llevar a una partícula de una posición a otra del espacio es independiente de la trayectoria que une los dos puntos la fuerza que realiza este trabajo es conservativa.

Trabajo y energía en sistemas de partículas. Energía potencial

La energía potencial de un sistema es la energía asociada a la configuración espacial del mismo. Por definición la energía potencial es el trabajo de las fuerzas conservativas cambiado de signo es decir:

W = -DU

El trabajo realizado por una fuerza conservativa está relacionado entonces con el cambio de energía potencial. Carece de sentido hablar de energía potencial como una variable absoluta.

Energía potencial y equilibrio en una dimensión

A partir de la definición de potencial es fácil demostrar que toda fuerza conservativa puede hallarse a partir de un potencia mediante el negativo del operador gradiente. Así, una partícula estará en equilibrio estable cuando se encuentre en una

Page 3: Movimiento

posición del espacio donde el potencial sea un mínimo; estará en equilibrio inestable si el potencial es un máximo e indiferente si el potencial es constante.

Conservación de la energía

Si sobre un cuerpo sólo se realizan fuerzas conservativas la suma de las energías potencial más cinética siempre permanece constante. Esta es la ley de conservación de la energía. Si además sobre este cuerpo actúan fuerzas disipativas, el trabajo total realizado sobre la partícula será igual al cambio de la energía del sistema. Este es el teorema generalizado de trabajo-energía.

Potencia

La potencia es la energía transferida por unidad de tiempo. Si una fuerza F actúa sobre una partícula que se mueve con una velocidad v la potencia puede calcularse como P=F.v

Movimiento Armónico Simple

El estudio del oscilador armónico constituye en Física un capítulo muy importante, ya que son muchos los sistemas físicos oscilantes que se dan en la naturaleza y también muchos han sido producidos por el hombre.

Una partícula describe un Movimiento Armónico Simple (M.A.S.) cuando se mueve a lo largo del eje X, estando su posición x dada en función del tiempo t por la ecuación.

x = A sen (ωt+φ ¿

Donde:

A  es la amplitud. ω   la frecuencia angular o pulsación. ωt+φ ¿  la fase. φ  o φo la fase inicial.

Características de un M.A.S. son:

Como los valores máximo y mínimo de la función seno son +1 y -1, el movimiento se realiza en una región del eje X comprendida entre +A y -A.

La función seno es periódica y se repite cada 2π, por tanto, el movimiento se repite cuando el argumento de la función seno se incrementa en 2π, es decir, cuando transcurre un tiempo T tal que ω(t+T)+φ=ωt+φ+2π.

T = 2p/w

Page 4: Movimiento

Cinemática de un M.A.S.

En un movimiento rectilíneo, dada la posición de un móvil, obtenemos la velocidad derivando respecto del tiempo y luego, la aceleración derivando la expresión de la velocidad.

La posición del móvil que describe un M.A.S. en función del tiempo viene dada por la ecuación

x = A sen (ωt+φ)

Derivando con respecto al tiempo, obtenemos la velocidad del móvil

v = A ω cos(ωt+φ)

Derivando de nuevo respecto del tiempo, obtenemos la aceleración del móvil

a = - A ω2 sen (ωt+φ) = - ω2x

Condiciones iniciales

Conociendo la pulsación w, la posición inicial xo y la velocidad inicial vo (en el instante t=0).

xo=A·senφvo=Aω·cosφ

Se puede determinar la amplitud A y la fase inicial φ.

Dinámica de un M.A.S.

Aplicando la segunda ley de Newton obtenemos la expresión de la fuerza necesaria para que un móvil de masa m describa un M.A.S. Esta fuerza es proporcional al desplazamiento x y de sentido contrario a éste.

F = ma = - mω2x

En la ecuación anterior vemos que la fuerza que origina un movimiento armónico simple es una fuerza del tipo:

F = -Kx

Es decir una fuerza como la que hace un muelle, directamente proporcional a la elongación pero de signo contrario. K es la constante recuperadora o constante de elasticidad y se puede observar, en las dos ecuaciones anteriores, que está relacionada con la pulsación:

K = mω2

Page 5: Movimiento

Teniendo en cuenta que  ω = 2π /T  podemos deducir el periodo del movimiento armónico simple:

Como se origina un M.A.S.

Siempre que sobre una partícula, desplazada una longitud  x de su posición de equilibrio, actúe una fuerza que es proporcional al desplazamiento x, y de sentido contrario a éste, tal como se muestra en el ejemplo de la figura

Energía de un M.A.S.

En el m.a.s. la energía se transforma continuamente de potencial en cinética y viceversa. En los extremos solo hay energía potencial puesto que la velocidad es cero y en el punto de equilibrio solo hay energía cinética. En cualquier otro punto, la energía correspondiente a la partícula que realiza el m.a.s. es la suma de su energía potencial más su energía cinética.

Toda partícula sometida a un movimiento armónico simple posee una energía mecánica que podemos descomponer en: Energía Cinética (debida a que la partícula está en movimiento) y Energía Potencial (debida a que el movimiento armónico es producido por una fuerza conservativa).

Si tenemos en cuenta el valor de la energía cinética 

Ec = 1/2 mv2

Y el valor de la velocidad del m.a.s. 

v = dx / dt  = A ω cos (ωt+φ)

Sustituyendo obtenemos

Ec  = 1/2 mv2    =   1/2 m A2 ω2cos2 (ωt+φ)

Page 6: Movimiento

Ec  = 1/2 k A2 cos2(ωt+φ)

A partir de la ecuación fundamental de la trigonometría:

Sen2 + cos2 = 1

Ec  = 1/2 k A2 [ 1 – sen2(ωt+φ)]

Ec  = 1/2 k[ A2 - A2 sen2 (ωt+φ)]

De donde la energía cinética de una partícula sometida a un m.a.s. queda:

Ec  = 1/2 k [A2 – x2]

Sistema Masa - Resorte

Otro ejemplo de Movimiento Armónico Simple es el sistema masa-resorte que consiste en una masa “m” unida a un resorte, que a su vez se halla fijo a una pared, como se muestra en la figura. Se supone movimiento sin rozamiento sobre la superficie horizontal.

El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o acortándose en una magnitud “x” llamada “deformación”. Cada resorte se

Page 7: Movimiento

caracteriza mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay que aplicarle. La fuerza que ejercerá el resorte es igual y opuesta a la fuerza externa aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora elástica.

Dicha fuerza recuperadora elástica es igual a:

En el primer dibujo tenemos el cuerpo de masa “m” en la posición de equilibrio, con el resorte teniendo su longitud normal.

Si mediante una fuerza externa lo apartamos de la misma (segundo dibujo), hasta una deformación “x = + A” y luego lo soltamos, el cuerpo empezará a moverse con M.A.S. oscilando en torno a la posición de equilibrio. En este dibujo la fuerza es máxima pero negativa, lo que indica que va hacia la izquierda tratando de hacer regresar al cuerpo a la posición de equilibrio.

Llegará entonces hasta una deformación “x = -A” (tercer dibujo). En este caso la deformación negativa indica que el resorte está comprimido. La fuerza será máxima pero positiva, tratando de volver al cuerpo a su posición de equilibrio.

A través de la Segunda Ley de Newton relacionamos la fuerza actuante (recuperadora) con la aceleración a(t).

Page 8: Movimiento

Péndulo Simple y Oscilaciones

Péndulo: Llamamos péndulo a todo cuerpo que puede oscilar con respecto de un eje fijo.

Péndulo ideal, simple o matemático: Se denomina así a todo cuerpo de masa m (de pequeñas dimensiones) suspendido por medio de un hilo inextensible y sin peso. Estas dos últimas condiciones no son reales sino ideales; pero todo el estudio que realizaremos referente al péndulo, se facilita admitiendo ese supuesto.

Péndulo físico: Si en el extremo de un hilo suspendido sujetamos un cuerpo cualquiera, habremos construido

un péndulo físico. Por esto, todos los péndulos que se nos presentan (columpios, péndulo de reloj, una lámpara suspendida, la plomada) son péndulos físicos.

Oscilación – Amplitud – Período y Frecuencia:

A continuación estudiaremos una serie de procesos que ocurren durante la oscilación de los péndulos y que permiten enunciar las leyes del péndulo.

Daremos previamente los siguientes conceptos:

Page 9: Movimiento

Longitud del péndulo (L) es la distancia entre el punto de suspensión y el centro de gravedad del péndulo.

Oscilación simple es la trayectoria descrita entre dos posiciones extremas (arco AB). Oscilación completa o doble oscilación es la trayectoria realizada desde una posición extrema hasta volver a ella, pasando por la otra extrema (arco ABA). Angulo de amplitud o amplitud (alfa) es el ángulo formado por la posición de reposo (equilibrio) y una de las posiciones extremas.

Período o tiempo de oscilación doble (T) es el tiempo que emplea el péndulo en efectuar una oscilación doble. Tiempo de oscilación simple (t) es el tiempo que emplea el péndulo en efectuar una oscilación simple. Elongación (e). Distancia entre la posición de reposo OR y cualquier otra posición. Máxima elongación: distancia entre la posición de reposo y la posición extrema o de máxima amplitud. Frecuencia (f). Es el número de oscilaciones en cada unidad de tiempo.

f=numero de oscilaciones/tiempo

Relación entre frecuencia y periodo

T = período; f = frecuencia

Supongamos un péndulo que en 1 seg. Cumple 40 oscilaciones.

En consecuencia: 40 oscilaciones  se cumplen en 1 seg., por lo que 1 osc. Se cumple en T=1/40 seg (periodo).

Obsérvese que: el período es la inversa de la frecuencia.

En símbolos:                                                  T=1/f y f=1/T

Leyes del péndulo:

Ley de las masas

Suspendamos de un soporte (por ejemplo: del dintel de una puerta) tres hilos de coser de igual longitud y en sus extremos atemos sendos objetos de masas y sustancias diferentes. Por ejemplo: una piedra, un trozo de hierro y un corcho. Saquémolos del reposo simultáneamente. Verificaremos que todos tardan el mismo tiempo en cumplir

Page 10: Movimiento

las oscilaciones, es decir, que todos “van y vienen” simultáneamente. Esto nos permite enunciar la ley de las masas:

Ley de Masas: Las tres más de la figura son distintas entre sí, pero el periodo (T) deoscilación es el mismo. (T1=T2=T3)

Los tiempos de oscilación de varios péndulos de igual longitud son independientes de sus masas y de su naturaleza, o también El tiempo de oscilación de un péndulo es independiente de su masa y de su naturaleza.

Ley del Isócrono: Dispongamos dos de los péndulos empleados en el experimento anterior. Separémoslo de sus posiciones de equilibrio, de tal modo que los ángulos de amplitud sean distintos (pero no mayores de 6 o 7 grados).

Dejémoslo libres: comienzan a oscilar, y notaremos que, también en este caso, los péndulos “van y vienen” al mismo tiempo. De esto surge la llamada Ley del isocronismo (iguales tiempos):

Para pequeños ángulos de amplitud, los tiempos de oscilación de dos péndulos de igual longitud son independientes de las amplitudes, o también: El tiempo de oscilación de un péndulo es independiente de la amplitud (o sea, las oscilaciones de pequeña amplitud son isócronas).

La comprobación de esta ley exige que los péndulos tengan la misma longitud para determinar que en efecto los péndulos son isócronos*, bastará verificar que pasan simultáneamente por la posición de equilibrio. Se llegara notar que las amplitudes de algunos de ellos disminuyen más que las de otros, pero observaremos que aquella situación —el isocronismo— subsiste.

Si disponemos de un buen cronometro, podemos aun mejorar los resultados de esta experimentación. Procedemos a tomar los tiempos empleados por cada uno, para 10 o 100 oscilaciones. Dividiendo esos tiempos por el número de oscilaciones obtendremos el de una sola (en casos de mucha precisión se llegan a establecer tiempos para 1.000, lo que reduce el error por cada oscilación De este modo puede verificarse que en realidad se cumple la ley. (*) Isócronos tiempos iguales.

Page 11: Movimiento

Ley de las longitudes:

Suspendamos ahora tres péndulos cuyas longitudes sean:

Péndulo A = (10cm) 1 dm.

Péndulo B = (40 cm) 4 dm.

Péndulo C = (90 cm) = 9 dm.

Procedamos a sacarlos del reposo en el siguiente orden:

1) El de 1 dm. y el de 4dm.

2) El de 1 dm. y el de 9dm.

Observaremos entonces que:

a) El de menor longitud va más ligero que el otro, o sea: “a menor longitud menor tiempo de oscilación y a mayor longitud mayor tiempo de oscilación”.b) Mientras el de 4 dm. Cumple una oscilación, el de 1 dm. Cumple dos oscilaciones.c) Mientras el de 9 dm. Cumple una oscilación, el de 1 dm. Cumple tres  oscilaciones.

Esta circunstancia ha permitido establecer la siguiente ley de las longitudes:

Los tiempos de oscilación (T) de dos péndulos de distinta longitud (en el mismo lugar de la Tierra), son directamente proporcionales a las raíces cuadradas de sus longitudes.

Page 12: Movimiento

En símbolos

T1 y T2: tiempos de oscilación; l1 y l2 : longitudes.

Para nuestro caso es:

T1= 1 oscilación y l1= 1dm

T2 = 2 oscilaciones y l2 =4 dm.

Luego:

Ósea: 1/2=1/2

Ahora para:

T1=1 oscilación y l1=1

T3=3 oscilaciones y l3=9 luego:

Ósea: 1/3=1/3

Ley de las aceleraciones de las gravedades: Al estudiar el fenómeno de la oscilación dejamos aclarado que la acción gravitatoria tiende a hacer parar el péndulo, pues esa es la posición más cercana a la Tierra. Significa esto, en principio, que la aceleración de la gravedad ejerce una acción primordial que evidentemente debe modificar el tiempo de oscilación del péndulo.

Si tenemos presente que la aceleración de la gravedad varía con la latitud del lugar, resultará que los tiempos de oscilación han de sufrir variaciones según el lugar de la Tierra.

En efecto, al experimentar con un mismo péndulo en distintos lugares de la Tierra (gravedad distinta) se pudo comprobar que la acción de la aceleración de la gravedad modifica el tiempo de oscilación del péndulo.

Por ejemplo: si en Buenos Aires el tiempo de oscilación es T1, y la gravedad g1, en Río de Janeiro el tiempo de oscilación es T2 y la gravedad g2, se verifica la siguiente proporcionalidad:

Page 13: Movimiento

Repitiendo los experimentos para lugares de distinta latitud (por tanto, distinta gravedad) se puede verificar proporcionalidad semejante. De lo cual surge el siguiente enunciado de la Ley de las aceleraciones de la gravedad:

Los tiempos de oscilación de un mismo péndulo en distintos lugares  de la Tierra son inversamente proporcionales a las raíces cuadradas de las aceleraciones de la gravedad.

Fórmula del tiempo de oscilación del péndulo:

Para poder obtener el tiempo de oscilación de un péndulo se aplica la siguiente expresión:

t: tiempo de oscilación; 

l: longitud de péndulo;

g: aceleración de la gravedad.

Que equivale al período o tiempo de oscilación completa.

Si fuera el correspondiente para una oscilación simple, aplicamos:

Esta fórmula condensa en sí las cuatro leyes del péndulo. En efecto, observamos:

1) En esa expresión no figura la masa m del péndulo, por lo que “el tiempo de oscilación es independiente de la masa”.

2) Como tampoco figura el ángulo de amplitud, “el tiempo de oscilación es independiente de la amplitud”.

3) La 3ra. y 4ta. leyes están incluidas en el factor:

Page 14: Movimiento

Es decir: “los tiempos de oscilación son directamente proporcionales a las raíces cuadradas de las longitudes e inversamente proporcionales a la de las aceleraciones de las gravedades”.

Péndulo que bate el segundo:

De la expresión:

(tiempo de oscilación simple) resulta que el tiempo de oscilación depende de la longitud y de la aceleración de la gravedad.

Si en determinado lugar (g: conocida) deseamos construir un péndulo cuyo tiempo de oscilación sea un segundo, tendremos que modificar su longitud.

Ello se logra aplicando la expresión:

Luego:

y

De este modo para t=1 seg. Se logra un péndulo que “bate el segundo”. Por ello decimos:

Péndulo que bate el segundo es aquel que cumple una oscilación simple en un segundo.

Para el lugar cuya aceleración de la gravedad es normal (g=9,806) la longitud del péndulo que bate el segundo es 0,9936 m, mientras que para el que cumple una oscilación doble en un segundo será l= 24,84 cm.

Características del movimiento del péndulo – Fuerzas que actúan:

Supongamos el péndulo en la posición de equilibrio AM. El peso P es anulado por la reacción del hilo y no hay oscilación. Consideremos la posición OA,

Page 15: Movimiento

procedamos a descomponer la fuerza peso P, según las direcciones m y n. Obtendremos las fuerzas F1 y F’. La fuerza F’ queda anulada por la reacción del hilo.

En consecuencia, en el punto A actúa solamente la fuerza F1, tangente al arco AMB y que provoca el movimiento del péndulo hacia M.

Si en el punto A’ efectuamos el mismo proceso de descomposición de la fuerza (P) peso, observaremos que F2 es menor que F1 obtenida anteriormente.

Resulta entonces que, a medida que a medida que, el péndulo se acerca a su posición de equilibrio OM la fuerza que provoca el movimiento disminuye hasta hacerse cero en el punto M (peso y reacción se anulan).

A pesar de ello, el péndulo continúa oscilando. Ello se debe a la inercia que posee. Si durante este movimiento actúa una fuerza F1, F2, etc., el movimiento es acelerado (no uniformemente acelerado).

Cuando el péndulo pasa al punto M, el peso del cuerpo actúa como fuerza negativa, es decir, el movimiento es retardado. Así llegará a un punto B en que su velocidad se anula, y no sube más (caso análogo al del cuerpo lanzado hacia arriba al alcanzar su altura máxima). En ese momento el proceso se invierte, repitiéndose en sentido contrario, es decir, de B hacia M, continuando hasta A.

En síntesis:

1) En A, la fuerza F1 hace desplazar al péndulo hasta M (movimiento acelerado).

2) En M péndulo debiera quedar en reposo, pero por inercia continúa con movimiento retardado pues va en contra de la fuerza gravitatoria.

3) En B, la velocidad del péndulo se ha anulado (y = 0). En ese instante se invierte el movimiento y se desplaza hacia M. El péndulo continúa oscilando y cumpliendo el mismo proceso.

En consecuencia:

a) La fuerza que hace mover al péndulo no es constante.

Page 16: Movimiento

b) La dirección y sentido de esas fuerzas son tales, que tienden a que el péndulo adquiera la posición de equilibrio

c) Como la fuerza F1 no es constan te, la aceleración tangencial no es constante. Su dirección y sentido cambian instante por instante.

d) La velocidad tangencial se anula en los puntos extremos y no es constante. Es máxima al pasar por la posición de reposo.

Por lo tanto: El movimiento del péndulo es variado.

Resulta alternativamente acelerada y retardada una vez cumplida cada oscilación simple y como la aceleración no es constante no es uniformemente variado.

La Hidrostática

La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición.

Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez.

Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas.

Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes.

Principio de Pascal

En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662).

El principio de Pascal afirma que la presión aplicada sobre un  fluido no compresible contenido en un recipiente indeformable se transmite con igual intensidad en todas las direcciones y a todas partes del recipiente.

Este tipo de fenómeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio.

Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el volumen que ocupa al ser sometido a la acción de fuerzas.

Principio de Arquímedes

Page 17: Movimiento

El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente en un fluido experimenta un empuje vertical y hacia arriba con una fuerza igual al peso del volumen de fluido desalojado.

El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente.

Propiedades de los fluidos

Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento.

Existen propiedades primarias y propiedades secundarias del fluido.

Propiedades primarias o termodinámicas:

- Densidad- Presión- Temperatura- Energía interna- Entalpía- Entropía- Calores específicos

Propiedades secundarias

- Caracterizan el comportamiento específico de los fluidos.- Viscosidad- Conductividad térmica- Tensión superficial- Compresión

Densidad o masa específica

La densidad es la cantidad de masa por unidad de volumen. Se denomina con la letra ρ. En el sistema internacional se mide en kilogramos / metro cúbico.

Cuando se trata de una sustancia homogénea, la expresión para su cálculo es:

Dónde:

ρ: densidad de la sustancia, Kg/m3

m: masa de la sustancia, Kg

V: volumen de la sustancia, m3

Page 18: Movimiento

En consecuencia la unidad de densidad en el Sistema Internacional será kg/m3 pero es usual especificar densidades en g/cm3, existiendo la equivalencia

1g cm3 = 1.000 kg/ m3.

La densidad de una sustancia varía con la temperatura y la presión; al resolver cualquier problema debe considerarse la temperatura y la presión a la que se encuentra el fluido. 

Peso específico

El peso específico de un fluido se calcula como su peso por unidad de volumen (o su densidad por g).

En el sistema internacional se mide en Newton / metro cúbico.

Presión hidrostática

En general, podemos decir que la presión se define como fuerza sobre unidad de superficie, o bien que la presión es la magnitud que indica cómo se distribuye la fuerza sobre la superficie en la cual está aplicada.

Si una superficie se coloca en contacto con un fluido en equilibrio (en reposo) el fluido, gas o líquido, ejerce fuerzas normales sobre la superficie.

Entonces, presión hidrostática, en mecánica, es la fuerza por unidad de superficie que ejerce un líquido o un gas perpendicularmente a dicha superficie.

Si la fuerza total (F) está distribuida en forma uniforme sobre el total de un área horizontal (A), la presión (P) en cualquier punto de esa área será

P: presión ejercida sobre la superficie, N/m2

F: fuerza perpendicular a la superficie, N

A: área de la superficie donde se aplica la fuerza, m2

Page 19: Movimiento

Ahora bien, si tenemos dos recipientes de igual base conteniendo el mismo líquido, veremos que el nivel del líquido es el mismo en los dos recipientes y la presión ejercida sobre la base es la misma.

Eso significa que:

La presión es independiente del tamaño de la sección de la columna: depende sólo de su altura (nivel del líquido) y de la naturaleza del líquido (peso específico).

Esto se explica porque la base sostiene sólo al líquido que está por encima de ella, como se grafica con las líneas punteadas.

La pregunta que surge naturalmente es: ¿Qué sostiene al líquido restante?

Y la respuesta es: Las paredes del recipiente. El peso de ese líquido tiene una componente aplicada a las paredes inclinadas.

La presión se ejerce solo sobre la base y la altura o nivel al cual llega el líquido indica el equilibrio con la presión atmosférica.

Presión y profundidad

La presión en un fluido en equilibrio aumenta con la profundidad, de modo que las presiones serán uniformes sólo en superficies planas horizontales en el fluido.

Por ejemplo, si hacemos mediciones de presión en algún fluido a ciertas profundidades la fórmula adecuada es

Es decir, la presión ejercida por el fluido en un punto situado a una profundidad h de la superficie es igual al producto de la densidad del fluido, por la profundidad h y por la aceleración de la gravedad.

Si consideramos que la densidad del fluido permanece constante, la presión, del fluido dependería únicamente de la profundidad. Pero no olvidemos que hay fluidos

Page 20: Movimiento

como el aire o el agua del mar, cuyas densidades no son constantes y tendríamos que calcular la presión en su interior de otra manera.

Unidad de Presión

En el sistema internacional la unidad es el Pascal (Pa) y equivale a Newton sobre metro cuadrado.

La presión suele medirse en atmósferas (atm); la atmósfera se define como 101.325 Pa, y equivale a 760 mm de mercurio o 14,70 lbf/pulg2 (denominada psi).

La tabla siguiente define otras unidades y se dan algunas equivalencias.

UnidadSímbol

oEquivalencia

bar bar 1,0 × 105 Pa

atmósfera atm101.325 Pa  1,01325 bar

1013,25 mbar

mm de mercurio

mmHg 133.322 Pa

Torr torr 133.322 Pa

lbf/pulg2 psi 0,0680 atm

kgf/cm2 0,9678 atm

atm 760,0 mmHg

psi 6.894, 75 Pa

 

Page 21: Movimiento

Medidores de presión

La mayoría de los medidores de presión, o manómetros, miden la diferencia entre la presión de un fluido y la presión atmosférica local.

Para pequeñas diferencias de presión se emplea un manómetro que consiste en un tubo en forma de U con un extremo conectado al recipiente que contiene el fluido y el otro extremo abierto a la atmósfera.

El tubo contiene un líquido, como agua, aceite o mercurio, y la diferencia entre los niveles del líquido en ambas ramas indica la diferencia entre la presión del recipiente y la presión atmosférica local.

Para diferencias de presión mayores se utiliza el manómetro de Bourdon, llamado así en honor al inventor francés Eugène Bourdon. Este manómetro está formado por un tubo hueco de sección ovalada curvado en forma de gancho.

Los manómetros empleados para registrar fluctuaciones rápidas de presión suelen utilizar sensores piezoeléctricos o electrostáticos que proporcionan una respuesta instantánea.

Como la mayoría de los manómetros miden la diferencia entre la presión del fluido y la presión atmosférica local, hay que sumar ésta última al valor indicado por el manómetro para hallar la presión absoluta. Una lectura negativa del manómetro corresponde a un vacío parcial.