modelo de schrodinger

6
En 1926 Erwin Schrödinger utilizando una técnica matemática complicada, formuló la tan buscada ecuación. La ecuación de Schrödinger inició una nueva era para la Física y la Química, porque abrió un nuevo campo, la mecánica cuántica también llamada mecánica ondulatoria. El desarrollo de la teoría cuántica de 1913 fue el tiempo en que Bohr presentó su análisis del átomo de hidrógeno a 1926 se refiere ahora como la vieja teoría cuántica. Aunque esta ecuación diferencial era continua y proporcionaba soluciones para todos los puntos del espacio, las soluciones permitidas de la ecuación estaban restringidas por ciertas condiciones expresadas por ecuaciones matemáticas llamadas funciones propias. Así, la ecuación de onda de Schrödinger sólo tenía determinadas soluciones discretas; estas soluciones eran expresiones matemáticas en las que los números cuánticos aparecían como parámetros (los números cuánticos son números enteros introducidos en la física de partículas para indicar las magnitudes de determinadas cantidades características de las partículas o sistemas). La ecuación de Schrödinger se resolvió para el átomo de hidrógeno y dio resultados que encajaban sustancialmente con la teoría cuántica anterior. Además, tenía solución para el átomo de helio, que la teoría anterior no había logrado explicar de forma adecuada, y también en este caso concordaba con los datos experimentales. Las soluciones de la ecuación de Schrödinger también indicaban que no podía haber dos electrones que tuvieran sus cuatro números cuánticos iguales, esto es, que estuvieran en el mismo estado energético. Esta regla, que ya había sido establecida empíricamente por Wolfgang Pauli en 1925, se conoce como principio de exclusión. Ahora, para aplicar el carácter ondulatorio del electrón, se define una función de ondas, Ψ (psi), y utilizando la ecuación de ondas de Schrödinger, que matemáticamente es una ecuación diferencial de segundo grado, es decir, una ecuación en la cual intervienen derivadas segundas de la función Ψ: Al resolver la ecuación diferencial, se obtiene que la función: Ψ depende de una serie de parámetros, que se corresponden con los números cuánticos, tal y como se define en el modelo atómico de Bohr. La

Upload: danielordaz

Post on 24-Dec-2015

213 views

Category:

Documents


1 download

DESCRIPTION

Investigación sobre el modelo atómico de schrodinger

TRANSCRIPT

Page 1: Modelo de Schrodinger

En 1926 Erwin Schrödinger utilizando una técnica matemática complicada, formuló la tan buscada ecuación. La ecuación de Schrödinger inició una nueva era para la Física y la Química, porque abrió un nuevo campo, la mecánica cuántica también llamada mecánica ondulatoria.

El desarrollo de la teoría cuántica de 1913 fue el tiempo en que Bohr presentó su análisis del átomo de hidrógeno a 1926 se refiere ahora como la vieja teoría cuántica. Aunque esta ecuación diferencial era continua y proporcionaba soluciones para todos los puntos del espacio, las soluciones permitidas de la ecuación estaban restringidas por ciertas condiciones expresadas por ecuaciones matemáticas llamadas funciones propias. Así, la ecuación de onda de Schrödinger sólo tenía determinadas soluciones discretas; estas soluciones eran expresiones matemáticas en las que los números cuánticos aparecían como parámetros (los números cuánticos son números enteros introducidos en la física de partículas para indicar las magnitudes de determinadas cantidades características de las partículas o sistemas).

La ecuación de Schrödinger se resolvió para el átomo de hidrógeno y dio resultados que encajaban sustancialmente con la teoría cuántica anterior. Además, tenía solución para el átomo de helio, que la teoría anterior no había logrado explicar de forma adecuada, y también en este caso concordaba con los datos experimentales. Las soluciones de la ecuación de Schrödinger también indicaban que no podía haber dos electrones que tuvieran sus cuatro números cuánticos iguales, esto es, que estuvieran en el mismo estado energético. Esta regla, que ya había sido establecida empíricamente por Wolfgang Pauli en 1925, se conoce como principio de exclusión. Ahora, para aplicar el carácter ondulatorio del electrón, se define una función de ondas, Ψ (psi), y utilizando la ecuación de ondas de Schrödinger, que matemáticamente es una ecuación diferencial de segundo grado, es decir, una ecuación en la cual intervienen derivadas segundas de la función Ψ: Al resolver la ecuación diferencial, se obtiene que la función: Ψ depende de una serie de parámetros, que se corresponden con los números cuánticos, tal y como se define en el modelo atómico de Bohr. La ecuación sólo se plasmará cuando esos parámetros tomen determinados valores permitidos (los mismos valores que se indicaron para el modelo de Bohr).

Por otro lado, el cuadrado de la función de ondas Ψ 2, corresponde a la probabilidad de encontrar al electrón en una región determinada, con lo cual se está introduciendo en el modelo el principio de incertidumbre de Heisenberg. Por ello, en este modelo aparece el concepto de orbital región del espacio en la que hay una máxima probabilidad de encontrar al electrón. No debe confundirse el concepto de orbital con el de órbita, que corresponde al modelo de Bohr: una órbita es una trayectoria perfectamente definida que sigue el electrón, y por tanto es un concepto muy alejado de la mecánica probabilística.

La idea de relacionar Ψ^2 con la noción de la probabilidad, proviene de una analogía de la teoría ondulatoria. De acuerdo con la teoría ondulatoria, la intensidad de la luz es proporcional al cuadrado de la amplitud de la onda, o Ψ2 . El lugar más favorecido para encontrar un fotón es donde la intensidad es mayor, esto es, donde el valor de Ψ2 es máximo.

Se siguió un argumento similar para asociar Ψ2 con la posibilidad de encontrar un electrón en las regiones que rodean al núcleo. Las regiones de alta densidad electrónica representan la mayor probabilidad de localizar un electrón, mientras que lo contrario se aplica a regiones de baja

Page 2: Modelo de Schrodinger

densidad electrónica. En la descripción de un átomo en el contexto de la mecánica cuántica, se sustituye el concepto de órbita por el de orbital atómico. Un orbital atómico es la región del espacio alrededor del núcleo en el que la probabilidad de encontrar un electrón es máxima.

Page 3: Modelo de Schrodinger

El modelo atómico de Schrödinger, creado en el año 1924, es considerado como un modelo cuántico no relativista, ya que está basado en la solución de la ecuación que propuso Schrödinger para hallar el potencial electrostático con la simetría esférica, esta solución es conocida como átomo hidrogenoide.

Según este modelo atómico, se dispone que los electrones eran contemplados en forma de una onda estacionaria, además que la amplitud de la materia decaía velozmente al superar el radio atómico

En el modelo atómico que propone Schrödinger se postula que los electrones son como ondas de materia, entonces la ecuación de este describe la evolución en el tiempo y en el espacio de esta onda material.

Cabe recalcar que el modelo atómico de Schrödinger llega a predecir de manera adecuada las líneas de emisión espectrales, tanto de los átomos neutros como de los átomos ionizados.

Además este modelo atómico llega a determinar la modificación de los diferentes niveles de energía, siempre y cuando exista un campo magnético o un campo eléctrico. También, realizando algunos cambios semiheurísticos este modelo llega a determinar el enlace químico y la estabilidad que tendrán las moléculas. El modelo postula que cuando se requiere una alta precisión en los niveles energéticos es posible emplear un modelo parecido al de Schrödinger, solo si el electrón está descrito a través de la ecuación relativista de Dirac, en la cual se dice que el átomo se encuentra en su propio eje.

En resumen el modelo de Schrödinger llega a describir de forma adecuada la estructura electrónica que tienen los átomos, pero tiene algunas carencias y fallas como las que se explican a continuación:

- Primero el modelo de Schrödinger en lo que respecta a la formulación original no posee el espín de los electrones, este error luego sería arreglado en el modelo que postularian Schrödinger-Pauli.

- Luego el modelo de Schrödinger desconoce los efectos relativistas que tienen los electrones veloces, también este error es reparado en la ecuación que crea Dirac, en la cual incluye una descripción del espín electrónico.

- Otra falla del modelo de Schrödinger, es que no puede explicar el motivo de porqué un electrón que se encuentra en estado cuántico excitado baja a un nivel inferior siempre y cuando este existiera.

Page 4: Modelo de Schrodinger

El modelo atómico de Schrödinger no se trata de un modelo relativista, sino cuántico, que está basado en la ecuación que este físico austríaco realizó en 1925.

Bohr había postulado un modelo que funcionaba perfectamente para el átomo de hidrógeno, pero en los espectros que fueron realizados para otros átomos, se veía que los electrones aun siendo del mismo nivel energético, poseían energías algo diferentes, hecho que no respondía el modelo de Bohr, lo que hacía necesaria una urgente corrección de su modelo. Fue Sommerfeld quien modificó el modelo de Bohr, al deducir que en cada nivel energético existían subniveles, lo explicó añadiendo órbitas elípticas y usando la relatividad.

El modelo atómico de Schrödinger definía al principio los electrones como ondas de materia (dualidad onda-partícula), describiendo de este modo la ecuación ondulatoria que explicaba el desarrollo en el tiempo y el espacio de la onda material en cuestión. El electrón con su carácter ondulatorio venía definido por una función de ondas (Ψ), usando una ecuación de ondas sencilla que no era más que una ecuación diferencial de segundo grado, donde aparecían derivadas segundas de Ψ.

Cuando se resuelve esta ecuación, se ve que la función depende de unos parámetros que son los números cuánticos, como se decía en el modelo de Bohr. De este modo, el cuadrado de la función de ondas correspondía con la probabilidad de encontrar al electrón en una región concreta, lo que nos introducía en el Principio de Heisenberg. Es por esto, que en el modelo de Schrödinger, aparece un concepto pare definir la región del espacio en la cual cabría mayor posibilidad de hallar al electrón: el orbital.

Max Born, poco después interpretó la probabilidad de la función de onda que tenían los electrones. Esta nueva explicación o interpretación de los hechos era compatible con los electrones puntuales que tenían la probabilidad de presencia en una región concreta, lo que venía explicado por la integral del cuadrado de la función de onda de dicha región, cosa que permitía realizar predicciones, como anteriormente se explica.

De esta manera, el modelo atómico de Schrödinger hacía una buena predicción de las líneas de emisión espectrales, ya fuera de átomos neutros o ionizados. También conseguía saber los cambios de los niveles de energía, cuando existía un campo magnético (efecto Zeeman) o eléctrico (efecto Stark). Además de todo esto, el modelo conseguía dar explicación al enlace químico, y a las moléculas estables.

En conclusión, el modelo de Schrödinger, nos hace abandonar por completo el concepto anterior de los electrones, que venían definidos como pequeñísimas esferas cargadas que daban vueltas en torno al núcleo, para dar paso a ver los electrones como una función de onda, y añadiéndonos un útil concepto, el de orbital.

Actualmente cuando se necesita una precisión alta en cuanto a niveles de energía se refiere, se usa un modelo similar al de Schrödinger, modificando la descripción del electrón usando la ecuación relativista de Dirac, en vez de la famosa ecuación del físico austríaco. También es un modelo válido para explicar las configuraciones electrónicas de los átomos.

El nombre de modelo atómico de Schrödinger, suele llevar confusión, debido a que no explica totalmente la estructura del átomo. Este modelo explica solamente la estructura electrónica del

Page 5: Modelo de Schrodinger

átomo y su interacción con la estructura de otros átomos, pero en ningún momento nombra al núcleo, ni hace referencia a la estabilidad de éste.