matematicas - carreras de grado

63
2015 CICLO DE NIVELACIÓN ÁREA MATEMÁTICA CICLO DE NIVELACIÓN 2015 ÁREA MATEMÁTICA FACULTAD DE CIENCIAS ECONÓMICAS UNIVERSIDAD NACIONAL DE MISIONES FACULTAD DE CIENCIAS ECONÓMICAS UNIVERSIDAD NACIONAL DE MISIONES

Upload: dotu

Post on 06-Jan-2017

238 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Matematicas - Carreras de Grado

2015

CICLO DE NIVELACIÓN

ÁREA MATEMÁTICA

CICLO DE NIVELACIÓN

2015

ÁREA MATEMÁTICA

FACULTAD DE CIENCIAS ECONÓMICASUNIVERSIDAD NACIONAL DE MISIONESFACULTAD DE CIENCIAS ECONÓMICASUNIVERSIDAD NACIONAL DE MISIONES

Page 2: Matematicas - Carreras de Grado

Área Matemática - Ciclo de Nivelación – Facultad de Ciencias Económicas - 1

NORMAS DE CÁTEDRA

CICLO DE NIVELACIÓN - ÁREA DE MATEMÁTICA Carreras

Contador Público – Licenciado en Administración de Empresas – Licenciado en Economía - Facultad de Ciencias Económicas – Universidad Nacional de Misiones Equipo docente

Coordinación Área Matemática: Ing. Nora Marrone. Equipo Docente:

Ing. Nora Sosa CP Ernesto Krausemann Prof. Norma Nuñez Prof. Lucas Domínguez Prof. Claudia Lagraña

Objetivos generales

Ofrecer a los alumnos/as ingresantes experiencias de aprendizajes que faciliten su inserción en las carreras elegidas. Fortalecer los saberes alcanzados en otros niveles de la enseñanza de acuerdo a las exigencias de los estudios superiores. Relacionar los conceptos de las Unidades que conforman el Programa de Área Matemática para un uso flexible frente a situaciones problemáticas. Favorecer la práctica funciones intelectuales básicas tales como: análisis, síntesis, analogía, inferencia, clasificación, comparación, entre otras. Promover actitudes cooperativas, solidarias y participativas. Objetivos específicos

Revisar los conceptos fundamentales relativos a los números reales y sus propiedades. Operar con procedimientos algebraicos que permitan profundizar en modelos matemáticos sencillos. Favorecer el razonamiento deductivo y aplicarlo en la resolución de problemas. Contenidos del Área Matemática

Unidad I: Campos numéricos Revisión de los campos numéricos. Operaciones en R. Propiedades. Orden en R. Números Complejos. Suma y producto. Propiedades. Resolución de ecuaciones.

Page 3: Matematicas - Carreras de Grado

Área Matemática - Ciclo de Nivelación – Facultad de Ciencias Económicas - 2

Unidad II: Funciones Polinómicas Función polinómica. Forma general. Grado. Análisis de gráficos. Intersecciones con los ejes coordenados. Función polinómica de primer grado. Operaciones con polinomios. Divisibilidad de polinomios: Teorema del resto y Teorema del factor. Factoreo. Función polinómica de segundo grado. Gráficos. Simplificación de expresiones racionales. Resolución de ecuaciones. Unidad III: Análisis de relaciones numéricas y funcionales. Descripción del comportamiento de relaciones funcionales de acuerdo a las operaciones involucradas. Relaciones de proporcionalidad directa e inversa. Porcentaje: cálculo y estimación. Problemas de aplicación a las Ciencias Económicas Metodología de trabajo

Se llevarán a cabo 8 encuentros presenciales de cuatro horas reloj cada uno, durante los meses de febrero y marzo. Al finalizar este ciclo se realizará una evaluación general con su respectivo recuperatorio. Las actividades presenciales se desarrollan bajo la modalidad de aula taller. Se trabajará con el apoyo de la Guía de trabajos Prácticos, y en actividades propuestas por los docentes y los alumnos/as. Para quienes así lo deseen, la Cátedra ofrece clases de consulta presenciales, en horarios a convenir. La guía de trabajos prácticos se encuentra disponible para su impresión en la sección "Documentos y Enlaces” del Aula Virtual Además de las actividades presenciales se trabajará en forma virtual, a través de ejercicios, autoevaluaciones, foros, sesiones de chat, entre otros

Evaluación

Al finalizar el período de cursado se prevé una evaluación con opción a recuperatorio. En función de los resultados los alumnos/as quedan en condición de Promocionados o Libres.

Los alumnos/as en condición de libres rinden evaluación final teórico-práctica de los contenidos desarrollados en el ciclo de nivelación, en las mesas examinadoras según el calendario académico correspondiente al año en curso. Condiciones de Alumno/a Promocional

Para promocionar la asignatura el alumno/a debe aprobar la evaluación final con una calificación no inferior a 6 (seis), con opción a un recuperatorio por ausencia o por no haber alcanzado la nota mínima, en sentido excluyente. Bibliografía

Page 4: Matematicas - Carreras de Grado

Área Matemática - Ciclo de Nivelación – Facultad de Ciencias Económicas - 3

• Textos de la escuela secundaria

• Bello, I. (1999). Álgebra Elemental. Mexico: Thompson Editores.(*)

• Carnelli G, F. M. (2007). Matemática para el aprestamiento Universitario. Los Polvorines: Universidad Nacional General Sarmiento.

• Kaseberg, A. (2000). Álgebra Elemental. Un enfoque justo a tiempo. Thompson Editores. 2000, México) (*)

• Livigni, E. (2004). Matemática preuniversitaria. Trelew, Argentina: Ed. U.N.P.S.J.Bosco.

• Musomecci F, H. H. (2004). Matemática para ingresantes a la Universidad. Tucumán. Argentina. Ed. UNSTA. (*) Ejemplares disponibles en la biblioteca de la Facultad de Ciencias Económicas.

Webgrafía

• Programa de Matemática Aplicada. Consulta: 05/10/2012

http://www.fce.unam.edu.ar/aulavirtual/claroline/course/index.php?cid=PMA

• Algebra con papas Consulta: 27/08/2013

http://www.juntadeandalucia.es/averroes/~29700989/departamentos/departament

os/departamento_de_matemat/recursos/algebraconpapas/

• Descartes. Consulta: 11/12/2012

http://recursostic.educacion.es/descartes/web/25/11/2014

• Guía básica del uso del aula virtual Claroline. Consulta: 16/08/2012

http://av.ricaldone.edu.sv/claroline/manual.pdf

• Curso de Matemática Remediadora – Material interactivo. Consulta: 25/11/2014

http://quiz.uprm.edu/remediadora/

• http://arquimedes.matem.unam.mx/descartes.org.mx/descartes/web/materiales

_didacticos/EDAD_2eso_expresiones_algebraicas/index_2quincena5.htm

Consulta: 28/10/2014

• http://www.amolasmates.es/pdf/Temas/3_ESO/Expresiones%20algebraicas.pdf

Consulta: 09/10/2014

• http://www.vitutor.com/ab/p/a_6.html

Consulta: 05/10/2014

Aula Virtual

Toda las actividades previstas serán publicadas en el Aula Virtual. Para entrar en el

aula virtual debes crear una cuenta de usuario en la plataforma de la Facultad (Paso

1) y luego inscribirte en el curso de Área Matemática (Paso 2)

Page 5: Matematicas - Carreras de Grado

Área Matemática - Ciclo de Nivelación – Facultad de Ciencias Económicas - 4

Paso 1: http://aulavirtual.fce.unam.edu.ar/ Alumnos Aula Virtual Crear una cuenta de usuario

Paso 2:

http://aulavirtual.fce.unam.edu.ar/

Alumnos Aula Virtual Inscribirse en un nuevo curso

Mi lista de cursos Area Matemática - Ciclo de Nivelación (CICLODENIV)

Para más información consultar por mail a la coordinadora Ing. Nora B. Marrone:

[email protected] o en forma presencial en horarios de consulta en el

Departamento de Matemática (subsuelo edificio central)

Page 6: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 1

INDICE

UNIDAD I - CAMPOS NUMÉRICOS ..................................................................................2

Sistema de los números reales .............................................................................................2

Síntesis Teórica ..............................................................................................................2

Números complejos ............................................................................................................8

Trabajo Práctico Nº1 ......................................................................................................... 11

UNIDAD II - FUNCIONES POLINOMIALES .................................................................... 24

Operaciones con polinomios ............................................................................................. 24

Síntesis teórica .............................................................................................................. 24

Trabajo Práctico Nº2 ......................................................................................................... 32

UNIDAD III - ANÁLISIS DE RELACIONES NUMÉRICAS Y FUNCIONALES .............. 42

Relaciones proporcionales ................................................................................................ 43

Trabajo Práctico Nº3 ......................................................................................................... 47

EVALUACIONES DE AÑOS ANTERIORES ..................................................................... 54

Page 7: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 2

UNIDAD I - CAMPOS NUMÉRICOS

SISTEMA DE LOS NÚMEROS REALES

SÍNTESIS TEÓRICA

ADICIÓN Y MULTIPLICACIÓN

El conjunto de los números reales R junto con las operaciones de adición y multiplicación se

llama sistema de números reales. Las reglas básicas del álgebra para este sistema nos

permiten expresar hechos matemáticos en formas simples, y resolver ecuaciones para

encontrar respuestas a preguntas matemáticas. Las propiedades básicas del sistema de

números reales con respecto a las operaciones de la adición y la multiplicación están en una

lista en el siguiente recuadro, donde a, b y c representan números reales.

ADICIÓN

1. Ley de composición interna

(i) a + b es un número real

2. Ley asociativa

(i) a + (b + c) = (a + b) + c

3. Ley conmutativa

(i) a + b = b + a

4. Existencia de neutro

El número real 0 es llamado elemento

neutro, ya que para todo número real a:

(i) a + 0 = a = 0 + a

5. Existencia de inverso

Para todo número real a, existe un único

número real (llamado opuesto, o inverso

aditivo de a), representado

por –a, tal que

(i) a + (-a) = 0 = (-a) + a

MULTIPLICACIÓN

(ii) ab es un número real

(ii) a(bc) = (ab)c

(ii) ab = ba

El número real 1 es llamado identidad

multiplicativa, ya que para todo número real

a:

(ii) a .1 = a = 1.a

Para todo número real 0≠a , existe un único

número real (llamado recíproco o inverso

multiplicativo de a), representado por a/1 ,

de tal forma que

Page 8: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 3

(ii) aaa

a ⋅==⋅1

11

6. Propiedad distributiva: (I) a ( b + c ) = ab + ac

(II) ( a + b ) c = ac + bc

Muchas propiedades adicionales pueden derivarse de las básicas como las siguientes:

7. Ley cancelativa

(i) Si a + c = b + c , entonces a = b

(ii) Si ac = bc y 0≠c , entonces a = b

8. Ley de la multiplicación por 0

(i) 000 =⋅=⋅ aa

(ii) Si 0=⋅ba , entonces a = 0 ó b = 0 (o ambas)

Es posible definir las operaciones de sustracción y división en términos de la adición y de la

multiplicación, respectivamente.

Para los números reales a y b, la diferencia, a – b se define como

a – b = a + (-b).

Si 0≠b , entonces el cociente, ba ÷ se define como

=

=÷b

a

baba

1

A continuación presentamos una lista de las propiedades importantes de la sustracción,

relacionadas con negativos y fraccionarios:

9. Propiedades de la sustracción y de los negativos

(i) -(-a) = a

(ii) -(ab) = (-a)b = a(-b)

Page 9: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 4

(iii) -a = (-1)a

(iv) (-a)(-b) = ab

Para todas las fracciones a/b y c/d, donde 0dy0b ≠≠ :

10. Fracciones equivalentes

bcadd

c

b

a== sisoloysi

11. Regla de los signos

b

a

b

a

b

a

−=

−=−

12. Cancelativa o de la simplificación

0, ≠= cb

a

bc

ac

13. Adición y sustracción con común denominador

b

ca

b

c

b

a ±=±

14. Adición y sustracción con distintos denominadores

bd

cbad

d

c

b

a ±=±

15. Multiplicación

bd

ac

d

c

b

a=⋅

16. División

bc

ad

c

d

b

a

dc

ba

d

c

b

a=⋅==÷

/

/

17. División de 0 y división por 0

(i) 0,0

0 ≠=÷ bb

b (ii) 0

000 =÷ es indefinido

(iii) 0

0a

a =÷ es indefinido, 0≠a

Page 10: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 5

EXPONENTES

EXPONENTES ENTEROS

Así como el producto es unA forma más conveniente de expresar una suma repetida, los

exponentes nos permiten escribir el producto repetido xxx ⋅⋅⋅⋅ . En general, para cualquier

número real x y para cualquier número positivo n, el símbolo nx representa el producto de n

factores de x.

48476factores n

n xxxx ⋅⋅⋅⋅=

A continuación se listan las reglas que permiten combinar potencias, llamadas leyes de los

exponentes:

Leyes de los exponentes

Sean x y y números reales y m y n enteros. Entonces,

(i) nmnm xxx += (iv)

n

nn

y

x

y

x=

(ii) ( ) mnnm xx = (v) nmn

m

xx

x −=

(iii) nnn yxxy =)(

dado que cada expresión representa un número real.

NOTACIÓN CIENTÍFICA

Los exponentes enteros con frecuencia se utilizan para escribir números muy grandes o muy

pequeños de una forma conveniente.

Cualquier número real positivo puede escribirse en la forma

na 10×

donde 101 <≤ a y n es un entero. Decimos que un número escrito así está en notación

científica. Por ejemplo,

Page 11: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 6

6101000.000.1 ×=

81037,50000000537,0 −×=

RADICALES

En general, las raíces de números reales se definen por el enunciado

xrrx nn == si sóloy si

donde x y r son números reales no negativos y n es un entero positivo, o x y r son números

reales negativos y n es un número positivo impar.

Las siguientes propiedades se pueden usar frecuentemente para simplificar expresiones que

contengan radicales.

Leyes de los radicales

Sean x y y números reales y m y n enteros positivos. Entonces,

(i) ( ) xxnn = (iv) n

n

n

y

x

y

x=

(ii)

=par es si,

impar es si,

nx

nxxn n (v) mnm n xx =

(iii) nnn xyyx =

siempre y cuando los radicales representen números reales.

EXPONENTES RACIONALES

El concepto de la raíz enésima de un número nos permite ampliar la definición de nx de

exponentes enteros a exponentes racionales; y, como veremos, con frecuencia es más fácil

trabajar con exponentes racionales que con radicales.

Para cualquier número real x y para cualquier entero positivo n, definimos

nn xx =1 , dado que n x es un número real

Page 12: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 7

Así, definimos

( )mnnm xx /1/ =

para cualquier entero m tal que m/n sea la expresión mínima.

A continuación se generalizan las leyes de los exponentes en caso de que éstos sean

números racionales.

Leyes de los exponentes racionales

Sean x y y números reales y r y s números racionales. Entonces,

(i) srsr xxx += (iv) r

rr

y

x

y

x=

(ii) ( ) ( ) rsrssr xxx == (v) srs

r

xx

x −=

(iii) rrr yxxy =)(

dado que cada expresión representa un número real.

LOGARITMOS

El logaritmo en base a dada (positiva y distinta de 1) de un número M es el exponente a que

hay que elevar la base a para que resulte igual a M.

En símbolos,

MabMlog b

a =⇔= .

Por ejemplo, la pregunta ¿a qué exponente se debe elevar 2 para obtener 16?, equivale a la

expresión 16log2 . La respuesta es 4 ya que 1624 = .

Page 13: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 8

Si se desea saber ¿a qué exponente se debe elevar 3 para obtener 1/9?, la operación

matemática y su resultado son los siguientes:

29

1log3 −= porque

9

1

3

13

22 =

=−

Casos particulares:

� El logaritmo de la base es 1, es decir: 1log =aa pues aa =1 .

� El logaritmo de 1 en cualquier base es cero, es decir: 01log =a pues 10 =a .

Las siguientes propiedades son útiles en la resolución de ecuaciones exponenciales y

logarítmicas:

Propiedades de los logaritmos:

Para cualquier par de números reales positivos M y N:

(i) NlogMlogMNlog bbb +=

(ii) NlogMlogN

Mlog bbb −=

(iii) NlogcNlog b

c

b = , para cualquier número real c

NÚMEROS COMPLEJOS

Si desea encontrar la raíz cuadrada de –16, se plantearía la siguiente situación,

21616 xx =−⇔=−

pero resulta que el cuadrado de un número real nunca es negativo, por lo tanto este

problema no tiene solución en R.

Page 14: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 9

Con el fin de dar solución a planteos de este tipo se crean nuevos entes: los números

imaginarios. La unidad para estos números es 1−=i .

Entonces, para resolver el problema anterior se podría proceder de la siguiente manera:

xixxx =⇔=−⇔=−⇔=− 4116)1(1616

El resultado no corresponde a un número real, sino al número imaginario 4i (cuatro veces la

unidad imaginaria i).

Con los números reales y los números imaginarios se compone un nuevo campo numérico

llamado Números Complejos. Sus elementos son de la forma

{ {imaginarioreal

bia +

donde a y b son números reales y se denominan parte o componente real y parte o

componente imaginaria, respectivamente.

En caso de que a = 0, el número complejo es un imaginario puro, y si b = 0, el número

complejo es un real puro.

La suma y producto entre números complejo se definen de manera tal que siguen siendo

válidas las operaciones y propiedades en R.

ADICIÓN

La suma de dos números complejos es otro complejo cuya componente real es la suma de

las componentes reales consideradas y su componente imaginaria es la suma de las

componentes imaginarias de los complejos dados. Simbólicamente,

Page 15: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 10

idbcadicbia )()()()( +++=+++

Como se indicó anteriormente, la suma de complejos verifica las mismas propiedades que la

suma de números reales.

MULTIPLICACIÓN

Para realizar el producto de números complejos se puede utilizar la propiedad conmutativa

del producto con respecto a la suma. Por ejemplo,

)21(762)3()7(1)7(3212)31()72( 2iiiiiiiii −+−+=⋅−+⋅−+⋅+⋅=+⋅−

pero ( ) 1122 −=−=i , por lo tanto se tendría

iiiii −=+−=−−+−=+⋅− 23212)1)(21(2)31()72(

tal resultado es otro número complejo.

El producto se podría formalizar en la siguiente expresión:

icbdadbcadicbia )()()()( ⋅+⋅+⋅−⋅=+⋅+

Nuevamente se tiene que el producto cumple con las propiedades que verifica en R,

respetando también la propiedad distributiva con respecto a la suma.

Page 16: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 11

TRABAJO PRÁCTICO Nº1

SUMA Y PRODUCTO EN R

Ejercicio Nº1: Establecer si las siguientes afirmaciones son verdaderas o falsas:

a) 3

1es un elemento de Z .

i) –4 es un elemento de Z , pero –4 N∉ .

b) 2

1− es un elemento de Q .

j) π es un elemento de R , pero Q∉π .

c) 2 es un número racional.

k) Todo número irracional es número real.

d) 3 es un elemento de R .

l) Todo número entero es número racional.

e) 0.1333... es un número irracional. m) Todo número decimal es número real.

f) 1.5 es un número racional.

n) La intersección del conjunto de números

racionales y el conjunto de los irracionales

es el conjunto vacío (φ )

g) 0.121212... es un número racional. o) Cada número entero es un racional.

h) 0

8 es un elemento de Q .

p) Algunos números irracionales son

enteros.

Ejercicio Nº2: Indicar la propiedad del sistema de números reales que justifica cada uno de

los siguientes enunciados.

a) ( )

−=

− zz2

12

2

12 f) ( )[ ] ( )[ ]zwzw 3223 +=+

b) ( ) 221 = g) ( )( )[ ]{ } ( ){ } 4534153 +−+=+−+

Page 17: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 12

c) ( )( ) ( ) ( )2435432543 +++=++ h) ( )( ) ( )[ ]( ) 72137213 +−+=++− zz

d) 155

1=

i) ( ) ( )[ ] 0=−−+− baba

e) 04

1

4

1=

−+ j) ( ) yxyx

yx ≠=

−− ,1

1

Ejercicio Nº3: Indicar la propiedad del sistema de números reales que justifica cada uno de

los siguientes enunciados.

a) ( )( ) xx 55 =−− f) Si 0entonces,02 == zz

b) ( ) 1717 =−− g) ( ) 00. =++ cba

c) Si yxyx =+=+ entonces ,33 h) 01

02

=+a

d) Si ( )( ) ( ) 42 entonces ,3432 =+=+ xx

e) Si ( )( ) 02ó01entonces,021 =−=+=−+ xxxx i) ( )

( ) 21

122

2

=++

x

x

Ejercicio Nº4: Dar un contraejemplo para demostrar que en R :

a) la sustracción no es conmutativa ni asociativa.

b) la división no es conmutativa ni asociativa.

c) la división sólo es distributiva con respecto a la suma y a la sustracción a derecha.

d) la suma no es distributiva respecto al producto.

Ejercicio Nº5: ¿Son correctas las siguientes simplificaciones?

a) 532523 +=−++ d) 2

5

0.2

0.5=

b) ( ) 5345.1314 +−=−+−+ e) 2

5

32

35=

++

c) 2

5

3.2

3.5= e) ( ) 42

2153.

42.3

215

++

=+

+

Page 18: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 13

Ejercicio Nº6: Indicar si las siguientes afirmaciones son verdaderas o falsas, justificando sus

respuestas.

Si ba y son números racionales, aba >.

Si ba y son números racionales, aba <:

Si ba y son números racionales, y 0≠b , la mitad de ab es ab 2

Ejercicio Nº7:

a) ¿Es el producto de dos números irracionales necesariamente irracional? De un ejemplo

b) ¿Es el cociente de dos números irracionales necesariamente irracional? De un ejemplo

c) ¿Son números reales 73 + y 7.3 ? Explique por qué.

Ejercicio Nº8: Sean qpnm y,, en R / 5y2 =+−=+ qmnm , calcular:

a) ( ) ( ) =+++ 13 mq

b) ( ) ( ) ( ) =++−++ nqmm 31

c) ( ) ( ) ( ) =++++++ mqnm 25421

Ejercicio Nº9: Sean cba y, en R / 4y2. =−= cba , calcular:

a) ( ) =ac4b d) ( ) =+1cab2

b) ( ) =+ baca2 e) =+ c8ab4

c) ( )( ) =+− 4cb3a f) ( ) =−− 1ababc

Ejercicio Nº10: Decidir si las siguientes expresiones son iguales:

a) ( ) ( )[ ]1ayx2;2ayx2 +−+−

b) ( ) ( )bx5y5c;yxbc5 ++

c) ( )( ) ( ) ( )1mx4;2mx2x2m3 +−−

d) ( ) ( ) ( )1b3ax;b3xa1xab3 +−++

Ejercicio Nº11: Reducir las siguientes expresiones.

Page 19: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 14

a) ( )[ ]32 −−− a d) ( ) ( ) zz2

1

2

14 +−

g)

ll −)x)(0)(7(

b) ( )bc

b

−−−

e) [ ]( )32

))(0)(14(

x

c) ( )

c

c

4

34 + f) ( )( )3−+− yxππ

Ejercicio Nº12: Expresar de otra manera las siguientes divisiones

1,0:a 001,0:a 100:a 1000:a

(en todos los casos a es un número racional).

Ejercicio Nº13: Sabiendo que 23264,0032,0.27,7 = , indicar sin hacer la multiplicación, el

resultado de

a) 0,727 . 3,2 b) 0,00727 . 3200 c) 727 . 320

d) 72700 . 3200 d) 0,00727 . 32

ORDEN EN R

Ejercicio Nº14: Colocar el signo >=< ó, en medio de cada pareja de números.

a) –100 ____2 g) 14

13− ____

21

20−

b) 2

1____

3

1 h) ( )02.4

2

1____2.01

c) 5

4− ____

3

2− i)

9

1____0.111

d) 2.619 ____2.621 j)3

1− ____-0.33

e) 0.7 ____9

7 k) π ____3.14

Page 20: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 15

f) 2.5 ____2

5 l)

157

423 ____2.6

Ejercicio Nº15: Ordenar de menor a mayor los números de los siguientes grupos de

números reales.

a) 27;4;8,2;6;2;3 −−− b) 319;8,4;3;8;6;2 ππ −−

Ejercicio Nº16: Ubicar sobre la recta real los siguientes puntos:

a) 5,2;3

4;2;2;1;1;

2

1;0 −−− b) 12;3;2;1;1;0 +−−−

Ejercicio Nº17:

a) Si 1−<x . Clasificar como positivo o negativo: (a) 1+x ; (b) 3−x .

b) ii) Si x<− 2 . Clasificar como positivo o negativo: (a) 2+x ; (b) 4+x .

c) iii) Si 21<x . Clasificar como positivo o negativo: (a) 21−x ; (b) 1−x .

d) iv) Si 54 << x . Clasificar como positivo o negativo: (a) 4−x ; (b) 5−x .

e) v) ) Si 31 <<− x . Clasificar como positivo o negativo: (a) 4+x ; (b) 6−x .

f) vi) ) Si 2123 <<− x . Clasificar como positivo o negativo:(a) 23+x ; (b) 1−x .

Ejercicio Nº18:

i) a) Indicar el conjunto de los números enteros x que verifiquen 52 << x .

¿Cuál es el menor de los elementos de este conjunto?¿Y el mayor?

b) Considerar el conjunto de los números racionales x que verifiquen 52 << x .

¿Cuál es el menor de los elementos de este conjunto?.¿Y el mayor?.

ii) Indicar cuando sea posible:

a) El mayor número ENTERO X que verifica: 3,10≤x

b) El mayor número RACIONAL X que verifica: 10≤x

c) El mayor número RACIONAL X que verifica: 3,10≤x

d) El mayor número RACIONAL X que verifica: 10<x

Page 21: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 16

iii) Indicar en cada caso, cuáles son los números enteros que verifican:

a) 23 −<<− x d) 995,1105,3 −<<− x

b) 23 −≤≤− x e) 0001,2999,2 −≤≤− x

c) 9,11,3 −<<− x f) 0001,2999,2 −<<− x

EXPONENTES ENTEROS

Ejercicio Nº19: Suponiendo que todas las variables son distintas de cero escriba:

i- la expresión con exponentes positivos

a)8.8.8

1 b) 333. . c) 2 2 2 2y y y y. . . d)

1 1

z z.

ii- la expresión con exponente negativo

a) 1

45 b) x

y

2

2 c) 13x

d) 1 2

z

Ejercicio Nº20: Evaluar las siguientes expresiones:

a) 2 21 1− − b) 2

3

2

3

− c) 2 3

2 3

1 1

1 1

− −

− −

−+

d) ( )

( )− −

− −

1 2

1

5 6

1 e) 0

1

1

0 f) ( )1 1

1

0

0

Ejercicio Nº21: Suponiendo que todas las variables son distintas de cero, simplificar y

eliminar cualquier exponente negativo.

a) x x6 2− b) 2 210 12. c) ( ) ( )7 34 2x x. − d) ( ) ( )− −5 32 3 2. . . .x y x y

e) 2

2

8

3 f) 3

3

4

2− g) 10

10

7

4

h) 35

21

8 5

1 9

. .

. .

y x

y x− −

i) ( )5 2x j) ( )− 4 3x k) ( )52 3 l) ( )x4 5−

ll) ( )4 2 1 3x y. − m)

( )( )

3

2

3

1 2 2

abc

a b c− −. .

Ejercicio Nº22: Determinar si los siguiente números son positivos o negativos :

a) ( ) ( )− − −4 23 4. b) ( ) ( ) ( )− − −−1 1 11 0. . c) ( ) ( )[ ]10 10 105 5 5 2− −− −.

Page 22: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 17

d) ( )[ ]− − −1 2 3

e) ( )− − − +10 10 10 10 f) ( )π π π2 3 4 1

. . − −

Ejercicio Nº23: Escribir los números dados en notación científica :

a) 1.050.000 b) 0,0000105 c) 1.200.000.000 d) 0,00341 e)341.000.000

f) 0,000000000120 g) 825.600 h) 0,0008256 i) 523.000 j) 0,000523

Ejercicio Nº24: Escribir cada número en notación normal.

a) 41089,7 × b) 41089,7 −× c) 3100,3 × d) 3100,3 −×

e) 11074,1 −× f) 01074,1 × g) 11074,1 × h) 21006,9 −×

Ejercicio Nº25: Expresar cada una de las siguientes fracciones con una sola potencia de 10.

a) 10

1010 53 ×−

b) 32

548

1010

101010

××× −

c) 5

3

10

10−

d) 10

4321

10

10101010 ×+× e)

96

29

1010

1010−

××

f) ( )

( )43

132

10

1010−

−×

Ejercicio Nº26: Resolver las siguientes operaciones utilizando notación científica.

a) 000.5

1 b)

0005,0

1 c)

000016,0

0064,0 d)

( )( )000.12

720000.6

f) 3125

000625,0 g)

( )( )( )2

31

40006,0

000.728.1 h) ( )( )( )( )[ ] 21000.22002,0002,0

RADICALES

Ejercicio Nº27: Hallar el valor numérico de lo siguientes radicales, suponiendo que todas las

variables son positivas.

a) 3 125− b) 27

3 c) 44

4

1

4

1 d)

4

2

749

7

ba

ab

Page 23: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 18

e) 5 000.100 f) 0016.0 g) 4 0001.0 h) 3 116ba

i) 3 16 j) 2

5

− xyz k)

42

1

yx l) ( )2abc−

m)4

210

bc

a n) ( )4 2624 sr− o) 3 23 3 164 aab q)

2

2

8

16−−

x

x

Ejercicio Nº28: Combinar los radicales y simplificar.

a) xxx 233 −+ d) 3 333 3 xzxxy −+ g) b

a

b

a 3

b) 862 +− e) 523 321883 xxyx +−

c) 33 1624 − f) 3 43 43 4 xyzzxyyzx +− h) 32

32

3y

xy

y

x

y

x−−

Ejercicio Nº29: Responder verdadero o falso.

a) baba +=+ , para 0, ≥ba . ____

b) baba .. = , para 0, ≥ba . ____

c) aa =2 , para cualquier número real a . ____

d) ( ) aa =2

, para cualquier número real a . ____

e) Si n es impar, n x está definida para cualquier número real x . ____

f) Si n es par, n x está definida para cualquier número real x . ____

g) xx =4 2 , para cualquier número real x . ____

EXPONENTES RACIONALES

Ejercicio Nº30: Para los siguientes ejercicios suponga que las variables son positivas:

i. Escribir las expresiones usando exponentes racionales:

Page 24: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 19

a)3 b.a b) 75 x c)

( )1

34

x d) 7 yx + e) a b2 25 + f)

( )1

43

x

ii.Volver a escribir la expresión dada usando notación radical :

a) a 2 3/ b) 2 1 3. /a c) ( )3 2 3a / d) 3 2 3. /a e) 3 2 3+ a / f) ( )3 2 3+ a /

Ejercicio Nº31:

i. Encontrar los números indicados:

a) ( ) /49 1 2 b) ( )49 1 2− / c) ( )− 8 1 3/

d) ( )− −8 1 3/ e) −

81

16

3 4/

f) −

−81

16

3 4/

ii. Volver a escribir la expresión como un solo radical:

a) 2 53 . b) 4 23 . c) 16

4

3

6 d)

81

3

3

3 e) x x. f)

y yy

23

4

.

EJERCICIOS COMBINADOS

Ejercicio Nº32: Resolver las siguientes operaciones:

a) ( ) ( ) ( ) ( )[ ] ( )[ ]− − − + − − + − ÷ + =2 3 1 3 10 5 43 2 2 2 2. `

b) ( ) ( ) ( )− ÷ − − ÷ − + =320 10 64 1 95 3

c) ( ) ( )2 2 2 5 7 153 3 34 2 0. . . + − − =

d) ( ) ( ) ( ) ( )− − − − − − − + − − =3 1 2 10 6 2 72 32 2 3 3 3. . .

e) ( ) ( ) ( ) ( )[ ]2 3 3 4 1 2 1253 2 23− − ÷ − + − + − + − =.

f) ( ) ( )[ ]2 8 5 2 3 236 3 2

. . .− − =

g) ( ) ( )[ ]{ }5 3 9 7 52 2 3 3 0 2

− − − + − − =

Page 25: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 20

h) =

+−+−−−

−− 12

1510.

5

21

4

32

4

3.

3

81

i) =

−+

−÷

−−− 068

4

5

3

3

2

3

2

16

81

j) 1

2

3

44

1

4

1

8

1

2

1

2

2

2 3

3 4

+ − −

÷ −

=

−−. .

k) ( )[ ]2

3

1

6

3

2

1

42 6

8

31

2 2 2 12 3

− −

÷ − ÷ − − =

− −− −

l) ( )−

÷ − + ÷ +

÷ −

=

5

215 1 2

1

4

1

32

1

4

1

2

1

5

m) )16

81

3

2

3

21

7

81

3

54

16 18

54 3

3 0

− ÷

− − − −

=

n) −

÷ −

÷ + − ÷

+ ÷ −

=

− −3

4

3

4

1

64

27

51215

1

5

8

9

4

9

7 10

3 2

2

Ejercicio Nº33: Resolver:

a) ( )0 2 0 32 0 001 519, , , ,+ − ÷ =

b) ( ) ( )4 2 0 05 3 250 4 0 01 4 0 04, . , , . , , ,+ − ÷ ÷ =

c) ( )0 6 0 02

0 290 5

, ,

,. ,

−−

− =

d) ( ) ( )3 2 0 4 1 4

0 50 075 0 1

, , ,

,. , ,

− ÷− =

e) 0 41 0 04

0 01

0 32 0 04

0 00725

, ,

,

, ,

,

+−

÷ =

f) 1

0 1

1

0 2

1

0 4

1

0 5, , , ,− − − =

g) 0 04 0 0009 0 0016

0 49

, , ,

,

− +−

=

Page 26: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 21

h) =+

−−

3

51

3

3

000064,0

00032,0

000027,0

125,004,0

ECUACIONES

Ejercicio Nº34: Resolver las siguientes ecuaciones y verificar que los valores hallados son

soluciones de las mismas.

a) 1023 =−− x b) 7352

5+=− xx c) 8

3

17

3

4+=− xx

d) ( ) ( )2232. −=−+ xxx e) ( ) ( ) )1)(3(151 2 xxx +−−=− f) 1023

=+xx

g) 1023

=+xx

h) 43

8=

−x 1

2

1

4

13=

−−

− xx

g) 42

3

3

2=+

xx h)

8 2 3

2 14

2x x

xx

− +−

= i) 31 =+x

j) 32 =−x k) 522 −=+ xx l) 59x 2 =+

m) 21

4=

−x n) 4162 =−+ xx o) 17 =−− xx

p) 32

4531

=

+x q) ( ) 6213 21 +=+ xx r) 0

9

1 2123 =− −− xx

Ejercicio Nº35: Resolver las siguientes ecuaciones y verificar que los valores hallados son

soluciones de las mismas.

31x a) =+ 32x)b =− 5x22x)c −=+

592x)d −=+ 33/1

2

4x5)e =

+ e) 6x22/1)1x3( +=+

02/1x9

12/3x)f =−−−

LOGARITMOS

Page 27: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 22

Ejercicio Nº36: Escribir en forma logarítmica el enunciado dado en forma exponencial:

a) 41

21 2− =/ b) 9 10 = c) 102 = x

d) 1

648

1 2

=

− /

e) ( )31

812 2−

= f) 361

2163 2− =/

Ejercicio Nº37: Calcular:

a) log 3 81 4= b) log 2 32 5= c) log10 10 1= d) log17517 5=

e) 225

1log5 −= f) vub =log g) 01 ln = h) ( ) 11/e ln −=

f) 000001,0log10 g)64

1log4 h)

32

1log 64 i) 3

7 49log

j) 16log 2/1 k) ee ln l) )..( ln 32 eee ll) 2 ln −e

m) 6log1010 o) 85log25 p) 7ln−e q) 9lne

Ejercicio Nº38: Aplicando propiedades simplificar y reducir la expresión a un solo logaritmo.

(Por convención se expresa log log10 x x= )

a) log log2 5+ b) 1

249

1

38 13 15 5 5

..log .log .log− +

c) ( ) ( )log logx x4 24 2− − + d) log .log logy xx

y− − +

4 32

e) log log log log2 22

23

265 5 5 5+ + − f) 5 2 2 3 4.ln .ln .ln 3 + −

ECUACIONES EXPONENCIALES Y LOGARÍTMICAS

Ejercicio Nº39: Hallar el valor de x

a) 82.2 3 =x b) 1000010.10 x3x = c) 3 32 1x x= /

Page 28: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 23

d) 162 x2 = e) log2

15

x = f) 2 19.log x =

g) ln x = 3 h) log72 2x = − i) log

1

10001

=

x

Ejercicio Nº40: Dadas las siguientes ecuaciones, analizar si tienen solución en R, si no la

tienen, justificar.

a) 92 =x b) 92 −=x c) 27/162 =x

d) 51 2 =+ x e) 732 −=−x f) 2002 2 =− x

e) 02x22x =+− f) (2x + 1)2 = 3(x+1)2 g) 7x + 3 (x2 –5)) = x - 3

Ejercicio Nº41: Resolver las siguientes operaciones de números complejos expresados en

forma binómica:

a) (2 + 5i) + (-3 + 4i ) + (2 – 8i) = b) =

+−

− ii3

1

2

3

2

1

3

2

c) 3i - (1 + 2i ) = d) (-3 + i ) - (2 + i) =

e) (2 + 5i). (-3 + 4i ) = f) (3 + 4i ) . (2 – 8i) =

g) =− 2)2( i h) =+ 2)32( i

En biblioteca encontrarás libros que te facilitarán el estudio. Consulta la bibliografía en el programa de la asignatura.

En los horarios de consulta encontrarás docentes dispuestos a explicarte lo que no entiendas.

Page 29: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 24

UNIDAD II - FUNCIONES POLINOMIALES

OPERACIONES CON POLINOMIOS

SÍNTESIS TEÓRICA

La expresión 12475 23 −++ xxx recibe el nombre de polinomio en la variable x. Es de tercer

grado, porque la tercera es la máxima potencia de la variable x que aparece en él. Los

términos de este polinomio son: xxx 4,7,5 23 − y -12. Los coeficientes son 5, -7, 4, y -12.

Todos los exponentes de las variables de un polinomio deben ser enteros no negativos. Por

consiguiente, las expresiones 213 xx + y 132 ++− xx no son polinomios, por los exponentes

fraccionarios y negativos.

Cualquier constante diferente de cero, como 7, se clasifica como un polinomio de grado

cero, ya que: 077 x= . También al número cero nos referimos como una constante

polinomial, pero no se le asigna grado alguno.

Los polinomios que tienen sólo uno, dos o tres términos reciben nombres especiales:

Números de términos Nombre del polinomio Ejemplo

uno monomio 17 5x

dos binomio 12

3 6x x−

tres trinomio x x4 2 2− +

La variable x en el polinomio representa cualquier número real. Por este motivo expresiones

como x2 , 3+x y xx +2 representan también números reales, cuyo valor depende del que

Page 30: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 25

tome x. Por ejemplo si x = 3 los valores de las expresiones dadas serán 6, 6 y 12

respectivamente.

Ya que cada símbolo de un polinomio es un número real, se pueden usar las propiedades del

sistema de los números reales para operar con ellos.

OPERACIONES ENTRE POLINOMIOS

� Suma o resta de polinomios: se puede sumar o restar dos polinomios en x mediante la

suma o resta de los coeficientes de potencias iguales. Por ejemplo:

Sumar 12 2 −+ xx y 23 +x

Solución:

( ) ( )2312 2 ++−+ xxx se suprime paréntesis utilizando la regla de supresión de

paréntesis,

2312 2 ++−+ xxx se agrupan los términos semejantes haciendo uso de las

propiedades conmutativa y asociativa,

( ) 2132 2 +−++ xxx se suman los coeficientes de las potencias iguales de x.

142 2 ++ xx

¿Por qué no es válido sumar los términos 22x y 4x?

Para restar se deberá tener en cuenta que al suprimir los paréntesis cambiarán los signos de

cada término del polinomio sustraendo.

� Producto entre polinomios: para hallar el producto de dos polinomios, se utilizan la

propiedad distributiva y las leyes de los exponentes, como muestra el siguiente ejemplo:

Multiplicar 133 −+ xx y 2 4 52x x− + .

Page 31: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 26

Solución:

( )( )542.13 23 +−−+ xxxx

( )( ) ( )( ) ( )( )5.134.132.13 3323 −++−−++−+= xxxxxxxx

( ) ( ) ( )51554124262 324235 −+++−−+−+= xxxxxxxx

Combinando términos semejantes, se encuentra el producto:

2 4 11 14 19 55 4 3 2x x x x x− + − + −

Cuando se multiplican dos polinomios debemos multiplicar cada término del primer

polinomio por cada término del segundo polinomio. Se puede usar un formato vertical (con

tal que conservemos los términos semejantes alineados) como una forma de organizar los

datos. Se procede de la siguiente manera:

133 −+ xx

× 2 4 52x x− +

5 15 53x x+ −

− − +4 12 44 2x x x

2 6 25 3 2x x x+ −

2 4 11 14 19 55 4 3 2x x x x x− + − + −

( )13.5 3 −+⇐ xx

( )13.4 3 −+−⇐ xxx

( )13.2 32 −+⇐ xxx

� División de polinomios:

Ladivisión de un polinomio por un monomio usa las propiedades de las fracciones y las leyes

de los exponentes como se muestra a continuación.

Dividir 15 25 354 3 2x x x+ − por 5 2x

Solución:

15 25 35

5

15

5

25

5

35

5

4 3 2

2

4

2

3

2

2

2

x x x

x

x

x

x

x

x

x

+ −= + −

Page 32: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 27

= + −3 5 72x x

Observación: es válido hacer notar que el monomio divisor debe ser de grado menor o igual

al grado del dividendo para asegurar que el cociente sea un polinomio. Por ejemplo:

Dividir 15 25 354 3 2x x x+ − por 55x

Solución:

5

2

5

3

5

4

5

234

5

35

5

25

5

15

5

352515

x

x

x

x

x

x

x

xxx−+=

−+

32

753

xxx−+= esta expresión algebraica no es polinómica.

2) La división de polinomios se realiza con un algoritmo similar al

de la división entera. Se explicará con un ejemplo.

Dividir x x4 22 8− − por x2 2+

Solución:

Dividendo ⇒ 282 224 +−− xxx ⇐ divisor

x x4 22+ x2 4− ⇐ Cociente

− −4 82x

− −4 82x

0 ⇐ Residuo

El procedimiento es el siguiente:

1. Se divide x4 (el primer término del dividendo) por x2 (el primer término del divisor), para

obtener x2 (el primer término del cociente).

2. Se multiplica x2 2+ (el divisor) por x2 y se escribe el producto x x4 22+ debajo de los

términos correspondientes en el dividendo.

Page 33: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 28

3. Se resta para obtener − −4 82x , el cual se trata como el nuevo dividendo.

4. Se divide −4 2x (el primer término del nuevo dividendo) por x2 , se obtiene -4 (el

segundo término del cociente).

5. Se multiplica x2 2+ por -4 y se resta el producto del nuevo dividendo.

6. Obsérvese que la diferencia anterior es 0, representa el resto de la división e indica que

el polinomio dividendo es múltiplo del divisor.

Analizar el siguiente ejemplo:

Dividir el polinomio 3 2 63 2x x x− − + por x x2 +

Solución:

Dividendo ⇒ 3 2 63 2x x x− − + x x2 + ⇐ divisor

3 33 2x x+ 3 4x − ⇐ Cociente

− − +4 2 62x x

− −4 42x x

2 6x + ⇐ Residuo

En este caso el resto es 2 6x + y su grado es menor que el grado del divisor, por lo tanto la

división está terminada. El polinomio dividendo no es múltiplo del divisor.

Recordar que en la división entera se cumple que D d C R= +. , es decir que el dividendo (D)

es igual al divisor (d) por el cociente (C) más el resto (R), lo cual proporciona una prueba para

la división de polinomios.

TEOREMA DEL RESTO Y FACTOREO

El siguiente teorema relaciona el residuo R obtenido por la división de un polinomio P(x) por

x – c y el valor del polinomio en x = c.

Page 34: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 29

“Cuando un polinomio P (x) se divide por x – c, el residuo R es el valor del polinomio en x = c,

estos es, R = P (c).”

De acuerdo a lo expresado y retomando la expresión para la división entera de poloinomios,

se tiene que el polinomio P(x) podrá ser escrito como

P(x) = ( x – c).C (x) + R (1)

donde C (x) es el cociente de dividir P(x) por x – c y el residuo R es igual a P(c).

Por ejemplo si P (x) = x3 –3. x2 + 4, es posible anticipar cuál será el resto de dividirlo por x – 1,

ya que según el teorema se tendrá:

R = P(1)

R = 13 – 3.12 + 4

R = 2

También se puede escribir P(x) en términos de x – 1 encontrando el cociente C(x) y

utilizando la expresión (1):

P(x) = ( x – 1).C (x) + 2

Si P(c) = 0, entonces x = c se constituye en una raíz de P(x) resultando de (1) la siguiente

expresión:

P(x) = ( x – c).C (x)

donde P(x) queda escrito como un producto, es decir P(x) está factoreado.

Así, si x = 2, se tiene que P (2) = 23 – 3.22 + 4 = 0 y x – 2 será un factor de P(x) y podrá ser

factoreado en términos del divisor, de la siguiente manera:

P(x) = ( x – 2).(x2 – x – 2 )

donde C(x) = x2 – x – 2 es el polinomio cociente.

APLICACIÓN DEL FACTOREO

Page 35: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 30

El cociente de dos polinomios P(x) y Q(x) se denomina expresión racional. Si estos

polinomios tienen en común algún factor entonces es posible simplificarlo y escribir )x(Q

)x(P

en forma más sencilla.

Por ejemplo en la expresión 1x

6x5x3

2

+−−

se tiene que x = - 1 es raíz del numerador y del

denominador. Así ambos podrán ser escritos como producto donde uno de los factores será

( )1x −− , es decir x + 1:

1

6

)1)(1(

)6)(1(

1

65223

2

+−−

=+−+

−+=

+−−

xx

x

xxx

xx

x

xx

El numerador tiene una raíz x = 6 y el denominador tiene raíces complejas conjugadas.

Como no comparten raíces, carecen de factores comunes y no es posible simplificar más la

última expresión. Finalmente se obtiene que

1para1

6

1

6523

2

−≠+−

−=

+−−

xxx

x

x

xx

Nota: La condición 1−≠x debe ser considerada porque las expresiones en ambos miembros

son equivalentes para cualquier valor de x excepto para x = –1, donde la expresión original

no está definida.

EJERCICIOS

Para trabajar en grupo:

1) En cada caso determinar si la expresión algebraica es un polinomio. Si lo es, dar su grado.

a- 8 3+ x b- x x x3 1 3 2+ −

c- 0 2 3 52 2, x x+ + d- 4 55 3 2 4x x x x+ − + −

2) Hallar el valor del polinomio x x2 5 6− + para: (a) x = −3; (b) x = 0; (c) x = 12 .

3) En cada caso, realizar las operaciones indicadas.

Page 36: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 31

a- ( ) ( )1237453 2325 ++−+−+− xxxxxx b- ( ) ( )xxxxx 2312 343 −−+−+

c- ( ) ( )yyyyy 54243 343 −+−−+ d- ( ) ( )132 2553 +−−−−+ xxxxx

e- ( )( )xxxxx 3.32 253 +−+ f- ( )( )1.546 23 +−+ yyy

g- ( )( ) 52.3 32 −+++ xxxx h- ( )22+x

i- ( )22−x j- ( )( )2.2 −+ xx

k- ( )( )13.13 −+ xx l- ( )( )xxxx 72.34.2 3 ++−

4) Hallar el cociente de las divisiones propuestas y luego controlar la operación realizada

utilizando la prueba de la división.

a- ( ) ( )8:742 +−+ xxx b- ( ) ( )1:32 22 +−+ xxx

c- ( ) ( )12:8 34 −++ xxx d- ( ) ( )3:92 +− xx

e- ( ) ( )1:1475 223 −+++− xxxxx f- ( ) ( )xxxx −−+ 23 3:227

Page 37: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 32

TRABAJO PRÁCTICO Nº2

POLINOMIOS

Ejercicio Nº 1: Dados las siguientes funciones polinómicas:

P( )x x= −2 4 Q( )x x x x= + −4 2 62 3

R ( )x x x= − − +6 3 3 2

S( )x x x x= − −4 3 6 T( )x x= −5

i) Indicar el grado de cada una de ellas y determinar los coeficientes de los términos de

grado cero, uno, dos y cuatro.

ii) Encontrar el valor de la función polinómica para los valores de "x" que se indican:

x1 0= x2 3= x3 3= − x4 1= x5 2= − x6 4=

x7 1= −

iii) Ubicar algunos puntos ( , ( ))x xi iP en un sistema de ejes cartesianos e indicar en cuáles de

las funciones polinómicas es posible anticipar su gráfico.

Ejercicio Nº 2:

i) Determinar las raíces reales de cada función polinómica graficada a continuación.

ii) Sabiendo que la forma general de la función polinómica es

( ) nnxaxaxaax ++++= ...P 2

210 , determinar para cada gráfico el valor de "a0" y completar

ecuación que la define.

a) P( )x x a= − +1

2 0 b) P( )x x x a= − +3 320

Page 38: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 33

c) P( )x x x a= − + +5 2020 d) P( )x a= 0

e) P( )x x x a= − +304 f) P( )x x x a= − +4 2

04

Page 39: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 34

g) P( )x x x x a= − + +4 3 206 8 h)P( )x x x x x a= − − + + +4 3 2

04 4 16

i) P( )x x x x x a= − + − − +4 3 204 2 4 j) P( )x x x x a= − + +3 2

06 12

k) P( )x x x a= − +2 420 l) P( )x x x x a= − + +5 3

05 4

Page 40: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 35

Ejercicio Nº 3: Utilizando la raíz y el término a0, graficar las siguientes funciones polinómicas

de primer grado.

a) 13)(P +−= xx b) P( )x x= +1

25

c) P( )x x= +2

3 d) P( )x x= −4

e) P( )x x= − +4

34 f) P( )x x= − + 3

Ejercicio Nº 4: Dados los siguientes polinomios:

P( )x x x x= + − −4 2 133 2

Q( )x x x= + +2 3 92

R ( )x x= − +3 2

S( )x x= −5

T( )x x= 2 2

Encontrar:

a)3. ( )Q x e) S R( ). ( )x x i) T Q( ). ( )x x

Page 41: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 36

b) −5. ( )S x f) T R( ). ( )x x j) Q R( ). ( )x x

c) P Q( ) ( )x x+ g) P R( ) . ( )x x+ 4 k) T S R( ). ( ). ( )x x x

d) Q R( ) ( )x x+ h) Q P( ) ( )x x− l) ( ( ))S x 2

Ejercicio Nº 5: Dados los siguientes polinomios:

i) Predecir el grado de cada uno de ellos.

ii) Reducir a su mínima expresión.

a) P( ) ( )x x x x= − − −7 3 2 f) P( ) .( )x x x x= + −2 2 1 102 2

b) P( ) ( ) ( )x x x= + − +7 5 2 3 g) P( ) ( ).( )x x x= − +10 10

c) P( ) ( ).( )x x x= + −2 2 h)P( ) ( ) ( )x x x x x x= + + + − + +3 2 23 3 1 2 1

d) P( ) ( ).( )x x x= − +3 5 3 5 i) P( ) ( ).( )x x x= − + +2 2 1

e) P( ) ( ).( )x x x= − − +2 3 3 6 j) P( ) ( ).( ) ( )x x x x= + + − +3 2 2 6 10

Ejercicio Nº6: Se dan los siguientes polinomios:

46)(P 2 +−−= xxx 1)(Q −= xx R ( )x x x= + −2 6 4 S( )x x= −4 2

obtener mediante operaciones entre los mismos, un polinomio con las características

indicadas en cada caso.

a) De dos términos.

b) De grado 3.

c) De grado 5.

d) Nulo.

e) Sea un monomio en "x" con coeficiente positivo.

f) Sea un cuatrinomio de 3er grado.

Ejercicio Nº 7: Factorear el polinomio P( )x extrayendo como factor común el indicado en

cada caso.

Page 42: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 37

i) P( )x x x x x= − − +24 18 6 909 6 4 2 a x b x c x) ) )6 3 42 3

ii) P( )x x x x x= + − +4 2 10 205 2 6 3 a x b x c x) ) )1

24 52 4

Ejercicio Nº 8:

i) Usar el algoritmo de la división para encontrar el cociente y el resto de las siguientes

divisiones entre polinomios:

a) ( ) ( )53:10 223 +−+−− xxxxx f) ( ) ( )32:61343 223 −++−+ xxxxx

b) ( ) ( )xxxxx 2:754 223 −−+− g) ( ) ( )xxxxx −++− 224 2:6688

c) ( ) ( )2:875 32 −+++ xxxx h) ( ) ( )12:1392 23 −−−+ xxxx

d) ( ) ( )1:723 −+− xxx i) ( ) ( )2:325 3 +−+ xxx

e) ( ) ( )3:6132 23 ++−− xxxx j) ( ) ( )2:234 23 +−++ xxxx

ii) Verifique cada resultado teniendo en cuenta la relación entre dividendo, divisor, cociente

y resto. (P Q C R( ) ( ). ( ) ( ))x x x x= + .

iii) Escribir el resultado de las divisiones dadas teniendo en cuenta que P

QC

R

Q

( )

( )( )

( )

( )

x

xx

x

x= + .

iv) Factorear cuando sea posible, el polinomio dividendo, de manera tal que uno de los

Factorear sea el divisor.

Ejercicio Nº 9:

Dadas las siguientes divisiones:

a) ( ) ( )3:652 23 −+−− xxxx e)

−−2

1:)

8

1( 3 xx

b) ( ) ( )1:732 23 ++−+ xxxx f) ( )3:)27( 3 ++ xx

c) ( )2:)32( 5 −− xx g) ( ) ( )2:1273 234 ++−+− xxxxx

Page 43: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 38

d) ( ) ( )2:875 23 −+−+ xxxx h) ( ) ( )2:132 234 −−+−+ xxxxx

i) Utilice el Teorema del Resto para establecer si el polinomio dividendo es divisible por el

polinomio divisor.

ii) Cuando sea posible, factorear en término del divisor, aplicando la regla de Ruffini para

encontrar el cociente.

Ejercicio Nº 10: Teniendo en cuenta que: "Un polinomio P( )x tiene un factor x c− , si y sólo

si: P( )c = 0" (Teorema del factor).

i) Establecer si el binomio dado x c− es un factor del polinomio P( )x .

a) P( ) ;x x x x x= + + + +3 26 11 6 1

b) P( ) ;x x x x x= + − − −3 25 2 24 3

c) P( ) ;x x x x= − + + +3 7 6 2

d) 1;4434)(P 234 +−−++= xxxxxx

e) P( ) ;x x x x x x= − + + − −4 3 28 7 72 144 4

f) P( ) ;x x x x x= − + − −3 26 11 6 1

ii) Si lo es, factorear P( )x .

Ejercicio Nº 11:

i) Establecer si existe un factor " x c− " para los siguientes binomios:

a) x3 1+ f) 2 3+ x k) 16 92x −

b) x2 4− g) 14 +x l) 2 3− x

c) 12 −x h) 9 12x − m) x 4 3−

d) x2 4+ i) x2 5− n) 1

83− x

Page 44: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 39

e) x5 32− j)1

325+ x

ii) Factorear los binomios dados.

Ejercicio Nº 12:

i) Para cada polinomio de segundo grado, encontrar los Factorear (x c− ).

a) P( )x x=1

22 b) P( )x x= −2 1

c) P( )x x= − +2 4 d) P( )x x x= + +2 4 4

e) P( )x x x= − −2 2 42 f) P( )x x x= − + −1

32 32

g) P( )x x= − 2 h) P( )x x x= + −3 3 182

i) P( )x x= − +3 272 j) P( )x x x= − +2 6 9

ii) Factorear los polinomios dados en término de uno de los factores encontrados.

iii) Escribir los polinomios dados como producto de sus factores.

Ejercicio Nº 13: Dar la expresión general de la forma factoreada del polinomio de segundo

grado.

Ejercicio Nº 14: Graficar las funciones polinómicas del ejercicio anterior utilizando las raíces

obtenidas.

Ejercicio Nº 15: Graficar las siguientes funciones polinómicas de segundo grado cuyas raíces

son números complejos:

a) P( )x x= +2 1 b) P( )x x= − −2 4

c) P( )x x x= − +2 4 5 d) P( )x x x= + +2 2 10

Page 45: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 40

Ejercicio Nº 16: Relacionar cada una de las gráficas con su respectiva fórmula.

Ejercicio Nº 17: De ser posible, simplificar las siguientes expresiones racionales.

a) x

x x

2

2 2+ b)

9 12 15

3

2 8 6

3

y y y

y

+ − c)

− + −−

6 9 12

2

3 6 9

3

a a a

a

d) n

n

−−1

12 e)

x x

x x

2

2

6 5

2

+ +− −

f) 4 12 9

4 9

2

2

x x

x

+ +−

g) 3 10

5 3

2

2

x x

x x

+ −−

h) 3 3 6

2 6 4

2

2

x x

x x

+ −+ +

i) 2 2 1

1

3 2

2

x x x

x

− − +−

j) x x

x

2 5

5

−−

k) 8 3

2

−−x

x x l)

n

n n n

2

3 2

1

1

−− + −

m) x x

x x x

3

3 22

−− +

n) 2 4

5 2 243 2

x

x x x

++ − −

ñ) 2 3 1

2 1

3 2x x x

x

+ − +−

Ejercicio Nº 18: Resolver las siguientes ecuaciones.

a) 032 =+ xx b) 0442 =++ xx c) 096 23 =+− xxx

Page 46: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 41

d) 086 234 =+− xxx e) ( ) ( ) 04.4. 2 =−+− xxx f) 32

1

3

22

=−xx

g) 4 2

2

2

42

−⋅

+−

=x x

xx h)

x

x

x x

x

−+

++

=2

3 1

2

20

2

( ): i)

4

9

6 9

322

2

x

x x

x−⋅

+ ++

=

j) 322

2

=+ xx

x k)

3

7

8

50

x

x +− = l)

2 5

1

30

2

x

x x x

−+

−+

=

m) x x

x x x

3

3 22

−− +

= ( )1+x n) ( )

0254

23

52

522

=−−

++ x

x

x

x o)

24

16

5

4

3

42x x x−+

+=

Si no puede realizar algún ejercicio o tiene dudas, concurra al horario de consulta de la Cátedra.

Page 47: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 42

UNIDAD III - ANÁLISIS DE RELACIONES NUMÉRICAS Y FUNCIONALES

En esta unidad trabajaremos fundamentalmente en la resolución de situaciones

problemáticas utilizando todas aquellas herramientas matemáticas disponibles. Para

resolverlas es conveniente que considere las siguientes cuestiones:

Entender el problema. Analizar los enunciados, identificar los datos y las

incógnitas. Muchas veces le ayudará realizar un gráfico, introducir una

notación conveniente, o dividir el problema en partes.

Comparar lo dado con lo que debe demostrar. Piense si ya ha resuelto un

ejercicio semejante.

Elaborar un plan y ejecutarlo. Éste es el paso más difícil, debe encontrar el

camino que lo lleve a la solución y traducir el problema a una ecuación.

Corrobore cada paso dado.

Encontrar la respuesta y comprobarla.

.

Si no puede realizar algún ejercicio o tiene dudas, concurra al horario de consulta de la Cátedra.

Page 48: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 43

RELACIONES PROPORCIONALES

RELACIONES DIRECTAMENTE PROPORCIONALES

INTRODUCCIÓN

Ejemplo 1:

La tabla muestra la relación entre las horas trabajadas y el dinero en pesos que obtuvo Juan

trabajando a razón de $3.00 por hora.

x = Horas Trabajadas 0 1 2 3 4

y = Pesos Ganados 0 3 6 9 12

En esta tabla, podemos ver que el dinero ganado (y) es igual al producto de las horas

trabajadas (x) por 3. La relación está dada por y = 3x

Observe que cada vez que aumenta una hora trabajada, los pesos ganados aumentan en 3.

Se dice que 3 es la constante de variación o proporción.

Otra manera de decir eso es que la razón de cambio es igual a 3.

Ejemplo 2

La tabla siguiente muestra la relación entre el número de cajas de leche y el número de

botellas que contienen.

x = Cajas de Leche 0 1 2 3 4

y = Botellas de Leche 0 4 8 12 16

En esta tabla, podemos ver que cada caja de leche contiene 4 botellas y que el número de

botellas de leche (y) se obtiene multiplicando el número de cajas de leche (x) por 4.

La relación está dada por y = 4x

4 es la constante de variación o proporción.

Definición:

Dadas dos variables x e y, cuando y = kx (k pertenece a los reales), se dice que

Page 49: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 44

y es directamente proporcional a x y que k es la constante de variación o de

proporcionalidad. K representa la razón de cambio de la relación.

Es decir, cada vez que x aumenta una unidad, y aumenta k unidades.

Para encontrar la constante de proporcionalidad analicemos el ejemplo:

Ejemplo 3: Cuando x = 200, entonces y = 210. Escriba la fórmula que expresa que la relación entre x e y

es directamente proporcional.

Paso 1: Traducir el enunciado a una fórmula de variación directa.

y es directamente proporcional a x

y = k·X

Paso 2: Sustituir valores conocidos para encontrar k.

210 = k· 200

k=210/200=1.05

Paso 3: Sustituir k y escribir la fórmula.

y =1.05x

Resolver:

1) w es directamente proporcional a m. Si w = 42 cuando m = 6, encontrar el valor

de m cuando w = 140

2) A varía directamente con respecto a b. Si A = 3 cuando b = 8, encontrar el valor

de A cuando b = 1000

3) El importe del impuesto sobre ventas de un auto nuevo es directamente

proporcional al precio de venta del auto, si un auto de $95000 paga $1750 de

impuesto sobre ventas. ¿Cuál es el precio de venta de un coche nuevo que tiene un

impuesto sobre ventas de $3500?. De la ecuación correspondiente e identifique la

constante de proporcionalidad k.

Page 50: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 45

RELACIONES INVERSAMENTE PROPORCIONALES

INTRODUCCIÓN

Ejemplo 1:

Trabajadores (x) 1 2 3 4

Horas para completar un trabajo (y) 12 6 4 3

La tabla anterior muestra la relación entre el número de trabajadores y la cantidad de horas

necesarias para completar el trabajo, si se asume que un solo trabajador necesita 12 horas

para completar el trabajo.

En esta tabla, se puede concluir que la cantidad de horas necesarias para completar el

trabajo es igual a 12 dividido entre el número de trabajadores.

y=12/x

k = 12 , es la constante de variación o proporción.

Mientras el número de trabajadores se incrementa (x), el número de horas para completar el

trabajo disminuye (y).

Ejemplo 2:

Velocidad (km/h) 1 2 4 8

Horas para completar la

vuelta 8 4 2 1

Ana correrá una carrera de 8 kilómetros en bicicleta. La tabla anterior muestra la relación

entre la velocidad con que pedalea y el número de horas requeridas para completar la vuelta

(asumimos que la velocidad es constante). De esta tabla, podemos ver que el número de

horas necesarias para arribar a la meta es igual a 8 dividido la velocidad con que pedalea.

Y = 8/x.

K = 8, es la constante de variación o proporción. Mientras Ana incrementa su velocidad, el

número de horas para completar el circuito disminuye.

Page 51: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 46

Definición

Dadas dos variables x e y:

y es inversamente proporcional a x significa que

y = k/x

para algún número real fijo diferente de cero “k”, y se llama constante de

variación o constante de proporcionalidad.

Para encontrar la constante de proporcionalidad analicemos el ejemplo:

Ejemplo 3: r es inversamente proporcional a s. Si r = 15 cuando s = 3, escriba la fórmula de la relación

entre r y s.

Paso 1: Traducir el enunciado a una fórmula de variación inversa.

r es inversamente proporcional a s significa

r = k/s

Paso 2: Sustituir las variables conocidas para encontrar k.

15 = k/3

k =15.3 = 45

Paso 3: Sustituir k y escribir la fórmula.

r = 45/s

Resolver

1) c varía inversamente con d. Si c = 100 cuando d = 0.2, escriba la fórmula para la

relación entre c y d.

2) El tiempo para completar un proyecto es inversamente proporcional al número de

personas que están trabajando en el proyecto. Un determinado proyecto puede ser

completado por 5 trabajadores en 24 días. Con el fin de terminar el proyecto antes, la

empresa planea contratar a más trabajadores. ¿Cuántos trabajadores se necesitan

para terminar el proyecto en 15 días?

Page 52: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 47

TRABAJO PRÁCTICO Nº3

Ejercicio Nº1: Completar el siguiente cuadro según se muestra en la primera fila

Lenguaje corriente Expresión

Algebraica

El doble de x por y (2x)y

Un número cualquiera

El triplo de un número

x/2

Un número par

2x + 1

½ (x + y)

- 2x2

La raíz cuadrada de un tercio de x

0,25 (x – y)

La suma de 14 más otro número es 19

Ejercicio Nº2: Un mayorista de muebles gana 25% sobre el costo de cada artículo que vende:

a) Si un escritorio lo compró a $250 ¿A cuánto deberá venderlo?

b) Si vendió una silla giratoria a $350 ¿cuál fue el precio de costo?

Ejercicio Nº3: Si el precio de costo de un auto es de $73.000 y la concesionaria lo vende a

$87.000 ¿cuál es la variación porcentual de aumento con respecto al costo?

Ejercicio Nº4: Para realizar un viaje de estudios del último año de la escuela se contratará un

colectivo que cuesta $ 4600. El 45% del valor del viaje lo pagará la cooperadora de la

escuela, 2/5 partes de lo que falta estará a cargo de los padres y para pagar el resto se

organizará un evento deportivo.

Page 53: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 48

a) ¿Cuánto dinero aporta la cooperadora?

b) ¿Qué porcentaje deben pagar los padres?

c) ¿Cuánto dinero deberán recaudar en el evento deportivo?

Ejercicio Nº5: Un vendedor de telas gana el 30% sobre cada producto que vende. (a) Si un

producto A le costó $560 ¿a cuánto debe venderlo? (b) Y si a otro producto B lo vendió a

$1800, ¿Cuál fue el precio de costo?

Ejercicio Nº6: La municipalidad de la ciudad de Posadas está realizando obras de

pavimentación y cordón cuneta en las calles del Barrio Norte A. Una cuadrilla de obreros ha

hecho las 3/5 partes de la cuneta de la calle Nº3 y otra cuadrilla el 20% de la calle Nº81.

Realiza una representación gráfica esquemática de cada calle y pinta la parte realizada por

cada grupo de trabajadores considerando que las calles miden 100 m de largo cada una.

Ejercicio Nº7: Indicar como fracción y porcentaje cuánto representan dos porciones de una

pizza que está dividida en 8 partes iguales. Represente gráficamente.

Ejercicio Nº8: Dos amigos decidieron comprar un billete de lotería que les costó $250. Juan

pagó 15% menos que Bruno. ¿Cuánto pagó cada uno?

Ejercicio Nº9: ¿Cuántas vacas formaban un lote si el dueño sacó primero la cuarta parte de

los animales para llevarlos a otro potrero, a la semana vendió la mitad de lo que quedaba,

pasados 5 días murieron tres y actualmente quedan 27?

Ejercicio Nº10: Juan y Lucía compraron un libro de Contabilidad al cursar la materia en el año

2011 que les costó $120, Juan puso el 37% del valor y Lucía el resto. Al año siguiente lo

vendieron por 2/3 del valor original y se repartieron el dinero en las mismas proporciones de

lo invertido. ¿Cuánto recibió Lucía?

Ejercicio Nº11: Al comprar una remera que cuesta $125, me ofrecen tres opciones de pagos

Page 54: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 49

Opción 1: Si pago de contado me harán un descuento del 15%.

Opción 2: Si pago con tarjeta de débito abonaré $143,75.

Opción 3: Si financio el pago en 5 cuotas, el recargo total será del 10% y en cada

cuota abonaré 1/5 del valor total.

Con esa información, responda:

a) Si dispusiera de $ 725, ¿Cuántas remeras podré comprar si pago de contado?

b) ¿A cuánto ascenderá cada cuota si opto por la opción 3 e invierto $1.000?

c) Con $650 ¿Cuál es el número máximo de remeras que podré adquirir según la opción 2?

d) ¿Cuánto ahorro si compro 10 remeras de contado, con respecto al pago con débito?

e) Opto por la opción 1 y compro 2 remeras: ¿el descuento será del 15% o del 30% sobre el

total? Justifique.

Ejercicio Nº12: La tierra tiene aproximadamente 1,3.104 km de diámetro y la luna 3,5.102

km. a) ¿cuántas veces es el diámetro de la tierra respecto del de la luna? b) ¿Qué porcentaje

representa el diámetro de la tierra respecto del de la luna? c) Calcule el diámetro

aproximado del sol si es 100 veces el de la tierra. Notación Científica

Ejercicio Nº13: Estime la cantidad kilos de basura que genera diariamente cada habitante en

un país si se sabe que la producción total anual es de 15,5 millones de toneladas y que el

total de habitantes es de 23 millones.

Ejercicio Nº14: Carla cobró el sueldo (S), y gastó $175 en un libro. Un cuarto de lo que le

quedó luego de adquirir el libro lo utilizó para realizar compras en el supermercado. Si aún le

quedan $2400. ¿Cuáles de las opciones siguientes son verdaderas?

a) Luego de ir a la librería a Carla le quedarán:

a.1) 2400 - 175

a.2) (S – 175)

a.3) Ninguna

Page 55: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 50

b) Si Carla gastó ¼ de lo que le quedaba en el supermercado, la ecuación que lo representa

es:

b.1) (s – 1/4s)

b.2) 1/4 (s – 175)

b.3) (s – 175) – (1/4s)

b.4) Ninguna

c) La relación que se plantea entre sueldo y gastos que realiza Carla se puede representar

por la ecuación:

c.1) s = (S – 175) - 1/4 (s – 175) + 2400

c.2) 2400 = S – 175 – ¼(s – 175)

c.3) Ninguna

Ejercicio Nº15: A partir de los siguientes enunciados, agregue una pregunta y resuelva la

ecuación que queda planteada:

a) “El precio de 5 kilos de pan es de $64”

b) “El 10% de un número es 40”

Ejercicio Nº16: Magia: Un mago realiza el siguiente truco: Le pide a un integrante del público

que piense un número y lo multiplique por 2; al resultado le sume el número siguiente al que

pensó, luego sume 8 y divida por 3. Finalmente reste el número que pensó. Le queda 3.

Arme la ecuación y encontrará la explicación de por qué este truco funciona siempre.

Ejercicio Nº17: Un repartidor de soda lleva en las botellas llenas, con tan mala suerte que

tropieza y se le rompe 2/5 de la mercancía. Entonces vuelve al camión y recoge 21 sifones

más, con lo que ahora tiene 1/8 más de la cantidad inicial. ¿Cuántos sifones tenía al

principio?

Ejercicio Nº18: El recargo por pago con tarjeta de un producto es del 15%. Indicar cuál o

cuáles de las siguientes expresiones simbólicas representan la situación planteada. Para P:

Page 56: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 51

precio de venta con tarjeta y C: precio de venta de contado

a)P = C + 15% b) P = C + 15% P c) P = C + 15% C d) P = C (1, 15)

Ejercicio Nº19: Un cartel indica que los días martes el Supermercado A realiza descuentos

del 15% en productos de almacén. Indicar cuál o cuáles de las siguientes expresiones

simbólicas representan la situación para un bidón de cinco litros de aceite que cuesta $46.

(Para: D: precio de venta con descuento y C: precio de sin descuento).

a) D = 45 -15% b) D = C - 15% D c) D = C - 15% C d) D = C (0,85)

Ejercicio Nº20: ¿Cuáles son los números cuyo doble excede a su mitad más treinta?

Ejercicio Nº21: La bodega “los Paraísos” paga a sus viajantes $10 por botella de vino

vendidos más una cantidad fija de $500. La bodega “Las Conde” de la competencia paga $15

por artículo y $300 fijos. ¿Cuántas botellas debe vender el viajante de Las Conde para ganar

más dinero que uno de los Paraísos?

Ejercicio Nº22: Si al doble de un número positivo le restamos la mitad de su cuadrado y da

por resultado cero ¿Cuál es ese número?

Ejercicio Nº23: Si a un número par lo nombramos “2x”, entonces a un número impar lo

nombramos como (2x+1) ó (2x-1). Con esa información halle dos números impares

consecutivos cuyo producto de por resultado 323.

Ejercicio Nº24: Analice las siguientes relaciones e Indicar cuáles son directamente

proporcionales, cuáles son inversamente proporcionales y cuáles no mantienen relación de

proporcionalidad.

a) Cantidad de kilos de papas comprados y precio final pagado por la compra.

b) Tiempo que tarda un coche en recorrer una distancia. (velocidad constante)

c) Número de páginas de un libro y su precio.

Page 57: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 52

d) Cantidad de días que tarda un determinado número de obreros para levantar una pared

a ritmo constante.

Ejercicio Nº25: Un ganadero tiene forraje suficiente para alimentar 220 vacas durante 45

días. ¿Cuántos días podrá alimentar con la misma cantidad de forraje a 450 vacas?

Ejercicio Nº26: Sea la la función polinómica de grado 1: y = 2x

a) Represente gráficamente en un sistema de coordenadas cartesianas usando la raíz y la

ordenada al origen.

b) Analice si las variables mantienen una relación de proporcionalidad directa o inversa.

Justifique.

Ejercicio Nº27: Sea la función polinómica y = x

a) Clasifique al polinomio que caracteriza a la función.

b) Analice si las variables mantienen una relación de proporcionalidad.

c) En caso de que la relación sea de proporcionalidad, clasifíquela y de la constante de

proporcionalidad.

d) Represente gráficamente en un sistema de coordenadas cartesianas.

e) De el valor de la/las raíces y de la ordenada al origen y señálelas en el gráfico.

Ejercicio Nº 28: Por cada $100 que se invierten en un banco, el banco paga $5 de interés

simple por año. Calcule:

a) ¿Cuánto dinero se retirará al cabo de 7 años si depositan $1500?

b) Elija alguna de las siguientes fórmulas que sirva para representar la relación entre las

variables para “I” que representa al interés en pesos y “T” al tiempo en años: i) I = 1.500.

0, 5. T ii) I = 1.500 . 0, 05. T iii) T = 1.000. 0,05. I

Ejercicio Nº 29: Candelaria se ubica en el sudoeste de la Provincia de Misiones a 23

kilómetros de la ciudad de Posadas. Otras de las ciudades cercanas son: Garupá a 16

kilómetros de distancia; Santa Ana a 22 kilómetros y San Ignacio a 36 kilómetros.

Page 58: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 53

a) Calcule cuánto tiempo tarda un ciclista para arribar a Candelaria desde esas localidades.

b) Si el ciclista sale a las 06 AM ¿a qué hora llegará a Santa Ana?

c) Indicar si las siguientes proposiciones son verdaderas o falsas:

c1) Si aumenta la distancia recorrida por el ciclista, aumenta el tiempo utilizado en

recorrerla.

c2) Si pedalea dos horas, entonces recorre 40 kilómetros.

c3) La razón entre el tiempo y la distancia recorrida es constante.

c4) Si se duplica el tiempo pedaleado, entonces se triplica la distancia recorrida.

c5)Si se multiplica el tiempo por una constante positiva cualquiera, entonces la distancia

recorrida correspondiente al nuevo tiempo resulta de multiplicar la distancia por la

misma constante.

c6) La relación entre las horas pedaleadas y la distancia recorrida es una función de

proporcionalidad directa.

c7) La constante de proporcionalidad es 15.

Ejercicio Nº 29: Para envasar cierta cantidad de vino se necesitan 8 toneles de 200 litros de

capacidad cada uno. Queremos envasar la misma cantidad de vino empleando 32 toneles.

a) ¿Cuál deberá ser la capacidad de esos toneles?

b) Analice si las variables mantienen una relación de proporcionalidad. En caso afirmativo

indique si es directa o inversa e identifique la constante de proporcionalidad.

c) Represente gráficamente en un sistema de coordenadas cartesianas.

d) De el valor de la/las raíces y de la ordenada al origen y señálelas en el gráfico.

Si no puede realizar algún ejercicio o tiene dudas, concurra al horario de consulta de la Cátedra.

Page 59: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 54

EVALUACIONES DE AÑOS ANTERIORES EVALUACIÓN DE ÁREA MATEMÁTICA Ingreso 2014 - FECHA: 06/03/2014 Ejercicio1: (6p)

a) Completar para x = 1/2:, entonces (-x) =……. -(-x) =……….1/(-x) =………..(x) -1 =……

b) Calcular: -2/3a(c-b)+ [ 3(a +b)c – a (2b+c)] -3ac. (Llegar a la mínima expresión)

c) Resolver: (1-1/2). 0,3+[ (1/2)-1.(2/3) – 0,25 ] + 0,1=

d) Representar en la Recta Real el conjunto de números enteros x que verifican: -3,5< x < 3

e) Colocar el signo:� � � según corresponda: (1/5)-3…….1/(5-3)

f) Resolver la siguiente expresión y expresar en forma simplificada y con exponentes positivos: (x/y)-2 + (x-2/y-2)

g) Resolver: =

5

5

5a a

1log (para a > 0 y a ≠ 1)

h) Completar: log 7 343 = ……porque……….(aplicar definición de logaritmo)

i) Resolver: (y -1)2 – (y+1)2

Ejercicio 2: (2p) Sea P(x) = 2x3 +2x4 -3 -3x, a) Indicar si x = -1 ´o x = -3 son raíces del polinomio. Justificar la respuesta. De ser posible factorear P(x) en función de la o las raíces halladas. b) Encontrar el valor de la ordenada al origen. c) Uno de los gráficos siguientes corresponde a P(x), indicar cuál es y Justifique su elección.

Ejercicio 3: (2p) Resolver: Se reparte una herencia entre tres herederos, Juan, Pedro y Marta. A Juan le tocan las dos quintas partes, y a Pedro las tres décimas partes. a) ¿Qué porcentaje reúnen entre Juan y Pedro? b) Si la herencia a repartir es de 60.000, ¿cuánto dinero le toca a cada uno? c) ¿Qué porcentaje cobró el abogado por el tramite si el monto inicial a repartir era de $ 61600?

EXAMEN LIBRE. CICLO DE NIVELACIÓN – ÁREA MATEMÁTICA - FECHA: JULIO/2013

Tema 1

Page 60: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 55

Ejercicio1: Sea P(x) = �−4x+x + 8 + 2x� Q(x) = �−4 + x� (2puntos)

a) Utilice el teorema del resto para saber si Q(x) es divisor de P(x). (b)De ser posible factoree

el polinomio dividendo en términos del divisor. (c) De el valor numérico del polinomio

dividendo cuando x toma el valor (- 1/7). (d) Para el polinomio Q(x): Grafique la función en

un sistema de coordenadas cartesianas, señale en el gráfico la ordenada al origen, la o las

raíces y de su valor.

Ejercicio 2: Resuelva las ecuaciones, verifique los resultados y dé el conjunto solución

(4puntos)

a) � + ���� − ����

� � −� b) 5x4 + 4x2 = 1/(2x) -2 c) ������ −�/�

d) Simplifique la siguiente fracción hasta su mínima expresión ������������������

Ejercicio 3: a) El recargo por pago con tarjeta de un producto es del 15%. Indique cuál o

cuáles de las siguientes expresiones simbólicas representan la situación planteada para P:

precio de venta con tarjeta C: precio de venta de contado. Explique su elección

a1) P = C + 15% a2) P = C + 15% P a3) P = C + 15%C a4) P = C (1,15)

(2puntos)

Ejercicio 4: Lucio viaja en colectivo desde Iguazú a Posadas, recorriendo una distancia de

320 kilómetros. Si viaja en automóvil a una velocidad constante de 110 km/hora:

a) ¿Al cabo de cuánto tiempo llega a destino?

b) ¿Cuánto tiempo pasa cuando recorre 2/5 del camino?

c) ¿Qué porcentaje del total del camino a recorrer hace al cabo de 45 minutos?

(2puntos)

Page 61: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 56

EXAMEN LIBRE. CICLO DE NIVELACIÓN – ÁREA MATEMÁTICA – FECHA: Marzo/2013

Ejercicio 1: Irene tiene un sueldo de $1200 mensuales. Gasta una tercera parte en el alquiler

del departamento que comparte con una amiga. Del resto, dedica 42% alimentación y gastos

de la casa y 2/5 a ocio y entretenimiento. (2p)

a) ¿Qué fracción del sueldo dedica a alimentación y gastos de la casa?

b) ¿Qué parte del sueldo gasta mensualmente y qué parte ahorra?

c) ¿Cuánto paga de alquiler?

Ejercicio 2: A partir de las siguientes expresiones: (2p)

a) Resuelva:� � : −4 =

b) Indique si es verdadera o falsa. Para las que sean falsas, de la respuesta correcta:

i) � � �

� ii)

+

� �

"

c) 9,2x10-5 =…………………….. (Exprese en notación corriente)

d) Aplique la/las propiedades y exprese como suma o resta según corresponda:

(-3) (–x+1/3) =………………

Ejercicio3: Simplifique las siguientes expresiones: (2p)

I. ���

�#� �$�

� ⋯�expreseelresultadousandoexponentespositivos�

II. ��3

��� �…… ..

Ejercicio4: a) √3 �7��

�8 � 0 b)log (2x - 4) = 1 (2p)

Ejercicio 5: Para el polinomio P(x) = (-1/3)x2+2x - 3 a) Factoree la expresión en función

de las raíces

b) Grafique la función asociada a P(x) ; c) Diga si P(x) es divisible por Q(x) = x-1/2.

Justifique su respuesta. (2p)

Page 62: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 57

EXAMEN PROMOCIONAL - CICLO DE NIVELACIÓN – ÁREA MATEMÁTICA Fecha: 06/03/2012

Ejercicio 1:

a) Indicar la propiedad de los números reales que justifica la siguiente igualdad:

2(a+b)*(a+b) =2(a+b)2. (b) Expresar el resultado de la siguiente operación en notación

científica: 1,4*1010 * 0,0000301 c) Indicar el mayor número racional x que verifica que x <

5/3

Ejercicio 2: Resolver las ecuaciones y verificar que los valores obtenidos son posibles

soluciones. En caso de no serlo, justificar la respuesta.

a) log 5 (x+1) + log5 (x+1)2 = log5 (4)6 -3 log5 b) √x# − 3 � �−2�x

Ejercicio 3: Representar gráficamente una función cuya relación está dada por el polinomio

P(x) = (x-1)2. De ser posible, encontrar la/las raíces y señalarlas en el gráfico. En el mismo

gráfico representar una función cuya relación esté dada por un polinomio de grado 1 cuya

ordenada al origen sea (7/3).

Ejercicio 4: Simplificar 1

653

2

+−−

x

xx hasta llegar a la mínima expresión.

Ejercicio 5: Juan y Lucía compraron un libro de Contabilidad al cursar la materia en el año

2010 y les costó $120, Juan puso el 37% del valor y Lucía el resto. Al año siguiente lo

vendieron y se repartieron el dinero en las mismas proporciones de lo invertido. Lucía

recibió $56, ¿A cuánto se vendió el libro en el año 2011?

Ejercicio 6: (a) Comprobar por el teorema del resto si (1) ó (-1) son raíces de

P(x) =2x3 + x2 - 5x + 2,. (b)Hallar las raíces del polinomio y factorearlo completamente

-----------------------------------------------------------------------------------------------------------------

EXAMEN PROMOCIONAL - CICLO DE NIVELACIÓN – ÁREA MATEMÁTICA. Fecha 28/02/2012

Ejercicio 1: En un colegio se quiere organizar una excursión en primavera. Se contrata un

colectivo con conductor que dispone de 40 plazas para alumnos y cuesta $3600. Si se llena el

colectivo, ¿cuánto debe pagar cada alumno? ¿Y si sólo se cubren la mitad de las plazas?

Page 63: Matematicas - Carreras de Grado

Facultad de Ciencias Económicas – Ciclo de Nivelación – Área Matemática- 58

Ejercicio 2:

2.1. Sea un polinomio P(x) divisible por el binomio (x – a): Indicar cuál/cuáles de las

siguientes afirmaciones son verdaderas:

a) La división del polinomio P(x) por el binomio (x - a) es exacta.

b) (x - a) es un factor del polinomio: P(x) = (x - a) C(x), siendo C (x) el cociente de P(x)

: (x-a)

2.2. Expresar en notación científica el número 1/789.

Ejercicio 3: Expresar como producto de factores el polinomio P(x) =2x3 + x2 - 5x + 2,

sabiendo que una raíz toma el valor 1(uno)

Ejercicio 4: Representar gráficamente una función cuya relación está dada por el polinomio

P(x) = (x – 2)2. De ser posible, señalar la/las raíces en el gráfico. Indicar el valor de la

ordenada al origen.

Ejercicio 5: Resolver

5.1. 1253x-10 = 254x+11 5.2. log (x+6) - log(2x-1) = 0

Ejercicio 6: Simplificar bx

bx

bxb

bbxx

+−

+++ 22

2

22

:2

hasta llegar a la mínima expresión.

Ejercicio 7: Indique cuál o cuáles de las siguientes afirmaciones es/son correctas:

La siguiente gráfica corresponde a la función polinómica:

Ningunad

xxxc

xxxb

xxxa

)

)1(*)3(2)()

)1(*)62()()

842)() 2

+−−=−−−=

+−=

P

P

P