master en ingenierÍa de materiales · 2017-07-20 · materiales por la universidad politécnica de...

79
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS CURSO ACADÉMICO MASTER EN INGENIERÍA DE MATERIALES UNIVERSIDAD POLITÉCNICA DE MADRID E.T.S. Ingenieros de Caminos, Canales y Puertos Calle Profesor Aranguren, s/n. 28040 Madrid

Upload: others

Post on 05-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS CURSO ACADÉMICO

MASTER EN INGENIERÍA

DE MATERIALES

UNIVERSIDAD POLITÉCNICA DE MADRID E.T.S. Ingenieros de Caminos, Canales y Puertos Calle Profesor Aranguren, s/n. 28040 Madrid

Page 2: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado
Page 3: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 3 de 79

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

Resumen de la Programación Docente del curso académico

2017-18 del título oficial de master

Master en Ingeniería de Materiales

El presente documento contiene un resumen de la programación docente del curso 2017-18 correspondiente a las asignaturas de los planes de estudios del título de Máster en Ingeniería de Materiales.

El Master en Ingeniería de Materiales que se imparte en la E.T.S. Ingenieros de Caminos, Canales y Puertos de la UPM, tiene su continuación partiendo del Grado en Ingeniería de Materiales. Las enseñanzas de grado y máster han sido diseñadas de forma conjunta.

Las enseñanzas del título de Master, de 18 meses de duración, comenzaron en el curso 2013-2014, y se imparten en la práctica totalidad en inglés, aunque alguna asignatura se oferta en español.

Este documento se elabora a modo de resumen de la programación docente para los alumnos de master. Contiene, en su primera parte, una breve descripción del plan de estudios, y luego recoge el calendario académico y el horario de las asignaturas. En su segunda parte, se incluye información básica sobre cada una de las asignaturas que se imparten en la actualidad.

Page 4: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado
Page 5: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 5 de 79

Índice

Índice ................................................................................................................................................. 5

Plan de estudios del título de Master en Ingeniería de Materiales .............................................. 6

Programación docente 9

Calendario académico ..................................................................................................................... 9

Horario de clases ........................................................................................................................... 11

Exámenes: Master .......................................................................................................................... 14

Asignaturas y profesorado ............................................................................................................ 19

Primer Semestre 23

314 Structural Characterization of Materials I: Microscopy and Diffraction ............................ 23

315 Structural Characterization of Materials II: Spectroscopy .................................................. 25

316 Mechanical Characterization and Analysis .......................................................................... 28

317 Optical, Electrical and Magnetic Characterization of Materials.......................................... 30

318 Advanced Numerical Methods ............................................................................................... 33

319 Materials Selection .................................................................................................................. 35

320 Modelling and Simulation In Material Science and Engineering ........................................ 37

321 Materials Economics and Management ................................................................................ 39

Segundo Semestre 41

322 Forensic Engineering: In Service Failure Analysis ............................................................. 41

324 Structural Integrity .................................................................................................................. 43

325 Design and fabrication of advanced composite materials ................................................. 45

326 Quality Management and Metrology ..................................................................................... 47

327 Advanced Forming Processes ............................................................................................... 49

328 Impact Behaviour of Materials ............................................................................................... 51

330 Materials Under Extreme In-service Conditions .................................................................. 53

331 Materials for sport ................................................................................................................... 55

332 Materials for Transportation................................................................................................... 57

333 Materials for aerospace industry ........................................................................................... 59

334 Functional Materials at Macro and Micro/Nanometre Scales ............................................. 61

335 New Emerging Materials and Technologies ......................................................................... 63

337 Materials for Electronic and Optoelectronic Devices .......................................................... 65

338 Materials for Photonic Devices .............................................................................................. 67

339 Polymeric materials for advanced applications ................................................................... 70

340 Materials and applications in nanotechnology .................................................................... 72

341 Materials and microfabrication technologies for electronic devices ................................ 74

342 Spintronic and Nano magnetism ........................................................................................... 76

356 Materials for Renewable Energies ......................................................................................... 78

Page 6: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 6 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Plan de estudios del título de Master en

Ingeniería de Materiales

La Memoria del plan de estudios del título oficial de Master en Ingeniería de Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado en el Boletín Oficial del Estado.

El aprendizaje está organizado en 72 créditos ECTS, de los que 60 corresponden a la docencia reglada y 12 del trabajo fin de master. Está estructurado en dos semestres de 30 créditos europeos. El plan cuenta con diversas menciones diferentes (itinerarios), sin embargo todos no está implantados en la actualidad. Los itinerarios que se ofertan actualmente son los siguientes:

Ingeniero de Materiales, sin especialidad. El alumno debe completar los 30 ECTS del mocdulo común del primer semestre, y 30 ECTS de segundo semestre de cualquiera de las asignaturas de los modulos de especialidad (se cosideran aqui todas como optativas), y 12 ECTS del trabajo fin de master.

Ingeniero de Materiales, especialidad en Materiales Estructurales. El alumno debe completar los 30 ECTS del modulo común del primer semestre, y 30 ECTS de segundo semestre de cualquiera de las asignaturas de los modulos de especialidad de estructurales (A), y 12 ECTS del trabajo fin de master.

Ingeniero de Materiales, especialidad en Materiales Funcionales. El alumno debe completar los 30 ECTS del modulo común del primer semestre, y 30 ECTS de segundo semestre de cualquiera de las asignaturas de los modulos de especialidad de funcionales (B), y 12 ECTS del trabajo fin de master.

En las tablas siguientes se muestran las asignaturas que conforman el plan de estudios que se ofertan, indicando los créditos europeos correspondientes y el semestre en el que se imparten.

Primer semestre ECTS Tipo

Módulo Común 30

314 Structural Characterization of Materials I: Microscopy and Diffraction

5 Obligatoria

315 Structural Characterization of Materials II: Spectroscopy 5 Obligatoria

316 Mechanical Characterization and Analysis 4 Obligatoria

317 Optical, Electrical and Magnetic Characterization of Materials 4 Obligatoria

318 Advanced Numerical Methods 3 Obligatoria

319 Materials Selection 3 Obligatoria

320 Modelling and Simulation In Material Science and Engineering 3 Obligatoria

321 Materials Economics and Management 3 Obligatoria

Page 7: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 7 de 79

Segundo semestre

Módulo Optativo E ECTS Tipo

Master en Ingenieria de Materiales (sin especialidad)

Se deben completar 30 ECTS entre las siguientes asignaturas 30

322 Forensic Engineering: In Service Failure Analysis 3 Optativa

324 Structural Integrity 3 Optativa

325 Design and fabrication of advanced composite materials 3 Optativa

326 Quality Management and Metrology 3 Optativa

327 Advanced Forming Processes 3 Optativa

328 Impact Behaviour of Materials 3 Optativa

330 Materials Under Extreme In-service Conditions 3 Optativa

331 Materials for sport 3 Optativa

332 Materials for Transportation 3 Optativa

333 Materials for aerospace industry 3 Optativa

334 Functional Materials at Macro and Micro/Nanometre Scales 5 Optativa

335 New Emerging Materials and Technologies 3 Optativa

337 Materials for Electronic and Optoelectronic Devices 4 Optativa

338 Materials for Photonic Devices 4 Optativa

339 Polymeric materials for advanced applications 3 Optativa

340 Materials and applications in nanotechnology 6 Optativa

341 Materials and microfabrication technologies for electronic devices 6 Optativa

342 Spintronic and Nanomagnetism 3 Optativa

356 Materials for Renewable Energies 6 Optativa

Page 8: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 8 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Segundo semestre

Módulo Optativo A ECTS Tipo

Master en Ingenieria de Materiales, mención en Materiales Estructurales

Se deben completar 30 ECTS entre las siguientes asignaturas

30

322 Forensic Engineering: In Service Failure Analysis 3 Optativa

324 Structural Integrity 3 Optativa

325 Design and fabrication of advanced composite materials 3 Optativa

326 Quality Management and Metrology 3 Optativa

327 Advanced Forming Processes 3 Optativa

328 Impact Behaviour of Materials 3 Optativa

330 Materials Under Extreme In-service Conditions 3 Optativa

331 Materials for sport 3 Optativa

332 Materials for Transportation 3 Optativa

333 Materials for aerospace industry 3 Optativa

Segundo semestre

Módulo Optativo B ECTS Tipo

Master en Ingenieria de Materiales, mención en Materiales Funcionales

Se deben completar 30 ECTS entre las siguientes asignaturas

30

334 Functional Materials at Macro and Micro/Nanometre Scales 5 Obligatoria

335 New Emerging Materials and Technologies 3 Optativa

337 Materials for Electronic and Optoelectronic Devices 4 Optativa

338 Materials for Photonic Devices 4 Optativa

339 Polymeric materials for advanced applications 3 Optativa

340 Materials and applications in nanotechnology 6 Optativa

341 Materials and microfabrication technologies for electronic devices 6 Optativa

342 Spintronic and Nanomagnetism 3 Optativa

Page 9: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 9 de 79

Programación docente

Calendario académico

A continuación se muestra el calendario académico para el curso 2017-18 elaborado siguiendo las directrices de la UPM. Conviene destacar de forma singular los siguientes períodos del calendario académico:

Clases del primer semestre: del 5 de septiembre al 22 de diciembre de 2017

Exámenes ordinarios del primer semestre: del 8 al 23 de enero de 2018

Matrícula del segundo semestre: del 22 de enero al 13 de febrero de 2018

Clases del segundo semestre: del 5 de febrero al 31 de mayo de 2018

Exámenes ordinarios del segundo semestre: del 4 al 19 de junio de 2018

Exámenes extraordinarios: del 27 de junio al 13 de julio de 2018

Fechas significativas y días no lectivos:

Jornada de bienvenida y presentación del curso: 4 de septiembre de 2017

Comienzo de las clases: 5 de septiembre de 2017.

Fiesta nacional: 12 de octubre de 2017

Todos los santos: 1 de noviembre de 2017

Nuestra Señora de la Almudena: 9 de noviembre de 2017

Día de la Constitución: 6 de diciembre de 2017

No lectivo: 7 de diciembre de 2017

La Inmaculada Concepción: 8 de diciembre de 2017

Comienzo de las vacaciones de Navidad: 23 de diciembre de 2016

Santo Tomás de Aquino: 28 de enero de 2018 (**)

Comienzo de las clases del segundo semestre: 5 de febrero de 2018

Viaje de prácticas: 20 al 23 de Marzo de 2018 (*)

Comienzo de las vacaciones de Semana Santa: 26 de Marzo de 2018

Reanudación de las clases: 3 de Abril de 2018

Día del Trabajo: 1 de Mayo de 2018

Día de la Comunidad de Madrid: 2 de Mayo de 2018

Santo Domingo de la Calzada: 12 de Mayo de 2018 (**)

San Isidro Labrador: 15 de Mayo de 2018

Fin de las clases: 31 de Mayo de 2018

(*) Durante el viaje de prácticas no se impartirá docencia de cuarto curso. Las fechas son tentativas.

(**) Al ser en festivo, esta festividad podría modificar su fecha.

Examen UPM de nivelación de lengua inglesa: 14 de Diciembre de 2017

Examen UPM de nivelación de lengua inglesa: 4 de Mayo de 2018

NOTA: Este calendario está sujeto a los cambios que se realicen de forma oficial

Page 10: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 10 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Page 11: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 11 de 79

Horario de clases

En los cuadros siguientes se presentan los horarios de clases de cada semestre, así como el aula en la que se imparte.

Las clases se imparten en horari de tarde. Comienzan a las 15:00 horas y finalizan a las 20:00 horas. Todas las clases ordinarias tienen la duración que se marca en el horario.

Algunas asignaturas tienen prácticas de laboratorio, prácticas de campo o prácticas de ordenador. En estos casos, cuando haya problemas de capacidad en los laboratorios, cada alumno deberá acudir a realizar sus prácticas en el horario que se le indique, aunque esté fuera del horario ordinario de clases anteriormente indicado. El número de prácticas que debe hacer cada alumno fuera del horario ordinario, así como su duración estimada, se indicará en la programación de la asignatura correspondiente.

Las clases del primer semestre constan de 16 semanas naturales, entre principio de septiembre y la penúltima semana de diciembre.

Las clases del segundo semestre, también de 16 semanas naturales (descontando semana santa) empiezan a principio de febrero y terminan a final del mes de mayo.

Las clases se suspenden los días correspondientes al viaje de prácticas.

Page 12: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 12 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

HORARIO PRIMER SEMESTRE

AULA 38

Page 13: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 13 de 79

HORARIOS DE SEGUNDO SEMESTRE

AULAS 15 Y 38

Los horarios de segundo semestre se publicarán en función de las asignaturas elegidas por los alumnos

durante el primer semestre del curso 2017-2018.

Page 14: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 14 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Exámenes: Master

Exámenes Ordinarios. Primer Semestre

Código Asignatura Fecha Hora

43000314 Structural Characterization of Materials I: Microscopy and Diffraction

8 enero 2018 15:00

43000315 Structural Characterization of Materials II: Spectroscopy 15 enero 2018 15:00

43000316 Mechanical Characterization and Analysis 12 enero 2018 15:00

43000317 Optical, Electrical and Magnetic Characterization of Materials

19 enero 2018 15:00

43000318 Advanced Numerical Methods 10 enero 2018 15:00

43000319 Materials Selection 22 enero 2018 15:00

43000320 Modeling and Simulation In Material Science and Engineering

17 enero 2018 15:00

43000321 Materials Economics and Management 23 enero 2018 15:00

Exámenes Ordinarios. Segundo Semestre

Código Asignatura Fecha Hora

43000322 Forensic Engineering: In Service Failure Analysis 4 junio 2018 15:00

43000324 Structural Integrity 6 junio 2018 15:00

43000325 Design and fabrication of advanced composite materials 11 junio 2018 15:00

43000326 Quality Management and Metrology 4 junio 2018 9:00

43000327 Advanced Forming Processes 13 junio 2018 9:00

43000328 Impact Behaviour of Materials 8 junio 2018 15:00

43000330 Materials Under Extreme In-service Conditions 13 junio 2018 15:00

43000331 Materials for sport 15 junio 2018 15:00

43000332 Materials for Transportation 5 junio 2018 9:00

43000333 Materials for aerospace industry 18 junio 2018 15:00

43000334 Functional Materials at Macro and Micro/Nanometer Scales

8 junio 2018 9:00

43000335 New Emerging Materials and Technologies 7 junio 2018 15:00

43000337 Materials for Electronic and Optoelectronic Devices 12 junio 2018 15:00

43000338 Materials for Photonic Devices 14 junio 2018 15:00

43000339 Polymeric materials for advanced applications 19 junio 2018 15:00

43000340 Materials and applications in nanotechnology 5 junio 2018 15:00

43000341 Materials and microfabrication technologies for electronic devices

15 junio 2018 9:00

43000342 Spintronics and nanomagnetism 16 junio 2018 9:00

43000356 Materials for Renewable Energies 11 junio 2018 9:00

Page 15: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 15 de 79

Exámenes Extraordinarios

Código Asignatura Fecha Hora

43000314 Structural Characterization of Materials I: Microscopy and Diffraction

27 junio 2018 9:00

43000315 Structural Characterization of Materials II: Spectroscopy 2 julio 2018 9:00

43000316 Mechanical Characterization and Analysis 29 junio 2018 9:00

43000317 Optical, Electrical and Magnetic Characterization of Materials

28 junio 2018 15:00

43000318 Advanced Numerical Methods 27 junio 2018 15:00

43000319 Materials Selection 2 julio 2018 15:00

43000320 Modeling and Simulation In Material Science and Engineering

28 junio 2018 9:00

43000321 Materials Economics and Management 29 junio 2018 15:00

43000322 Forensic Engineering: In Service Failure Analysis 3 julio 2018 9:00

43000324 Structural Integrity 4 julio 2018 15:00

43000325 Design and fabrication of advanced composite materials 9 julio 2018 15:00

43000326 Quality Management and Metrology 11 julio 2018 9:00

43000327 Advanced Forming Processes 11 julio 2018 9:00

43000328 Impact Behaviour of Materials 6 julio 2018 15:00

43000330 Materials Under Extreme In-service Conditions 11 julio 2018 15:00

43000331 Materials for sport 13 julio 2018 15:00

43000332 Materials for Transportation 4 julio 2018 9:00

43000333 Materials for aerospace industry 5 julio 2018 9:00

43000334 Functional Materials at Macro and Micro/Nanometer Scales

6 julio 2018 9:00

43000335 New Emerging Materials and Technologies 5 julio 2018 15:00

43000337 Materials for Electronic and Optoelectronic Devices 10 julio 2018 15:00

43000338 Materials for Photonic Devices 12 julio 2018 15:00

43000339 Polymeric materials for advanced applications 10 julio 2018 9:00

43000340 Materials and applications in nanotechnology 3 julio 2018 15:00

43000341 Materials and microfabrication technologies for electronic devices

13 julio 2018 9:00

43000342 Spintronics and nanomagnetism 12 julio 2018 9:00

43000356 Materials for Renewable Energies 9 julio 2018 9:00

Page 16: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 16 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Page 17: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 17 de 79

Page 18: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 18 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Page 19: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 19 de 79

Asignaturas y profesorado

Gestion Ingeniero de Materiales email

Francisco Gálvez Díaz-Rubio Coordinador de la titulación [email protected]

Gustavo Plaza Baonza Coordinador de Internacional [email protected]

Ana María Flores Sánchez Secretaría de la titulación [email protected]

PRIMER SEMESTRE

Código ECTS Asignatura

43000314 5 Structural Characterization of Materials I: Microscopy and Diffraction

Coordinador Marta Clement Lorenzo [email protected]

Jimena Olivares [email protected]

Jesús Sangrador García [email protected]

Luisa Ruiz González [email protected]

43000315 5 Structural Characterization of Materials II: Spectroscopy

Coordinador Raquel Gonzalez Arrabal [email protected]

Federico Sket [email protected]

43000316 4 Mechanical Characterization and Analysis

Coordinador Jose Ygnacio Pastor [email protected]

Jesús Ruiz Hervías [email protected]

Mónica Carboneras [email protected]

Elena María Tejado Garrido [email protected]

43000317 4 Optical, Electrical and Magnetic Characterization of Materials

Coordinador Javier Martínez Rodrigo [email protected]

José María Ulloa [email protected]

Claudio Aroca [email protected]

Maria del Mar Sanz-LLuch [email protected]

Marco Maicas [email protected]

José Luis Prieto [email protected]

43000318 3 Advanced Numerical Methods

Coordinador Javier Segurado [email protected]

Valentín de la Rubia [email protected]

43000319 3 Materials Selection

Coordinador Jose Ygnacio Pastor [email protected]

Elena María Tejado Garrido [email protected]

Teresa Palacios [email protected]

43000320 3 Modeling and Simulation In Material Science and Engineering

Coordinador Javier Llorca [email protected]

Carlos González [email protected]

Alvaro Ridruejo [email protected]

Gustavo Esteban [email protected]

Claudio Lópes [email protected]

43000321 3 Materials Economics and Management

Coordinador Ruth Carrasco Gallego [email protected]

Tamara Borreguero Sanchidrian [email protected]

Page 20: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 20 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

SEGUNDO SEMESTRE

Código ECTS Asignatura

43000322 3 Forensic Engineering: In Service Failure Analysis

Coordinador Nuria Martín Piris [email protected]

Ángel Salamanca García [email protected]

43000324 3 Structural Integrity

Coordinador Gustavo V. Guinea Tortuero [email protected]

David Cendón [email protected]

43000325 3 Design and fabrication of advanced composite materials

Coordinador Carlos Gonzalez [email protected]

Javier LLorca [email protected]

43000326 3 Quality Management and Metrology

Coordinador José Manuel Ruiz Román [email protected]

43000327 3 Advanced Forming Processes

Coordinador Luis E. Garcia Cambronero [email protected]

José Manuel Ruiz Román [email protected]

43000328 3 Impact Behaviour of Materials

Coordinador Francisco Gálvez [email protected]

David Cendón [email protected]

Rafael Sancho Cadenas [email protected]

43000330 3 Materials Under Extreme In-service Conditions

Coordinador Jose Ygnacio Pastor Caño [email protected]

Ana Mendez [email protected]

Elena María Tejado Garrido [email protected]

Teresa Palacios [email protected]

43000331 3 Materials for sport

Coordinador Victoria Alcázar Montero [email protected]

43000332 3 Materials for Transportation

Coordinador Javier Oñoro [email protected]

José R. Ibars [email protected]

43000333 3 Materials for aerospace industry

Coordinador María Vega Aguirre [email protected]

Nuria Martín Pirís [email protected]

43000334 5 Functional Materials at Macro and Micro/Nanometer Scales

Coordinador Enrique Calleja Pardo [email protected]

Miguel Angel Sanchez Garcia [email protected]

Zarco Gacevic [email protected]

43000335 3 New Emerging Materials and Technologies

Coordinador Fernando Calle Gómez [email protected]

43000337 4 Materials for Electronic and Optoelectronic Devices

Coordinador Adrián Hierro Cano [email protected]

Page 21: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 21 de 79

43000338 3 Materials for Photonic Devices

Coordinador Morten A. Geday [email protected]

Xabier Quintana [email protected]

José M. Otón [email protected]

43000339 3 Polymeric materials for advanced applications

Coordinador Victoria Alcázar Montero [email protected]

De-Yi Wang [email protected]

43000340 6 Materials and applications in nanotechnology

Coordinador Fernando Calle Gómez [email protected]

Jorge Pedrós Ayala [email protected]

Fátima Romero Rojo [email protected]

43000341 3 Materials and microfabrication technologies for electronic devices

Coordinador Jimena Olivares Roza [email protected]

Marta Clement Lorenzo [email protected]

Enrique Iborra Grau [email protected]

Jesús Sangrador García [email protected]

43000342 3 Spintronics and nanomagnetism

Coordinador José Luis Prieto Martín [email protected]

Mariana Proença [email protected]

Marco Maicas [email protected]

Manuel Muñoz [email protected]

Lucas Perez [email protected]

43000356 6 Materials for Renewable Energies

Coordinador Jose Ygnacio Pastor Caño [email protected]

Elena María Tejado Garrido [email protected]

Page 22: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado
Page 23: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 23 de 79

Primer Semestre

314 Structural Characterization of Materials I:

Microscopy and Diffraction

Department (School) / Departamento (Escuela)

Tecnología Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Structural Characterization of Materials: Microscopy and Diffractometry

ECTS Type Year / Semester Language Sylabus code Subject Code

5 Compulsory 1 / 2 EN 04AF 43000314

Lecturers (Name) Contact email Office hours (Tutorials)

Marta Clement [email protected] Monday 11:00-12:00 call for appointment by email

Jimena Olivares [email protected] Wednesday 11:00-12:00 call for appointment by email

Jesús Sangrador García [email protected] By appointment

External lecturers Contact email

Luisa Ruiz González [email protected]

Assessment criteria

Continuous assessment The final mark achieved through the continuous assessment method is composed of three parts: Class attendance and deliverables (CA) 20%, oral presentation (OP) 20%, written exam (WE) 60%. Pass mark: 0.20*CA+0.20*OP+0.6*WE ≥ 5

Final exam assessment Mandatory deliverables (40%) + Written exam (60%)

Justification and Objectives

This course aims at the advanced understanding of the principle of various, microscopy-based (optical microscopy, scanning electron microscopy, transmission electron microscopy electron, atomic force microscopy, scanning tunneling microscopy) and diffractometry-based (X-ray diffraction, electron diffraction) materials characterization methods. The course addresses the basics of the techniques, the underlying physics, the instrumental aspects, the practical use and the benefits and problems related to their application in materials science and microelectronics. Combined with practical work at microscopes and diffractometers, the student will be able to process and interpret images and data. Completion of this course will give the participant a working knowledge on how microscopy and diffractometry techniques are applied in materials research and development. At the end of the course, it is expected that the student can apply the appropriate technique to a given material to be characterized and that he/she is able to interpret data and to extract valuable information.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Electric, optical and structural properties of materials

Contents in coordination with other subjects

Structural Characterization of Materials II: Spectroscopies (43000315-TA2) Optical, Electric and Magnetic Characterization of Materials (43000317-TOE)

Page 24: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 24 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Generic competencies

CG1, CG3, CG5, CG8

Specific competencies

CE1, CE4, CE5

Bibliography

R. Haynes B.Met., Ph.D., C.Eng., F.I.M., M.Inst.P. "Optical Microscopy of Materials", Springer (1984) P. Eaton and P. West "Atomic force microscopy", Oxford Press (2010) http://www.mrl.ucsb.edu/mrl/centralfacilities/xray/xray-basics/index.html Recursos web B.D. Cullity, "Elements of X-ray diffraction" B. K. Vainshtein, E. Feigl and J.A. Spink, "Structure Analysis by Electron Diffraction", Pergamon Press (1964) L. Reimer, H. Kohl, "Transmission Electron Microscopy: Physics of Image Formation" Springer Verlag (2008) L. Reimer, "Scanning electron microscopy: physics of image formation and microanalysis", Springer-Verlag (1985/1998). Equipment Clean room equipped with optical microscope and profilometer (ETSIT-UPM) Scanning electron microscope and Atomic Force Microscope (ETSIT-UPM) CAI X-ray diffraction service (UCM) Electron microscopy service (UCM) Scanning reactive ion beam lab at CIEMAT

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction of the course LM

2 Scanning electron microscopy Fundamentals / Laboratory / Oral presentations

LM LB DB

3 Optical Microscopy (OM) Fundamentals / Laboratory / Oral presentations

LM LB DB

4 Profilometry (PR) Fundamentals / Laboratory / Oral presentations

LM LB DB

5 Scanning tunnelling microscopy (STM) Fundamentals / Oral presentations

LM DB

6 Atomic force microscopy microscopy(AFM) Fundamentals / Laboratory / Oral presentations

LM LB TG

7 X-ray diffraction (XRD) Fundamentals / Data handling / Laboratory / Oral presentations

LM RP LB DB

8 First written exam (continuous assessment) EV

9 Electron diffraction (ED) Fundamentals / Oral presentations

LM DB

10 Transmission electron microscopy (TEM) Fundamentals / Laboratory / Oral presentations

LM LB DB

11 Focused Ion Beam (FIB) Fundamentals / Laboratory / Oral presentations

LM LB DB

12 Second written exam (continuous assessment) EV

12 Final exam EV

Page 25: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 25 de 79

315 Structural Characterization of Materials II:

Spectroscopy

Department School / Departamento Escuela

Departamento Ingeniería Energética (D410) / ETSI Industriales

Subject / Asignatura

Structural Characterization of Materials II: Spectroscopy

Tecnicas de Analisis de Estructura de Materiales II: Espectroscopía

ECTS Type Year / Semester Language Sylabus code Subject Code

5 Compulsory 1 / 2 EN 04AF 43000315

Lecturers (Name) Contact email Office hours (Tutorials)

Raquel González Arrabal [email protected] By appointment

Federico Sket [email protected] By appointment

Assessment criteria

Continuum assessment. Daily Exercises: 20% Written exam: 80 %

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

Students will become familiar with ion beam- and X-rays- based techniques for materials characterization. Students will be able to choose the right technique to characterise the required information, and to interpret the experimental results. Objectives 1) Learning the fundaments of the techniques. 2) Identifying the field of applications of each technique within materials science. 3) Measure and learning the way to look for the optimal experimental conditions in each case. 4) Data analysis.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Solid state physics and condensed matter.

Contents in coordination with other subjects

Structural Characterization of Materials I: (43000314)

Generic competencies

CG1, CG5, CG6

Specific competencies

CE1, CE2, CE3, CE4, CE5,CE7

Page 26: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 26 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Part 1: Spectrometry -J. F. Ziegler, M. D. Ziegler, J. Biersack: The Stopping and Range of Ions in Solids -Handbook of Modern Ion Beam Mateials Analysis, Yongqiang Wang and Michael Nastasi, Materials Research Society, ISBN 978-1-60511-215-1. -Rutherford Backscattering Spectrometry (RBS), M. Mayer, http://users.ictp.it/~pub_off/lectures/lns022/Mayer_1/Mayer_1.pdf. -Nuclear Reaction Analysis (NRA), M. Mayer, http://users.ictp.it/~pub_off/lectures/lns022/Mayer_2/Mayer_2.ps. -L.C. Feldman, J.W. Mayer: Fundamentals of Surface and Thin Film Analysis, North-Holland (1986) Secondary Ion Mass Spectroscopy: Sims XII. A. Benninghoven, H. N. Migeon and P. Bertrand. - Escobar Galindo R., G. R., Duday D. and Palacio C. (2010). "Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES " Anal. Bioanal. Chem. 396: 2725–2740. - McPhail D.S. , R. J. C., L. Li (2008). "Applications of focused ion beam SIMS in materials science." Microchim. Acta 161: 387-397. - Materials Analysis by Ion Channeling, L. C. Feldman, J. M. Mayer, S. T. Picraux, ACADEMIC PRESS INC. Part 2: X-ray tomography - X-ray tomography in material science. Jose Baruchel, Jean-Yves Buffiere, et al. HERMES Science Publlications, Paris, 2000. ISBN 2-7462-0115-1 - Computed Tomography, principles, design, artifacts, and recent advances. Second edition, Jieang Hsieh. Wiley Interscience 2009. ISBN: 978-0-8194-7533-6 - Advanced Tomographic Methods in Materials Research and Engineering. John Banhart. Oxford University Press, USA; Har/Cdr edition (April 15, 2008). ISBN-10: 0199213240, ISBN-13: 978-0199213245

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction

1.1 Experimental setup for ion beams generation.

1.2 Ion-matter interaction LM

1.3 Fundaments of ion-matter interaction. LM

1.4 Stopping power definition. LM

1.5 Computational calculations of stopping powers and radiation-induced damage. LB, TI

2 Elemental characterization by means of Rutherford Backscattering Spectrometry (RBS) and Elastic Recoil Detection (ERDA).

LM

2.1 Ion beam generation LM

2.2 Fundaments of RBS and of Non-RBS LM

2.3 Description of the setup. LM

2.4 Design of experiments. LM

2.5 Examples of applications in different fields. LM, LB

2.6 Data analysis. LB, TI

3 Elemental characterization by means of Nuclear reaction Analysis (NRA)

3.1 Introduction to Nuclear Reactions. LM

3.2 Fundaments of NRA and RNRA. LM

3.3 kinematics of a nuclear reaction. LM

3.4 Cross-sections. LM, TI

3.5 Depth profiling. LM, TI

3.6 Use of standards. LM

3.7 Filtering unwanted particles. LM

3.8 Particle-particle reactions. LM

3.9 Particle-γ reactions. LM

3.10 Description of the setup. LM

Page 27: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 27 de 79

3.11 Design of experiments. LM

3.12 Examples of applications in different fields. LB, TI

3.13 Data analysis LB, TI

4 Particle-induced X-ray Emission (PIXE)

4.1 History. LM

4.2 Fundaments. LM

4.3 X-ray yield. LM

4.4 X-ray production cross sections. LM

4.5 X-ray lines identification. LM

4.6 use of filters. LM

4.7 Sources of background. LM

4.8 Description of the setup. LM

4.9 Design of experiments. LM

4.10 Examples of applications in different fields. LB, TI

5 Structural characterization by means of IBA in channeling configuration.

5.1 Motivation. LM

5.2 Fundaments. LM

5.3 Capabilities of channeling as a crystallographic tool. LM

5.4 Axial and planar channeling. LM

5.5 Continuum collision model. LM

5.6 Shadow cone. LM

5.7 Critical angle, minimum yield, dechanneling. LM

5.8 Crystal defects. LM

5.9 Description of the setup. LM

5.10 Design of experiments. LB, TI

5.11 Examples of applications in different fields. LB, TI

5.12 Advantages and disadvantages versus other traditional techniques. LM

Visit to the Centro de Microanalisis de Materiales (CMAM/UAM) (if posible)

6 Structural characterization by means of X-ray imaging.

6.1 Introduction to different tomographic techniques. LM

6.2 Fundaments of X-ray physics LM

6.3 Fundaments of X-ray imaging and tomographic reconstruction LM

6.4 Synchrotron radiation LM

6.5 Synchrotron tomography and different tomographic techniques LM

6.6 Post-processing and artefact elimination LM

6.7 Application to material science LM

6.8 Design of experiments & volume processing LB, TI

Final Evaluation EV

Page 28: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 28 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

316 Mechanical Characterization and Analysis

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (E.T.S.I. de Caminos, Canales y Puertos)

Nombre de la Asignatura / Name of the Subject

Técnicas de análisis y ensayo mecánico

Mechanical Characterization And Analysis

ECTS Type Year / Semester Language Sylabus code Subject Code

4 Compulsory 1 / 1 EN/ES 04AF 43000316

Lecturers (Name) Contact email Office hours (Tutorials)

José Ygnacio Pastor Caño [email protected] By appointment

Jesús Ruiz Hervías [email protected] By appointment

Mónica Carboneras. [email protected] By appointment

Elena María Tejado Garrido [email protected] By appointment

Assessment criteria

Evaluation Methods and Grading Policy: • During the first week of the course the student must choose between continued evaluation and final ordinary exam. • Regular attendance, active and creative participation in classes and in Moodle, subjective teacher evaluation, others (up to 10 % extra points). • Two partial exams (up to 30 % of the final mark each one), minimum 50 % of the maximum grade in each partial is required. • Coursework (up to 40 % of the final mark each one). • Final ordinary exam and Coursework (up to 100 % of the final mark). • Final extraordinary exam and Coursework (up to 100 % of the final mark). Course Policies: • The exam can be composed of practical and theoretical questions about the subject. • Make-up exams are not allowed. • Students are expected to exhibit academic honesty at all times. Violations against academic honesty like cheating, plagiarism, collusion, fabrication, forgery, falsification, destruction, multiple submission, solicitation, misrepresentation… will result in assignation of grade of "F" for the course, in addition to other possible academic sanctions from UPM authorities and courts.

Justification and Objectives

The student will acquire: 1. Fundamental knowledge of mechanical testing. 2. Relationship between microstructure and properties. 3. Understanding of the mechanical properties of materials for this kind of applications.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The student is assumed to have taken at least classes on basic structure of materials and mechanical behaviour.he knowledge acquired during their graduate studies.

Contents in coordination with other subjects

--

Page 29: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 29 de 79

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE4, CE5, CE6, CE7

Bibliography

Textbooks and Materials • Will be provide by teachers in class and the virtual learning space

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1

Class schedule: 15 weeks, 2.7-hours lecture per week. Some contents of this course: 1. Universal mechanical testing machines. 2. Tensile, compression, bending tests. 3. Fracture tests. 4. Fatigue tests. 5. Corrosion Fatigue tests. 6. Tribology tests. 7. Creep tests. 8. Residual stresses tests. 9. Thermal shock tests. 10. Stress corrosion cracking tests. 11. Hardness and nanoindentation tests.

LM

Page 30: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 30 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

317 Optical, Electrical and Magnetic

Characterization of Materials

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (D310) / E.T.S.I. de Caminos, Canales y Puertos

Nombre de la Asignatura / Name of the Subject

Optical, Electrical and Magnetic Characterization of Materials

Caracterización de Materiales Optica, Eléctrica y Magnética

ECTS Type Year / Semester Language Sylabus code Subject Code

4 Compulsory 1 / 1 EN 04AF 43000317

Lecturers (Name) Contact email Office hours (Tutorials)

Javier Martínez Rodrigo [email protected] By appointment

Jose María Ulloa Herrero [email protected] By appointment

Claudio Aroca [email protected] By appointment

Maria del Mar Sanz-LLuch [email protected] By appointment

Marco Maicas [email protected] By appointment

José Luis Prieto [email protected] By appointment

Assessment criteria

Continuum assessment. 1) The students will have to deliver several individual exercises, with special emphasis on practical aspects like the analysis of real measurements corresponding to the different techniques. Resolution of the exercises will require the usage of computer tools. 2) They will also make three group reports based on the measurements taken at the laboratory. They will have to analyze and interpret the measurements and to answer several questions. Preparation of the reports will require the usage of computer tools. 3) There will be a final exam composed of short theoretical questions and practical questions including data analysis. Evaluation: Exercises - 10% Laboratory reports - 30% Exam - 60% (a mark equal or higher than 4.0 in the exam is required to pass the subject)

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

The students will become familiar with the most relevant techniques for optical, electrical and magnetic characterization of functional materials and devices. They will learn the physical fundamentals of the different techniques, and the working principles of the instruments involved. In addition, they will practically learn to use in the laboratory some characterization systems. At the end of the work, they will be able to analyze and interpret the measurements corresponding to the different techniques using the adequate computer tools. Objectives 1) Learning the fundamentals of the main techniques 2) Becoming familiar with instrumentation and experimental set-ups 3) Learning how to use some standard characterization systems 4) Learning how to analyze and interpret the measurements

Prerequisites

There are no prerequisites

Page 31: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 31 de 79

Previous knowledge of the student

Basic Optics, Electricity and Magnetism; Structure of Materials; Semiconductor Physics; Quantum Physics; Instrumentation; Engineering; Optoelectronic and Magnetic Devices

Contents in coordination with other subjects

-

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5,CE7

Bibliography

Part 1: Optical characterization Eugene Hecht, “Optics”, Addison-Wesley, 1990 Jacques I. Pankove, “Optical Processes in Semiconductors”, Dover Publications, 1971 Alex Ryer, “Light Measurement Handbook”, http://www.intl-light.com/handbook/ Part 2: Electrical characterization D.K. Schroder, “Semiconductor Material and Device Characterization”, 3rd ed., Wiley Interscience, 2006 W.R. Runyan and T.J. Shaffner, “Semiconductor Measurements and Instrumentation”, McGrawHill, 1998 A.C. Diebold, ed., “Handbook of Silicon Semiconductor Metrology”, Marcel Dekker, New York, 2001 P. Horowitz and W. Hill, “The art of electronics”, Cambridge University Press, 2010 Part 3: Magnetic characterization B.D. Cullity & Graham, “Introduction to Magnetic Materials”, IEEE press – Willey, 2009 S. Chikazumi & Graham, “Physics of Ferromagnetism”, Oxford Science Publications,1997 Robert C. O’Handley, “Modern Magnetic Materials. Principles and Applications”, Willey, 2000

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Part 1: Optical characterization

1-9

‐ Basic concepts

Optical characterization in materials science, types of techniques. Light‐matter interaction, optical properties of molecules and solids. Optical processes in

semiconductors, radiative and non‐radiative transitions, excitons. ‐ Instrumentation Light sources, Optical components, monochromators, detectors, amplifiers, data acquisition systems. Safety in an optics laboratory. ‐ Absorption, FTIR spectroscopy, photocurrent Absorption, spectrophotometry and FTIR spectroscopy of molecules, semiconductors and nanostructures. Device characterization: photocurrent. ‐ Photoluminescence (PL) Spontaneous emission, direct and indirect transitions, excitonic effects. PL of nanostructures (quantum wells, quantum wires, quantum dots). PL vs. excitation

power, PL vs. temperature. Advanced PL techniques: micro‐PL, time resolved‐PL, PLE. ‐ Electroluminescence (EL), Cathodoluminescence (CL), Thermoluninescence (TL)

Optical processes in a p‐n junction, LED efficiency. Introduction to scanning electron

microscopy, electron‐sample interaction, micro‐CL. Traps and recombination centres in semiconductors, trap emptying. ‐ Laboratory I: Measuring the PL spectrum of quantum wells, quantum wires and quantum dots. The students will measure the PL spectra of QW, QWR and QD samples emitting in

the near infrared and ultraviolet wavelengths, using He‐Ne or He‐Cd lasers to excite the luminescence. The samples will be placed in a He cryostat which allows

LM (10h)

LB (4h)

TI-1

TG-1

Page 32: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 32 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

temperature control. From the analysis of the obtained data they will have to extract relevant information about the characteristics of the different nanostructures

Part 2: Electrical characterization

10-18

‐ Basic Concepts Description of basic components in electronics, electric units, Faraday´s Law, resistance and impedance measurements, instrumentation for DC and RF. ‐ Contact resistance

Metal‐semiconductor contacts, sheet resistance, conductivity, two and four point probe, wafer mapping, Van der Pauw, Eddy current, Transfer Length Method (TLM), Kelvin method. ‐ Electrical characterization I (doping and transport) Secondary Ion Mass Spectrometry (SIMS), mobility (1,2,3D), Hall measurements,

current‐voltage, capacitance‐voltage, effective channel length, oxide charges. ‐ Electrical characterization II (defects)

Defects sources, defect etching, generation‐recombination, capacitance transients, Deep Level Transient Spectroscopy (DLTS), admittance spectroscopy. ‐ Micro and Nano electrical characterization Types of probes (DC, RF), probe station, Scanning Tunneling Microscopy (STM),

Atomic Force Microscopy (AFM), C‐V and I‐V characteristics, Electron Beam Induced Current (EBIC). ‐ Laboratory II: Nano characterization of electronic devices The students will measure the electrical characteristics of a nanowire diode with different equipments (probe station, SEM nanomanipulator and AFM) to extract the electrical parameters of the device. Also, they will measure the temperature dependence of mobility in confining heterostructures, like High Electron Mobility Transistors (HEMT) by Hall measurements.

LM (10h)

LB (4h)

TI-2

TG-2

Part 3: Magnetic characterization

20-24

‐ Introduction to Magnetism Vectors B,H,M. Magnetic Units. Description of Ferromagnetism. Hysteresis Loop. Demagnetizing Factor. Examples. ‐ Ferromagnetism and hysteresis loop Signatures of ferromagnetism: Anisotropy, Magnetostriction, Exchange bias and Magnetization process. Interpreting a hysteresis loop through different examples: Uniaxial, cubic (Fe), Hexagonal (Co), Exchange bias, superparamagnetic particles, others. ‐ Experimental techniques in magnetism Generation of magnetic fields, coils and permanent magnets. VSM, MFM, Deposition techniques. Examples of materials. Magnetic sensing. Examples of some magnetic field sensors and applications. ‐ Laboratory III: Measuring the Hysteresis loop and Curie Temperature of a ferro ribbon The students will measure the hysteresis loop of an amorphous ribbon with a coil and an integrator. They will compensate the signal of the secondary coil and study the effect of the demagnetizing factor and a near‐by magnetic field created by a magnet.

Additionally for a M‐T measurement, the magnetization M will be extracted from the hysteresis loop. The temperature of the ribbon can be increased with an electrical current and the value of M will be monitored for several current densities until the hysteresis loop disappears. The J‐T conversion can be established with a prior

measurement of R‐T and J‐R.

LM (8h)

LB (4h)

TI-3

TG-3

25 Exam

Page 33: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 33 de 79

318 Advanced Numerical Methods

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (ETSI Caminos Canales y Puertos)

Subject / Asignatura

Métodos Numéricos Avanzados

Advanced Numerical Methods

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Compulsory 1 / 2 EN 04AF 43000318

Lecturers (Name) Contact email Office hours (Tutorials)

Javier Segurado [email protected] Monday 12:00-14:00 and Tuesday 14-00 – 16:00

Valentín de la Rubia

[email protected] Tuesday 14:00-16:00 and Wednesday 14:00-16:00

Assessment criteria

Continuum assessment. The final mark consists of continuous assessment and a term project. For the continuous assessment, in November a partial exam (PE) about programming in python will be done. In addition, two projects/exercises will be proposed to be resolved in groups during the semester (PRO). The projects will be presented and defended in a special session, the day of the final exam. The final mark is obtained through PE and PRO: Pass mark: 0.2*PE+0.8*PRO ≥ 5

Final Exam. The final exam will consist on the public defence of the projects proposed. The projects are done in groups of 2 persons or individually. In the final exam, after the presentation, the lecturers will ask questions about the theory behind the project, the implementation and the results or conclusions. The mark will be individual depending on the quality of the project and on the response during the discussion. If no PE was done this will be 100% of the qualification.

Justification and Objectives

The objective of the subject is to provide to the students a basis to solve numerically mathematical problems typical in Engineering and Science. To this aim, (1) an introduction to computer programming will be covered (using the nowadays very popular python language) and (2) an overview of the main numerical techniques, its computational implementation and/or its use from pre-programmed modules. The list of objectives is:

1) Learn the basis of computer programming (variables, loops, conditions, input/output) to allow the programing of basic algorithms and mathematical models in a modern, open source, simple and very popular programming code as python

2) Lear 3) n the theory and implementation of the most common numerical techniques for linear

algebra, non-linear systems of equations, optimization and the numerical resolution of ordinary differential equations

4) Learn the basic aspects of numerical simulation of partial differential equations, including theory and methods as finite differences and the Finite Element Method including its implementation.

Prerequisites

There are no prerequisites

Page 34: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 34 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Previous knowledge of the student

Mathematics, computer programming

Contents in coordination with other subjects

Simulation

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5,CE7

Bibliography

Hans Petter Langtangen, Python Scripting for Computational Science, Springer-Verlag Berlin Heidelberg, 2008

P. Solin, Partial Differential Equations and the Finite Element Method, John Wiley & Sons, 2004.

Singiresu S. Rao, The Finite Element Method in Engineering (Fourth Edition), Elsevier, 2005. http://www.sciencedirect.com/science/book/9780750678285#ancPR6

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction to programming. Python.

LM, RP, LB, TI

2

Algebraic Equations (6 h) 2.1 Linear systems of equations (3 h):

‐Theory (Existence of solution, Solution uniqueness, Stability, Computation costs)

‐Direct Methods. LU decomposition

‐Iterative Methods 2.2 Nonlinear systems of equations (3h):

‐Theory

‐Scalar equations: Bisection, fixed point iterations, Newton‐Raphson

‐Systems of equations: Newton‐Raphson

LM, RP LB, TI

3

Optimisation (4.5h): 3.1 Introduction 3.2 Gradient optimisation: Least squares, steepest descent, conjugate gradient 3.3 Other methods

LM, RP LB, TI

4

Systems of Ordinary Differential Equations (4.5h) 4.1 First order ODEs 4.2 Systems of first order ODEs 4.3 Higher order ODEs: The Newton equation

LM, RP LB, TI

5

Partial Differential Equations (15h) 5.1 Partial Differential Equations 5.2 Finite Differences 5.3 Finite Elements: Discretization, numerical interpolation, differentiation and

integration. Statics vs Dynamics. Explicit and implicit methods. Non‐linear finite elements: Geometry & Material.

LM, RP LB, TI

Page 35: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 35 de 79

319 Materials Selection

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (ETSI Caminos Canales y Puertos)

Subject / Asignatura

Selección de Materiales

Materials Selection

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Compulsory 1 / 2 EN 04AF 43000319

Lecturers (Name) Contact email Office hours (Tutorials)

Jose Ygnacio Pastor Caño [email protected] By appointment

Elena Mª Tejado Garrido [email protected] By appointment

Teresa Palacios García [email protected] By appointment

Assessment criteria

Evaluation Methods and Grading Policy: • During the first week of the course the student must choose between continued evaluation and final ordinary exam. • Regular attendance, active and creative participation in classes and in Moodle, subjective teacher evaluation, others (up to 10 % extra points). • Practical problem exam (up to 50 % of the final mark), minimum 50 % of the maximum grade in each partial is required. • Coursework (up to 50 % of the final mark), minimum 50 % of the maximum grade in each partial is required. • Final ordinary exam and Coursework (up to 100 % of the final mark). • Final extraordinary exam and Coursework (up to 100 % of the final mark). Course Policies: • The exam can be composed of practical and theoretical questions about the subject. • Make-up exams are not allowed. • Students are expected to exhibit academic honesty at all times. Violations against academic honesty like cheating, plagiarism, collusion, fabrication, forgery, falsification, destruction, multiple submission, solicitation, misrepresentation… will result in assignation of grade of "F" for the course, in addition to other possible academic sanctions from UPM authorities and courts

Justification and Objectives

The student will acquire: 1. Fundamental knowledge of Materials Selection. 2. Materials Selection process. 3. Materials Selection, microstructure and properties of materials for each kind of application.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The student is assumed to have taken at least classes on basic structure of materials and mechanical behaviour.

Contents in coordination with other subjects

none

Generic competencies

CG1, CG2, CG3, CG4, CG7, CG9

Page 36: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 36 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Specific competencies

CE1, CE2, CE5, CE6, CE10

Bibliography

Textbooks and Materials • Will be provide by teachers in class and the virtual learning space.

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Class schedule: 15 weeks, 2-hours lecture per week. Some contents of this course: 1. Presentation. The design process. 2. Materials selection maps 3. Materials selection methodology 4. Selection of materials, without restriction on the geometry 5. Selection of materials without restriction in geometry 6. Selection criteria with multiple conflicting objectives 7. Selection of materials selection with restricted geometry 8. Design with hybrid materials 9. Eco selection 10. Selection of the manufacturing process and economic factors 11. Problems.

LM, RP, LB, TI

Page 37: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 37 de 79

320 Modelling and Simulation In Material

Science and Engineering

Department (School) / Departamento (Escuela)

Department of Materials Science (ETS Ingenieros de Caminos) / IMDEA Materials Institute

Nombre de la Asignatura / Name of the Subject

Simulación en Ingeniería de Materiales

Simulation in Materials Engineering

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Compulsory 1 / 1 EN 04AF 43000320

Lecturers (Name) Contact email Office hours (Tutorials)

Javier LLorca [email protected] Friday 5pm-6pm

Carlos González [email protected] Friday 5pm-6pm

Alvaro Ridruejo [email protected] Friday 5pm-6pm

Gustavo Esteban [email protected] Friday 5pm-6pm

Claudio Lópes [email protected] Friday 5pm-6pm

Assessment criteria

- Each student will have to carry out a practical exercise (i.e. a simulation) corresponding to atomistic simulations, computational thermodynamics and homogenization theory. - The reports detailing the simulation strategy, results and discussion will have to be submitted by e-mail (pdf format) by the following dates: - Atomistics: November 10th - Computational thermodynamics: December 10th - Homogenization: January 10th - Reports are mandatory to have access to the final exam. Each report contributes 25% to the final mark

Final Exam (contributes 25% to the final mark)

Justification and Objectives

- Provide an overview of the main simulations techniques and modelling strategies in Materials Science and Engineering. - Provide deeper knowledge and practical training in three main topics: molecular dynamics, computational thermodynamics and homogenization theory

Prerequisites

There are no prerequisites

Previous knowledge of the student

Computer Science, Mathematical, Physical and Mechanical foundations of Materials Science, Themodynamics, Mechanics of Materials

Contents in coordination with other subjects

Advanced Numerical Methods

Generic competencies

CG2, Team leadership CG5, Information management CG8, Communication Skills (verbal and written) CG10, Responsibility and professional ethics

Page 38: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 38 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Specific competencies

CE2, Modelling the materials behaviour CE5, Capacity of autonomous learning CE6, Capacity for designing, assessment, selection and manufacture of materials

Bibliography

“Introduction to computational Materials Science: fundamentals to applications”, Richard LeSar, Cambridge University Press, 2013. “Numerical modeling in Materials Science and Engineering” Michel Rappaz, Michel Bellet, Michel Deville, Springer, 2002. “Understanding molecular dynamics simulation. From algorithms to applications”, Daan Frenkel and Berend Smit, Academic Press, 2nd edition 2002. “A short introduction to basic aspects of continuum micromechanics”. Helmut J. Böhm, ILSB report 206, Vienna University of Technology, 2013.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

0

Introduction (1h) Introduction to materials modelling and simulation. Contents and evaluation.

LM

1

Part 1. Atomistic modeling of materials (9 hours) 1.1. Fundamentals of first principles and Monte Carlo methods 1.2. Fundamentals of molecular dynamics: Potentials, integrators, boundary conditions. 1.3. A molecular dynamics software: LAMMPS: installing, using and visualizing results. 1.4. Ensembles in molecular dynamics. 1.5. Obtaining information from molecular dynamics using LAMMPS.

LM RP

2

Part 2. Computational thermodynamics (10 hours) 2.1 Thermodynamics and phase diagrams. 2.2 Thermodynamic model and parameters. 2.3 Calculation of phase diagrams. 2.4 Engineering applications: case studies. 2.5 Phase field modelling

LM RP

3

Part 3. Homogenization theory (8 hours) 3.1 Constitutive equations and microstructure. Concepts of representative volume element, homogenization and localization 3.2 Thermo-elastic constants of heterogeneous solids. Eshelby’s tensor. 3.3 Mean-field approximations for finite inclusion concentrations: Mori-Tanaka, self- consistent and differential methods. 3.4 Extension to the nonlinear regime.

LM RP

4 Part 4. Integrated Computational Materials Engineering (2 hours) 4.1 Multiscale materials modeling 4.2 Success stories and current challenges

LM

Page 39: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 39 de 79

321 Materials Economics and Management

Department (School) / Departamento (Escuela)

Departamento de Ingeniería de Organización, Administracion de Empresas y Estadística D400 (ETSI Industriales)

Subject / Asignatura

Materials Economics and Management

Economía y Gestión de los Materiales

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Compulsory 1 / 1 EN 04AF 43000321

Lecturers (Name) Contact email Office hours (Tutorials)

Ruth Carrasco Gallego [email protected] By appointment

Tamara Borreguero Sanchidrian [email protected] By appointment

Assessment criteria

Continuum assessment.

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

Prerequisites

There are no prerequisites

Previous knowledge of the student

none

Contents in coordination with other subjects

none

Generic competencies

CG1, CG6, CG8, CG9, CG10

Specific competencies

CE3, CE5

Bibliography

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Week Contents Code

Module I. Introduction. (6h)

1 Course introduction Review of economy & management: vocabulary, basic concepts

LM (1h) LM (2h)

2 Systems approach. The supply chain/value chain concept: procurement, LM (3h)

Page 40: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 40 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

physical distribution and reverse logistics subsystems. Understanding supply chain integration with a game

Module II. Management in. materials reuse and recycling. (14h)

3

Return material flows • Product recovery and waste management options: direct reuse, commercial returns, repair, refurbishing, remanufacturing, cannibalization, recycling, waste management.

• From reverse material flows to closed‐loop supply chains. • The 3R’s: reduce, reuse, recycle. Sustainable Consumption & Production (SCP)

LM (3h)

4

Organisational models for materials reuse and recycling • Motivations for reverse flows. Push & pull systems • Extended Producer Responsibility (EPR) policies in the European Union. • Producers Resposibility Organisations (PROs) examples: packaging and

packaging waste; end‐of‐life vehicles; waste electrical and electronic equipment; batteries. • Markets for reprocessed products and materials.

LM (3h)

5

Alternatives to recycling and energy recovery • Cradle to Cradle approach to materials flows: recycling and downcycling

• Packaging return systems (SDDR): star and multi‐depot systems. • Remanufacturing examples • Industrial Ecology

LM (3h)

6 Case studies & research projects (presentations by students) TI, DB (3h)

7 Visit to a recycling plant VI (3h)

Module III. Tools for managerial decision‐making (13h)

8

Introduction to decision‐making Typologies of decisions: strategic, tactical and

operational decision‐making. Introduction to linear programming (LP). Use of spreadsheet software (Excel) for solving LP problems. Interpretation of results. Sensitivity analysis.

LM, TI (4h)

9 Decision‐making with spreadsheets (problem‐based learning class I) Graphical approach to LP. Understanding resources limitations and bottlenecks.

LM, TI (3h)

10 Decision‐making with spreadsheets (problem‐based learning class II)

Introduction to the role of integer and binary variables in decision‐making (MILP)

LM, TI (3h)

11

Overview of decision‐making tools Normative vs. descriptive models;

deterministic vs. stochastic methods; single‐criteria vs. multi‐ criteria decision‐making; one decision‐maker vs. multiple decision‐makers (stakeholders concept)

LM, TI (3h)

Module IV. Ethics and Corporate Social Responsibility (6h)

12

CSR & Sustainability Introduction to sustainability. Triple bottom line. Drivers for CSR. Corporate governance. Strategic CSR. Shared value concept. Measuring

sustainability through Life‐Cycle Analysis (ELCA and SLCA). Environmental metrics: environmental footprint, carbon footprint, water footprint, biodiversity footprint, etc. Social metrics: poverty footprint, inclusion footprint, etc.

LM, TI (3h)

13 Students projects presentation Analysis of sustainability and CSR reports TI, DB (3h)

Module V Introduction to entrepreneurship (3h)

14

Entrepreneurship • Defining entrepreneurship. Network society & entrepreneurship. How to create

a start‐up. Funding your start‐up: business angels, venture capital investors, crowdfunding. Entrepreneurs’ skills. Introduction to business plan. Social entrepreneurship. The entrepreneurship ecosystem. • Invited talk: Creación de empresas UPM (1h) • Invited talk: Oficina del emprendedor de base tecnológica Madri+d (20 minutes)

LM, OT

15 Course wrap‐up and evaluation EV

Page 41: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 41 de 79

Segundo Semestre

322 Forensic Engineering: In Service Failure

Analysis

Department (School) / Departamento (Escuela)

Departamento de Materiales y Produccion Aeroespacial / ETSI Aeronáutica y del Espacio

Nombre de la Asignatura / Name of the Subject

Ingeniería forense: Análisis de fallo de materiales en condiciones de servicio

Forensic Engineering: In Service Failure Analysis

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN/ES 04AF 43000322

Lecturers (Name) Contact email Office hours (Tutorials)

Nuria Martín Piris [email protected] Tuesday/Thursday, 10:00 – 12:00 h

Ángel Salamanca García [email protected] Monday/Wednesday, 16:30 – 18:30 h

Assessment criteria

Continuum assessment Only if the whole class attendance > 70% of the days, and if there has been attendance to the two laboratory sessions Final mark = PE1 (10%) + PE2 (30%) + PE3 (60%) PE1: class attendance PE2: presentation and defense of a real in-service failure case study selected by the students PE3: presentation and defense of a real in-service failure case study selected by the teachers Pass mark: 0.1*PE1 + 0.3*PE2 + 0.6*PE3 ≥ 5

Final Exam Final exam with a total weight of 100%

Justification and Objectives

Particularize the acquired skills and knowledge in RTD subjects to the in-service failure analysis of structures through the study of case studies

Prerequisites

There are no prerequisites

Previous knowledge of the student

The knowledge acquired during their graduate studies.

Contents in coordination with other subjects

Not specified

Generic competencies

CG3, CG6, CG8, CG9, CG10

Specific competencies

CE3, CE5, CE6, CE7

Page 42: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 42 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Fallos en servicio de los materiales metálicos. J.M. Pintado. INTA Understanding how components fail. D.J. Wulpi. ASM International ASM Handbook Vol. 11, Failure Analysis and Prevention ASM Handbook Vol. 12, Fractography ASM Handbook Vol. 19, Fatigue and Fracture

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Presentation. Introduction to failure analysis LM

2 Failure analysis and its relation with incident/accident investigations. LM

3 Failure modes in metallic materials. Fractography LM

4 Legal aspects of forensic engineering LM

5 Overload failures. Creep failures. Embrittlement failures (hydrogen embrittlement, liquid metal embrittlement)

TG DB

6 Fatigue failures LM

7 Wear failures TG DB

8 Corrosion failures LM

9 Failures in high resistance metallic bars TG DB

10 Failure of welded structures LM

11 Failure of glass TG DB

12 Failure modes in composites LM

13 Structure of a final report. How to elaborate security recommendations LM

14 Laboratory session 1 (macrofractography) LB

15 Laboratory session 2 (micdrofractography) LB

Page 43: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 43 de 79

324 Structural Integrity

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales / ETSI Caminos Canales y Puertos

Nombre de la Asignatura / Name of the Subject

Seguridad Estructural

Structural Integrity

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000324

Lecturers (Name) Contact email Office hours (Tutorials)

Gustavo Guinea [email protected] By appointment

David Cendón [email protected] Tuesday and Thursday 10-00 – 12:00

Assessment criteria

1. Regular attendance and active participation in classes (20%) 2. Class quizzes (30%) 3. Final exam (50% or 100%, whichever yields the greater final mark) Course Policies: -The students will have to take individual weekly tests (quizzes) on basic aspects of the subject being considered -There will be a final exam composed of practical questions including data analysis. -Make-up exams are not allowed -Students are expected to exhibit academic honesty at all times. Violations against academic honesty like cheating, plagiarism, collusion, fabrication, forgery, falsification, destruction, multiple submission, solicitation, and misrepresentation will result in assignation of grade of "F" for the course, in addition to other possible academic sanctions from UPM authorities.

Justification and Objectives

The student will acquire: 1. Detailed understanding of linear elastic and elasto-plastic fracture mechanics. 2. Fundamental knowledge of time-dependent fracture 3. Detailed understanding of non-linear and probabilistic fracture models. 4. Basic understanding of the techniques used to perform numerical fracture analysis.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The student is assumed to have taken at least classes on and elasticity and strength of materials (Mechanics of Materials II – BSc Eng. Mat. recommended).

Contents in coordination with other subjects

Not specified

Generic competencies

CG1, Use of English language CG2, Capacity for teamwork CG3, Spoken and written communication skills CG4, Use of communication and Information technologies CG7, Planning and organizational capacity CG9, Capacity of interdisciplinary work

Page 44: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 44 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Specific competencies

CE1, Knowledge of the structure of materials and the techniques for their characterization and analysis CE 2 Knowledge of modelling the mechanical behaviour of materials CE5, Capacity for autonomous learning CE6, Capacity for designing, assessment, selection and manufacture of materials CE 10 Knowledge of assessing the safety, stability and integrity of materials and structures

Bibliography

- T.L. Anderson, “Fracture Mechanics: Fundamental and Applications”, 3rd Edition, CRC Press, 2005. - Z.P. Bazant, J. Planas, “Fracture and size effect in concrete and other quasibrittle materials”, CRC Press, 1998. - J.W. Hutchinson, Notes on Nonlinear Fracture Mechanics (course web)

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, DB: Debate at Room, EV: Exams

Item Contents Code

Class schedule: 15 wks ,2-hour lecture per week

1 Global Approach to Fracture: The Energy Criterion LM, RP

2 Local Approach to Fracture: The Stress Intensity Criterion LM, RP

3 Fatigue Crack Propagation. LM, RP

4 Environmentally Assisted Fracture LM, RP

5 Creep Fracture LM, RP

6 Elastic-plastic fracture mechanics. J Integral LM, RP

7 Elastic-plastic fracture mechanics. FAD LM, RP

8 Numerical methods LM, RP

Office hours give students the opportunity to ask in-depth questions and to explore points of confusion or interest that cannot be fully addressed in class.

Page 45: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 45 de 79

325 Design and fabrication of advanced

composite materials

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales / ETSI Caminos Canales y Puertos

Nombre de la Asignatura / Name of the Subject

Diseño y Fabricación de Materiales Compuestos Avanzados

Design and manufacturing of Advanced Composite Materials

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000325

Lecturers (Name) Contact email Office hours (Tutorials)

Carlos González [email protected] Thursday 10-00–12:00

Javier LLorca [email protected] Thursday 10-00–12:00

Claudio Lopes Invited lecturer

Roberto Guzmán Invited lecturer

Assessment criteria

Continuum assessment The final mark will be formed by averaging the marks corresponding to the following items: practical questions and problems (EX), report of manufacturing laboratory (LAB), report of simulation laboratory (SIM). The student pass the subjet if 0.60*EX+0.20*LAB+0.20*SIM≥5

Final Exam Final exam with a total weight of 100%

Justification and Objectives

This aim of this course is to provide the students an overview of the current development in three main areas within the field of composite materials for structural applications:

Novel strategies to develop composite materials for structural applications with multifunctional capabilities

Processing of advanced composite materials

Multiscale strategies for design and simulation of structural composites.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Mechanics, materials behaviour

Contents in coordination with other subjects

Advanced Numerical Methods, Modelling and Simulation in Materials Science and Engineering, Impact behaviour of materials, Materials for Aerospace Industry,

Generic competencies

CG1, CG3, CG6, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE6, CE7

Page 46: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 46 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Part 1: Multifunctional composites for structural applications

M. F. Ashby, P. J. Ferreira and D. L. Schodek, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, Butterworth-Heinemann, 2009.

Part 2: Manufacturing of composite materials

ASM International, Engineered Materials Handbook: Composites, 1987.

C. D. Rudd, Liquid Moulding Technologies, Woodhead Publishing Limited, 1997 Part 3: Multiscale design of composite materials

E. J. Barbero, Introduction to Composite Materials Design. CRC Press, 2011.

E. J. Barbero, Finite element analysis of Composite Materials Using Abaqus, CRC Press, 2013.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 State of the art in structural composites in engineering. Why composites?. The future of structural composites.

LM

2 Smart structures and hybrid composites. Nanocomposites and Nanoarchitectures. Natural nanoarchitectures. Man-made nanoarchitectures

LM

3 Morphing structures and actuators. Future developments. LM

4

Introduction to polymer composite manufacturing. Basic Concepts. Resins (thermosets and thermoplastics), fibers and fabrics (1/2)

Prepreg routes

Manufacturing of prepregs (tow, unidirectional, wovens, etc).

Tooling for autoclave moulding (materials, thermal corrections, caul plates, etc). Electroformed nickel graphite-epoxy and elastomeric tooling.

LM RP

5

Prepreg routes (2/2)

Prepreg Lay-up (manual, fiber placement AFP, tape laying ATL) and cure preparation (OOA out-of-autoclave and autoclave). Cutting optimization and recycling prepregs scraps.

Definition of the cure cycle. Auxiliary materials. Analysis of the compaction/bleeding of autoclave composites. Void stability.

LM RP

6

Liquid Moulding (1/2)

Basic concepts. Resin Transfer Moulding (RTM), Vaccum assisted resin infusion (VARI) and resin film infusion (RFI). Moulds, tooling, auxiliary materials and preforming operations.

LM RP

7

Liquid Moulding (2/2)

Injection/infusion and cure analysis in liquid moulding. Darcy's equations. Permeability and viscosity determination. Filling time and injection port strategies. Void generation and transport.

LM RP

8 Manufacturing laboratory LB, TI

9 Simulation of structural composites (1/5)

Classical Laminate Theory (CLT)+Abaqus Simulation LM RP

10 Simulation of structural composites (2/5)

Classical Laminate Theory (CLT)+Abaqus Simulation

LM RP

11 Simulation of structural composites (3/5)

Buckling analysis+Abaqus Simulation

LM RP

12 Simulation of structural composites (4/5)

Failure and damage+Abaqus Simulation

LM RP

13 Simulation of structural composites (5/5)

Delamination+Abaqus Simulation

LM RP

14 Simulation laboratory with Abaqus. LB, TG, TI

15 Final evaluation and laboratory reporting EX, TG, DB

Page 47: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 47 de 79

326 Quality Management and Metrology

Department (School) / Departamento (Escuela)

Departamento de Ingeniería Geológica y Minera (E.T.S.I. de Minas y Energía)

Subject / Asignatura

Quality Management and Metrology

Gestión de la Calidad y Metrología

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN/ES 04AF 43000326

Lecturers (Name) Contact email Office hours (Tutorials)

Jose Manuel Ruiz Román [email protected] By appointment

Assessment criteria

Continuum assessment. Evaluación contínua de las habilidades del estudiante en actividades en aula, en trabajos individuales y en grupo.

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

Evaluación de los sistemas de fabricación y ensayo. Sistemas de Gestión de la Calidad. Cálculo de la Incertidumbre de medida. Auditorías internas. 1. Conocer la normativa actual relacionada con los sistemas de gestión de la calidad. 2. Conocer los procesos que conlleva la implantación de un Sistema de Gestión de la Calidad en un laboratorio. 3. Conocer los fundamentos de la evaluación de la calidad de un proceso o actividad. 4. Conocer y Comprender los fundamentos del cálculo de incertidumbres en ensayos.

Prerequisites

There are no prerequisites

Previous knowledge of the student

None

Contents in coordination with other subjects

Not specified

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5,CE7

Bibliography

Class notes

Page 48: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 48 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Clases magistrales en aula, para la transmisión de contenido teórico y la resolución de Ejercicios. Realización de trabajos individuales y en grupo. Estudio personal para la adquisición de conocimientos

1. GESTIÓN INTEGRAL DE LA CALIDAD. Concepto de Gestión Integral de la Calidad y su Evolución. Equipos autodirigidos. Herramientas para la integración. Gestión por procesos: El mapa de procesos, Análisis y mejora de procesos, Cuadro de Mando Integral. Gestión del riesgo. Equipos y proyectos. 2. FUNDAMENTOS Y TEORÍAS APLICADAS A LA CALIDAD. Agentes que intervienen en la Calidad: Políticas y Objetivos. Gestión y Planificación de la Calidad según Normativa ISO 9001:2015 e ISO 17025:2005. Documentación de un SGC. Evaluación de la calidad. Herramientas de la Calidad: técnicas estadísticas y gráficos de control. Evaluación de Costes de la Calidad. Modelo EFQM y metodología REDER. 3. ESTIMACIÓN DE LA INCERTIDUMBRE EN MEDIDAS. Aplicación y usos de la incertidumbre. Tratamiento Clásico (contribución en la repetibilidad). Otras contribuciones a la incertidumbre. Cálculo o estimación de la incertidumbre. Estimación Incertidumbre caja negra. Incertidumbre medida directa. 4. AUDITORIAS. Tipos de auditorías. Introducción a las técnicas de auditoría Auditores, funciones, criterios, propuestas de calificación y código de actuación. La norma ISO 19011. Trabajo en grupo y resolución de casos prácticos

Page 49: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 49 de 79

327 Advanced Forming Processes

Department (School) / Departamento (Escuela)

Departamento de Ingenieria geológica y minera (E.T.S.I. de Minas y Energia)

Subject / Asignatura

Procesos avanzados de conformado

Advanced Forming Processes

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000327

Lecturers (Name) Contact email Office hours (Tutorials)

Luis E. Garcia Cambronero [email protected] By appointment

José M. Ruiz Román [email protected] By appointment

Assessment criteria

Continuum assessment. Along the course, a continuous evaluation is carried out when rate of class assistance will be higher than 75%. Short exams, class exercises and laboratory reports will be the bases of continuous evaluation according with the following marks: Class exercises - 10% Individual laboratory reports - 60% Class exam - 30%

Final Exam. Final evaluation will be carried out on the those students which continuous evaluation will be not available. A final exam composed of short theoretical questions and practical questions including data analysis will be the 100% of final evaluation.

Justification and Objectives

The students will become familiar with the last developments on forming processes and techniques for metals, polymers, ceramics and composites. They will review the working principles of the main forming processes: casting, forging, deformation, moulding, machining and Powder metallurgy, as well as advanced forming processes such as rapid prototyping, 3D printing, FDM or SLS. The selection of forming processes will be carried out through CES-Edupack software. Moreover, the student will obtain in the laboratory some parts by Powder Metallurgy route and FDM route. Manufacturing conditions and materials properties will be analysed. Objectives 1) Learning the field of application of Additive manufacturing and other forming processes 2) Learning the last developments on the main forming processes 3) Becoming familiar with near-net-shape processes and Rapid prototyping 4) Select the forming process according with the material and part design

Prerequisites

There are no prerequisites

Previous knowledge of the student

Materials Engineering; Materials characterization;

Contents in coordination with other subjects

Not specified

Generic competencies

CG1, CG2, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE5

Page 50: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 50 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Manufacturing Processes for Engineering Materials, Serope Kalpakjian and Steven R. Schmid, Pearson Hall, 2008

Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital , Ian Gibson,David W. Rosen,Brent Stucker Springer, 2000, 446 p.

Rapid Prototyping: Laser-based and Other Technologies. Patri K. Venuvinod, Weiyin Ma, Springer US, 2010 - 162 p

Selective Laser Sintering, Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken, VDM Publishing,2010 - 146 p

An Introduction to Powder Metallurgy Fritz Thümmler, R. Oberacker - Institute of metals. 1993 – 332 Ed.

Powder Metallurgy: An Advanced Technique of Processing Engineering Materials, B. K. DATTA PHI Learning Pvt. Ltd., 2011 – 204 p

Hot Isostatic Processing, H.V. Atkinson, B.A. Rickinson, Springer Netherlands, 1991 – 190 p.

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Week Contents Code

PART1. MAIN FORMING PROCESS

1-5

‐ Introduction. Materials properties. Relationship between structure and manufacturing. Forming, joining and surface treatments. ‐ Metal Casting. Centrifugal, investment, sand/mold, evaporative pattern .Examples of advances ‐ Polymer molding. Blow Moulding, Injection. Transfer moulding. Examples of advances ‐ Metal deformation. Metal forging, extrusion and, rolling. Examples of advances ‐ Machining (Subtractive manufacturing). Abrasive. Electrical/Chemical. Thermal. Drilling. Milling. Turning, boring. Examples of advances ‐ Advanced Composite Forming. RTM. Pultrusion. Autoclave forming. Vaccum/pressure bag molding. Vacuum assisted RTM.

LM 10h TI-1

PART 2: POWDER METALLURGY AND ADDITIVE MANUFACTURING

6-10

‐ Near net Shape Process: PM. Description of the main steps: powder characterization, powder forming and sintering. Post sintering treatments. ‐ Advanced PM processes. Cold forming process: slip casting, tape casting, Cold isostatic pressing presureless sintering. Hot forming process: powder forging, HIP, hot extrusion. Spark Plasma Sintering. Other advanced process ‐ Additive Manufacturing/Rapid Manufcaturing Processes. Stereolithography. Fused Deposition Modeling .Selective Laser Sintering (SLS, DMLS,

SLM). 3D Printing. Laminated Object manufacturing. Electro‐Beam Melting. Dieless technology. Incremental Sheet forming (ISF). Laser Cusing. Other rapid manufacturing processes (laser machining, reaction injection moulding, electroforming)

LM 10h TI-2 TI-3

PART 3: LABORATORY PART MANUFACTURING AND CHARACTERIZATION

11-15

‐ Powder Metallurgy metal‐part manufacturing. Powder properties. Die pressing and sintering. Description of processing variables. ‐ Sintered materials characterization. Shape change after sintering. Density. Mechanical Properties. Microstructure. Standarization ‐ Fused Deposition Modeling (FDM) part design and manufacturing. Generation of 3D drawings. STL file conversion. Polymer selection. Manufacturing conditions. Part surface analysis. ‐ Selection of forming process (CES Edupack process). Material and Shape part. Manufacturing process selection.

LB 10h TG-1 TG-2

TI-4

16 Exam (final) 3h

Page 51: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 51 de 79

328 Impact Behaviour of Materials

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (ETSI Caminos Canales y Puertos)

Subject / Asignatura

Comportamiento a Impacto de Materiales

Impact Behaviour of Materials

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000328

Lecturers (Name) Contact email Office hours (Tutorials)

Francisco Gálvez [email protected] Monday and Friday 10-00 – 12:00

David Cendón [email protected] Tuesday and Thursday 10-00 – 12:00

Rafael Sancho Cadenas [email protected] By appointment

Assessment criteria

Continuum assessment. The final mark consists of continuous assessment and a term project. The final mark is obtained through the following items: class attendance (CA), solution of practical exercises (EX) and term project (TP): Pass mark: 0.25*CA+0.35*EX+0.40*TP ≥ 5

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

The objective of this subject is the knowledge of the behaviour of the materials under high strain rates. The behaviour of the materials may change with the load application rate, or the strain rate. The student will learn the physics basis of this change, and its consequences. The applications studied will be to wave propagation in solids, crashworthiness, low energy impact, ballistic impact, blast waves and explosions. The material modelling including strain rate effects is also studied for those applications, as well as the testing techniques necessary to obtain the material behaviour under those circumstances. The approach of this course is based on lectures and exercises, computer simulation of some applications, and laboratory testing which may include experiments with a Hopkinson bar and a gas gun impacts

Prerequisites

There are no prerequisites

Previous knowledge of the student

Stress-strain relationships, elasticity and plasticity of materials

Contents in coordination with other subjects

Design and Fabrication of Advanced Composite Materials, Integrated Materials Management, Materials Selection, Mechanical Characterization and Analysis, Advanced Numerical Methods

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5,CE7

Page 52: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 52 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Meyers, M.A., Dynamic Behavior of Materials. John Willey & Sons. 1994 Zukas, N. Impact Dynamics. John Willey & Sons. 1982. Zukas, N. High velocity Impact Dynamics. John Willey & Sons. 1990. Johnson, W. Impact strength of materials. Edward Arnold Ed. 1972

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1

Introduction of the course. Dynamic behaviour of materials. Influence of the strain rate on the stress-strain curve. Microstructural explanation of the fundamentals. Strain rate vs. Temperature and its effects. Isothermal and adiabatic stress-strain curves. Materials laws.

LM, RP

2 Numerical methods Simulation of dynamic problems. Explicit formulation vs. Implicit codes. Concepts and tips for solving explicit problems. Hydrocodes.

LM, RP

3

Elastic waves in solids. Type of waves in solids. Fundamentals of wave propagation. One-dimensional waves in solids. Elastic waves in bars. Boundary effects, transmission and reflection due to media change. Waves in a three dimensional space.

LM, RP

4 Elasto-plastic waves in solids. One-dimensional plastic waves in solids. Boundary effects, transmission and reflection due to media change. Propagation on different cross-section bars.

LM, RP

5 Shock waves. Plane strain Fundamentals of shock waves. Wave propagation in semi-infinite media. Hugoniot elastic limit. Plane wave propagation.

LM, RP

6 Experimental methods Experimental methods for high strain rate. Inertia effects. Stress-strain curves isothermal obtained v. adiabatic. Drop weight tests. The Hopkinson bar. Plate impact. Impact experiments.

LM, RP

7 Introduction to Ballistic Impact The concepts of interior ballistics, exterior ballistics, and terminal ballistics. Impact physics. Empirical, analytic and numerical approaches. The DOP and V50. Residuyal velocity curves and models.

LM, RP

8 Blast and explosion Fundamentals of the explosion mechanics. The equivalent distance. Computation of the pressure under blast, time of arrival and duration time. The JWL model for explosives.

LM, RP

9 Numerical Simulation Exercise 1. One-dimensional propagation of waves in bars. Computation of the transmitted and reflected waves.

LM, TG, EV

10 Numerical Simulation Exercise 2. Plastic propagation of waves. Measurement of the plastic region.

LM, TG, EV

11 Numerical Simulation Exercise 3. The Hopkinson bar Measurement of the signals and the computation of the stress-strain curve.

LM, TG, EV

12 Numerical Simulation Exercise 4. Ballistic impact of a ball against a plate. The ballistic curves and the measurement of the V50.

LM, TG, EV

13 Experimental tests. Lab-1. The strain rate effect in a compression test Measurement of the stress-strain curve of a metallic material using a compression test with two different devices: a static machine and a Hopkinson bar.

LM, TG

14 Experimental tests. Lab-2. Ballistic impact of a ball against a plate. Measurement of the residual velocity curve and the measurement of the ballistic limit. Presentations of the results by the students.

LM, TG

15 Analysis of the experimental results in the lab with numerical simulations. Selection of a sensitivity parameter and discussion.

LM, RP

Page 53: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 53 de 79

330 Materials Under Extreme In-service

Conditions

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (ETSI Caminos Canales y Puertos)

Subject / Asignatura

Materials for extreme in-service conditions

Materiales para servicio en condiciones extremas

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000330

Lecturers (Name) Contact email Office hours (Tutorials)

José Ygnacio Pastor Caño [email protected] By appointment

Ana Méndez [email protected] By appointment

Elena María Tejado Garrido [email protected] By appointment

Teresa Palacios García [email protected] By appointment

Assessment criteria

Evaluation Methods and Grading Policy:

During the first week of the course the student must choose between continued evaluation and final ordinary exam.

Regular attendance, active and creative participation in classes and in Moodle, subjective teacher evaluation, others (up to 10 % extra points).

Two partial exams (up to 50 % of the final mark each one), minimum 50 % of the maximum grade in each partial is required.

Final ordinary exam (up to 100 % of the final mark).

Final extraordinary exam (up to 100 % of the final mark). Course Policies:

The exam can be composed of practical and theoretical questions about the subject.

Make-up exams are not allowed Students are expected to exhibit academic honesty at all times. Violations against academic honesty like cheating, plagiarism, collusion, fabrication, forgery, falsification, destruction, multiple submission, solicitation, misrepresentation… will result in assignation of grade of "F" for the course, in addition to other possible academic sanctions from UPM authorities and courts.

Justification and Objectives

The student will acquire: 1. Fundamental knowledge of needs of materials for high temperature conditions. 2. Fundamental knowledge of the kind of materials for high temperature conditions. 3. Detailed understanding of the properties of materials for high temperature conditions. 4. Applications of materials for high temperature conditions.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The student is assumed to have taken at least classes on basic structure of materials and mechanical behaviour.

Contents in coordination with other subjects

Not specified

Page 54: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 54 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Generic competencies

CG1, CG2, CG3, CG4, CG7, CG9

Specific competencies

CE1, CE2, CE5, CE6, CE10

Bibliography

Fundamental of refractory materials, several authors. Ceram. Trans. 125. “Revestimientos Refractarios en Hornos Industriales”. R. Inoriza Tellería. Cadem (2007) “Materiales refractarios y cerámicos”. L. F. Verdeja, J. P. Sancho, A. Ballester. Editorial Síntesis (2008). “Refractarios monolíticos” C. Baudín y otros. Sociedad Española de Cerámica y Vidrio (1999) http://www.northrefractories.com. Additional bibliography and research papers that will be provided in class.

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Class schedule: 15 weeks, 2-hours lecture per week. Some contents of this course:

1. Refractory ceramic materials: a. Introduction to refractory ceramic science b. Feedstock for refractory ceramic materials production c. Main properties of refractory ceramic materials d. Fabrication process of refractory ceramic materials

2. Main refractory ceramic materials: a. Classifications of refractory ceramic materials b. Refractory lining c. Main refractory ceramic materials

3. Refractory ceramic materials today: a. Main uses of refractory ceramic materials b. Refractory ceramic materials for metals obtaining and metals

recycling c. Refractory ceramic materials for cement and lime production d. Refractory ceramic materials for energy production

4. Advances ceramic refractories 5. Steel: material for the future. ODS steels. 6. Properties for interests in high resistant steels for energy generation

systems 7. High resistant steels families 8. Optimizing the microstructure 9. Steels applications for energy generation

Heavy metals

LM, RP

Page 55: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 55 de 79

331 Materials for sport

Department (School) / Departamento (Escuela)

Departamento de Ingeniería Química Industrial y del Medio Ambiente / ETSI Industriales

Nombre de la Asignatura / Name of the Subject

Materiales para el Deporte

Materials for Sport

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000331

Lecturers (Name) Contact email Office hours (Tutorials)

Victoria Alcázar Montero [email protected] Tuesday and Wednesday 10:00 – 13:00 (by appointment)

Assessment criteria

Ordinary evaluation According to the UPM regulations all the students will be evaluated by continuous assessment unless the students make a written request showing their preference for the final exam (Art. 13, Normativa de Evaluación del Aprendizaje en las Titulaciones de Grado y Máster Universitario con Planes de Estudio Adaptados al R.D. 1393/2007,http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Alumnos/Informacion/Normativa/Normativa_Evaluacion.pdf). The making of a short video (or ppt presentation) about one of the topics of the subject is compulsory for all the students to be evaluated through continuous assessment or final exam in the ordinary evaluation.

Continuous assessment The final mark is obtained through the following items:

- class activities and homework assignments CA - written exam EX - oral presentation (video) OP

Pass mark: 0.50*[max(0.60*CA+0.40*EX)or 100% EX]+0.50*OP ≥ 5

Final exam The final mark is obtained through the following items:

- written exam EX - oral presentation (video) OP

Pass mark: 0.50* EX + 0.50*OP ≥ 5 Extraordinary evaluation The making of the video (or ppt presentation) is not required. Only final exam with a total weight of 100%. Pass mark: EX ≥ 5 For ordinary and extraordinary evaluation, a minimum score of 5 is required.

Justification and Objectives

In this subject the students will learn about the role of advanced materials in sports. Many of these materials, initially developed for industries as aerospace, construction or automotive, have impacted sports performance and led to a substantial improvement in many of them. And some ethical considerations have evolved for their use in competition as Olympics where the motto “'Citius, altius, fortius' (faster, higher, stronger) refers to the capabilities of the athlete.

Prerequisites

There are no prerequisites

Page 56: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 56 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Previous knowledge of the student

The knowledge acquired during their graduate studies.

Contents in coordination with other subjects

Design and Fabrication of Advanced Composite Materials, Integrated Materials Management, Materials Selection, Advanced Numerical Methods, Impact Behaviour of Materials

Generic competencies

CG8, Communication Skills (verbal and written)

Specific competencies

CE2, Capacity for designing, assessment, selection and manufacture of materials CE5, Capacity for autonomous learning

Bibliography

Jenkins, M., Materials in Sports Equipment. Woodhead Publishing 2003 All the material (PPT presentations, exercises, selected articles…) will be available through moodle.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction of the course Historical evolution of sport materials (some representative examples) Advanced new materials and some ethical considerations.

LM

2 Sport market outlook. Materials and technology in sports. Composite materials: rule of mixtures. Density. Young´s modulus. Diffusivity.

LM RP

3 Mountain sports. Rock climbing and mountaineering hardware. Material selection. Ropes (static and dynamic ropes). Forces involved in falls. Tests of climbing ropes.

LM RP

4 Skiing. Types of Skiing. Equipment. Physics of skiing. Materials: boots, skis, poles. LM

RP

5 Water sports. General considerations. Rowing (physics of rowing, rowing boat, paddles)

LM RP

6 Sailing. Types of sailing boats (selection). Physics of sailing. The keel, the sail. Surfing

LM RP

7 Athletics. General considerations. Pole vault: material requirements, pole vaulting physics, material selection.

LM RP

8 Javelin throw. Design principles. Physics of javelin throw. Other throwing equipment. LM

RP

9 Tennis rackets. Design criteria. Frame materials. Tennis strings. LM

RP

10 Tennis rackets: special parts (the handle, the grip, the grommets). Effect of materials on the game. Current manufacturing process.

LM RP

11 Cycling. The history of the bicycle. Some lessons about the design. Physics of cycling Wheels. Bicycle frame.

LM RP

12 Racing.The cars: chassis, engine, wings and underbody. Regulations, design and materials.

LM RP

13 Racing. The wheels. Safety. Racing helmets, suits, shoes, gloves. LM

RP

14 Oral presentations or videos by the students. Resolution of questions relative to the presentations.

OT

15 Oral presentations or videos by the students. Resolution of questions relative to the presentations.

OT

Page 57: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 57 de 79

332 Materials for Transportation

Department (School) / Departamento (Escuela)

Departamento de Física Aplicada e Ingeniería de Materiales / ETSI Industriales

Nombre de la Asignatura / Name of the Subject

Materiales para el Transporte

Materials for Transportation

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 ES 04AF 43000332

Lecturers (Name) Contact email Office hours (Tutorials)

Javier Oñoro [email protected] Tuesday and Thursday 10-30 – 12:30

José R. Ibars [email protected] Tuesday and Thursday 10-30 – 12:30

Assessment criteria

Evaluación continua La evaluación estará basada en criterios de evaluación-ayuda-aprendizaje. El sistema de evaluación incluirá la valoración del trabajo del estudiante, individual y/o en grupo, realizado de forma presencial y no presencial, y permitirá comprobar el grado de consecución tanto de las competencias generales como específicas desarrolladas por la materia. La nota final de la asignatura se obtendrá ponderando las siguientes actividades: -Pruebas cortas y seguimiento continuo del trabajo del estudiante en el aula, tanto de forma individual como de forma cooperativa (40%) -Trabajos realizados de forma individual o en grupo, y presentados en forma oral y escrita (40%) -Exámenes (20%)

Examen Final Examen final con una valoración del 100%.

Justification and Objectives

- Entender, asimilar y manejar los conceptos, métodos y herramientas básicas de los materiales que se utilizan en el transporte de personas y mercancías, con una visión integradora y aplicada que refuerce la unidad conceptual y evite la disgregación de contenidos. - Conocer los nuevos métodos de fabricación utilizados y las propiedades conseguidas en la fabricación de automóviles, trenes, embarcaciones y equipos utilizados en la industria del transporte. Desarrollar criterios para elegir los materiales y los procesos de fabricación más idóneos para cada aplicación. - Saber relacionar y aplicar de forma práctica las propiedades de los materiales con los requerimientos de servicio. - Utilizar con soltura la comunicación oral y escrita y las Tecnologías de la Información y de la Comunicación. - Ser capaz de trabajar en equipo. Ejecutar el trabajo con responsabilidad y respeto a los demás.

Prerequisites

No hay pre-requisitos

Previous knowledge of the student

No son necesarios

Contents in coordination with other subjects

-

Page 58: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 58 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Bibliography

Automotive Handbook, 9th Edition. SAE International. 2014. Paul E. Geck. Automotive Lightweighting Using Advanced High-Strength Steels. SAE International. 2014. INASMET. Materiales compuestos: aplicaciones en el transporte terrestre. INASMET, San Sebastián (1998). Metallic Materials Properties Development and Standardization (MMPDS) Handbook – 08. SAE International. 2013. Real Decreto 97/2014, de 14 de febrero, por el que se regulan las operaciones de transporte de mercancías peligrosas por carretera en territorio español.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introducción. Requerimientos específicos de los materiales para el transporte. Materiales multifunción.

LM RP TI EV

2

Materiales estructurales en automóviles y ferrocarriles. Materiales estructurales en elevadores, grúas, contenedores. Recipientes para el transporte a presión. Transporte de residuos tóxicos y peligrosos.

LM TI TG DR

3

Requisitos del transporte marítimo. Superestructuras. Embarcaciones de recreo. Nuevos materiales en la industria naval.

LM TI DR EV

4 Nuevos materiales para el transporte asociados a nuevos procesos de fabricación. Automatización. Procesos híbridos.

LM TI TG DR

Page 59: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 59 de 79

333 Materials for aerospace industry

Department (School) / Departamento (Escuela)

Departamento de Materiales y Produccion Aeroespacial / ETSI Aeronáutica y del Espacio

Nombre de la Asignatura / Name of the Subject

Materiales para la industria aeroespacial

Materials for aerospace industry

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000333

Lecturers (Name) Contact email Office hours (Tutorials)

Nuria Martín Pirís [email protected]

M. Vega Aguirre Cebrián [email protected]

Assessment criteria

The students can choose two ways of evaluations: 1. Continuous evaluation: attendance is mandatory and it is 40% of total mark. Students who

choose this kind of evaluation have to develop an individual work about an application of materials in aerospace industry and this work must be presented in class at the end on the subject. This corresponds to the 60% of total mark

2. Final exams: for students who did not choose or fail continuous evaluation must answer a questioner about the content of the subject. This corresponds to the 100% of total mark

For both kinds of evaluations, students have to achieve at least 5.0 points over 10.0 total points

Final Exam Final exam with a total weight of 100%

Justification and Objectives

The objective of the subject is that the students have an overview about the special conditions that the materials have to withstand in the aerospace conditions. The subject shows an overview about the different materials that answer to these conditions. The students can do a first selection of materials for a determinate aerospace component.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Fundaments of science materials, metallic and non-metallic materials.

Contents in coordination with other subjects

None

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Page 60: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 60 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Classroom slides and notes. Complementary bibliography: ASM Handbooks (Vol. 1-23). Handbook of Advanced Ceramics (Edited Edited by:Shigeyuki Somiya ISBN: 978-0-12-385469-8). Aerodynamics for engineers 6th ed., International ed. Bertin, John J.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction: The aerospace industry, introduction to aerodynamic, classification of aircrafts and spacecrafts, parts of an aircraft and propulsive systems

LM TI

2 Materials for Aerospace. An overview: Introduction, properties and selection of materials, materials for aircraft airframes, materials for jet engines and materials for spacecrafts.

LM TI, DB

3 Metallic Materials for Aerospace: Aluminium alloys, magnesium alloys, berilium alloys, titanium alloys, ultrahigh strength steels, nickel alloys, cobalt alloys, refractory metals and metal matrix composites.

LM TI, DB

4 Other Materials for Aerospace: ceramic materials, composite materials (polymer, metal and ceramic matrix composites), laminar composites and special environments in space applications

LM TI, DB

Page 61: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 61 de 79

334 Functional Materials at Macro and

Micro/Nanometre Scales

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Subject / Asignatura

Properties of functional materials in bulk, micro and nanoscale

Propiedades funcionales de materiales a escala micrometrica y nanometrica

ECTS Type Year / Semester Language Sylabus code Subject Code

5 Optional /

Compulsory 1 / 2 EN 04AF 43000342

Lecturers (Name) Contact email Office hours (Tutorials)

Enrique Calleja Pardo [email protected] By appointment

Miguel Angel Sanchez Garcia [email protected] By appointment

Zarco Gacevic [email protected] By appointment

Assessment criteria

Continuum assessment. The course will be taught mainly by master classes both theoretical and practical. Interaction between student and professor and student-student will be enhanced by discussions and homework sets. The continuous evaluation will include two partial exams and individual exercises, with the following distribution in the final grade: • 1st partial exam: 45% of the final grade. • 2nd partial exam: 45% of the final grade. • Homework sets: 10% of the final grade.

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

The main objective of this course will be to acquire fundamental knowledge on the properties of functional materials at different levels of volume (size); from bulk material (3D) to micro and nanoscale structures (2D, 1D and 0D). Special emphasis will be given to structural, transport (electrical conductivity) and optical properties. Specific characterization techniques will be described to analyze the mentioned properties. Finally, examples of nanostructures at the different scales (3D,2D,1D, and 0D), as well as on their fabrication methods, will be addressed.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Basic Optics; Electricity and Magnetism; Structure of Materials; Semiconductor Physics; Quantum Physics.

Contents in coordination with other subjects

Not specified

Generic competencies

CG1, CG2, CG3, CG4, CG7, CG9

Specific competencies

CE1, CE5, CE6

Page 62: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 62 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

Physics of Semiconductor Devices, S.M. Sze, John Willey & Sons.

Nanoscale Physics for Materials Science, T. Tsurumi, H. Hirayama, M. Vacha, T. Taniyama, CRC Press, 2009

Optical Properties of Solids, M. Fox, Oxford Master Series in Condensed Matter Physics Oxford University Press, 2001

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

0

0. Introduction. Why micro and nano scale matters? Examples of recent technology: data storage, optical and magnetic memories, electrical and optical communications, cheap light generation, single photon sources, etc.

1

1. Material properties (3D): structural, thermal, electrical and optical. 1.1 Classification of solids: amorphous, polycrystalline, crystalline. 1.2 Structure of materials. Unit cell. Bravais lattices. Miller indices. Reciprocal lattice. Brillouin Zone. 1.3 Crystal structure and electrons in solids. Energy Bands. 1.4 Lattice vibrations. Thermal conductivity. 1.5 Electrical properties. Conductors: Drude Model. Semiconductors: Electron-hole transport. Scattering processes. Mobility. Gunn effect. 1.6 Optical properties: Direct vs. Indirect band-gap. Recombination processes. Lifetime. 1.7 Properties of Semiconductors. Alloys, lattice mismatch, strain, defects. Heterostructure formation, electron affinity (HEMT, QW, p-n junction, Schottky barrier).

2

2. Materials Characterization (3D): XRD, SEM, PL, CL, Raman, Hall. 2.1 Morphology and structure (shape, lattice and defects): SEM, AFM, TEM 2.2 Crystal properties (crystal unit cell): XRD 2.3 Thermal properties (phonon dynamics): Raman spectroscopy 2.4 Electrical properties (electrons/ion or electron/hole transport): Hall effect 2.5 Optical properties (electron-hole recombination dynamics): PL, CL

3

3. Nanoscale Science and Engineering. 3.1 Two dimensional structures: Quantum Wells. Band structure. Energy levels. Sub-bands. Density of states. Electrical and optical properties. Quantum stark effect. 3.2 One dimensional structures: Quantum Wires. Band structure. Energy levels. Sub-bands. Density of states. Electrical and optical properties. 3.3 Zero dimensional structures: Quantum Dots: Band structure. Energy levels. Sub-bands. Density of states. Electrical and optical properties.

4. Fabrication and Characterization of Micro and Nanostructured Materials. 4.1 Nanostructures grown by self-assembly method. 4.2 Ordered and top-down approaches to grow nanostructures. Selectivity. 4.3 Nanolithography: e-beam, nanoimprint, colloidal. Assessment by AFM, STM, TEM, and SEM microscopy. 4.4 Applications and examples (nanoFETs, nanoLEDs, QD-lasers, sensors).

Page 63: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 63 de 79

335 New Emerging Materials and Technologies

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Nueva Generación de Materiales y Tecnologías Emergentes

New Materials and Emergent Technologies

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000335

Lecturers (Name) Contact email Office hours (Tutorials)

Fernando Calle Gómez [email protected] By appointment

Invited speakers

Assessment criteria

The progress of the students will be monitored through their paper and presentation (70%). In addition, all students will be required to participate during the talks by experts, and their comments/questions will be recorded and evaluated (30%).

Justification and Objectives

Due to its short duration and very broad topic, as well as its evolving content, the main objective of this module is to provide a first approach to the new topics in electronic and functional materials, as well as the emerging technologies. Most of the sessions will be given by recognized experts in the field. The main focus will be scientific and technological, although other aspects such as the labour, social and political impact of the emerging technologies will be overviewed.

Prerequisites

There are no prerequisites

Previous knowledge of the student

All obligatory modules in the first quarter, and most modules of the itinerary/route of Functional Materials

Contents in coordination with other subjects

Modules of the Master of Materials Engineering Program, in particular: Functional Materials at Macro and Micro/Nanometer Scales, Materials and Applications in NanoTechnology, Materials for Electronic and Optoelectronic Devices, Polymeric Materials for Advanced Applications, Materials and Microfabrication Technologies for Electronic Devices, and Spintronics and Nanomagnetism

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Bibliography

Bibliography on the different talks will be provided with the abstract and speakers´ bio.

Page 64: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 64 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

The contents of the course will be variable, though a list of intended topics is given below. Student participation will include assistance to lectures and to discussion sessions afterwards. In addition, within the framework of this module, the students will write a paper on a specific topic suggested or approved by the professor, and present it in class. A visit to facilities of Universities, Research Centers or Industries in Madrid will be scheduled

Weeks Contents Code

1 Prospective and emerging technologies

LM (2h)

2-9

Invited talks on different topics, such as Materials: - Graphene - 2D crystals - Metamaterials and photonic crystals - Solgel and aerogels - Programmable matter, synthetic biology Technologies - Atomic layer deposition - 3D printing, bioprinting - Molecular assembler - Advanced lithographies - Flexible electronics - Bionanomechanics - Artificial photosynthesis - Artificial intelligence and robotics

LM (16h)

10 Visit to high tech facilities

VI (2h)

11 Impact of emerging technologies on labour, society and politics – Debate

LM/DB (2h)

12-14 Oral presentations by students

6h

15

Drivers and future scenarios: Debates - the world in 2050 - human ET life - transhumanism

2h

Tutorials, Office hours

Student-speaker and student-student interactions will be favoured by mean of discussion during the sessions and debates afterwards. Office hours give students the opportunity to explore different topics of interest and to ask in-depth questions on their papers and presentations

Page 65: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 65 de 79

337 Materials for Electronic and

Optoelectronic Devices

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Materiales para diseño y fabricación de dispositivos electrónicos y optoelectrónicos

Materials for Electronic and Optoelectronic Devices

ECTS Type Year / Semester Language Sylabus code Subject Code

4 Optional 1 / 2 EN 04AF 43000337

Lecturers (Name) Contact email Office hours (Tutorials)

Adrián Hierro [email protected] Wednesday and Friday 12-00 – 13:00

Assessment criteria

Continuum assessment First Midterm = 35% Second Midterm = 35% Homework = 30%

Final Exam Final exam with a total weight of 100%

Justification and Objectives

The aim of the course is that students acquire an applied knowledge of the operation principles of semiconductor devices on which current electronics and optoelectronics are based. Additionally, they will understand the materials and technology necessary to meet the specifications required in commercial applications. Among the electronic devices, MOSFET transistors are discussed in detail, together with their application to solid state memories and CMOS circuits, heterojunction HEMTs, and bipolar transistors. Regarding optoelectronic devices, light-emitting diodes (LEDs), laser diodes (LD), photodetectors and solar cells will be studied, with special emphasis on current state of the art applications: lighting with white light, infrared communications, solar cells/LEDs with high efficiency, etc.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Physics of semiconductors, band structure, electronic transport, emission and absorption of light, p-n junction diodes, Schottky diodes

Contents in coordination with other subjects

Optical, Electrical and Magnetic Characterization of Materials; Functional Materials at Macro and Micro/Nanometer Scales

Generic competencies

CG1, CG3, CG8, CG9, CH10

Specific competencies

CE1, CE2, CE3. CE4, CE5, CE7

Page 66: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 66 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

S.M. Sze, M.K. Lee, ”Semiconductor Devices: Physics and Technology”, Third Edition, International Student Version, Wiley, 2013.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1

p-n and Schottky Junctions a. Review of Semiconductors under Equilibrium b. Review of Carrier Transport in Semiconductors c. Current-Voltage p-n Diode Characteristics d. Non-idealities in p-n Diodes e. Junction Capacitance f. Schottky junctions: Diode Characteristics g. Non-idealities in Schottky diodes h. Ohmic Contacts i. Heterojunctions

LM RP

2

Advanced MOSFETs and Related Devices a. Ideal MOS Contact b. SiO2-Si MOS Capacitor c. Carrier Transport in MOS Capacitors d. Charged Coupled Devices (CCD) e. MOSFET Fundamentals f. MOSFET on Insulator g. MOS Memory Structures h. MESFETs i. MODFETs

LM RP

3

Bipolar Transistors and Related Devices a. Transistor Action b. Static Characteristics c. Frequency Response d. Heterojunction Bipolar Transistors e. Thrystors and Power Devices

LM RP

4

Light Emitting Diodes and Laser Diodes a. Radiative Transitions and Optical Absorption b. Light-Emitting Diodes (LED) Basics c. Infrared, Visible and Ultraviolet LEDs d. White LEDs e. Communication LEDs f. High Efficiency LEDs g. Laser Diodes (LD)

LM RP

5

Photodetectors and Solar Cells a. Photoconductors b. Photodiodes c. Avalanche Photodiode d. Phototransistor e. Metal-semiconductor-metal photodetectors f. Quantum well infrared detectors g. Silicon and Compound-Semiconductor Solar Cells h. Third Generation Solar Cells i. Optical Concentration

LM RP

Page 67: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 67 de 79

338 Materials for Photonic Devices

Department (School) / Departamento (Escuela)

Tecnología Fotónica y Bioingeniería (ETSI Telecomunicación)

Subject / Asignatura

Materials for Photonic Devices

Materiales para dispositivos fotónicos

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000338

Lecturers (Name) Contact email Office hours (Tutorials)

Morten A. Geday [email protected] By appointment

Xabier Quintana [email protected] By appointment

José M. Otón [email protected] By appointment

Assessment criteria

Continuum assessment. 1) The students will have individual exercises at the beginning of every practical session. These

exercises will center on theoretical background for the practical laboratory session, as well as include key issues in the planned execution of the session such as the expected results and the care and precautions that shall be taken.

2) They will also prepare group reports based on the measurements taken at the laboratory. 3) If the student fails these exercises, s/he will have to undergo the final exam. Evaluation: Exercises - 25% Laboratory reports - 75% Exam - 100% (a mark equal or higher than 4.0 in the exam is required to pass the subject)

Final Exam. Final exam with a total weight of 100%

Justification and Objectives

The scope of this course is that students understand a number of fundamental techniques and procedures relevant to the creation, handling, transmission, modification, and detection of and the specific functional materials employed in photonic devices. Students will learn the physical fundamentals of the different measurement techniques and the most relevant characterization procedures both, from the theoretical and practical point of view, including the requirements for the material and device to accomplish their application in real scenarios. By the end of the course, students should be able to analyze and evaluate the results, and to design alternative setups selecting materials and characterization techniques

Prerequisites

There are no prerequisites

Previous knowledge of the student

Basic Optics; Non-linear optics and electrooptics; Structure of Matter; Photophysics; Quantum Physics; Instrumentation; Electronic Engineering; Polarization.

Contents in coordination with other subjects

Not specified

Generic competencies

CG1, CG2, CG3, CG5, CG7, CG8, CG9

Specific competencies

CE1, CE5,CE6

Page 68: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 68 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

Bibliography

• Eugene Hecht, “Optics”, Addison-Wesley, 1990 • Alex Ryer, “Light Measurement Handbook”, http://www.intl-light.com/handbook/ • Bahaa E. A. Saleh & Malvin Carl Teich, “Fundamentals of Photonics” John Wiley & Sons, 1991

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Part 1: LIGHT PROPERTIES AND HANDLING

1

- Introduction and basic concepts Presentation of the course. Review of known concepts: Absorption, spontaneous emission, stimulated emission, spectra of atoms and molecules. Fabry-Pérot interferometers and cavities. General features of lasers. Laser diodes (LDs). Optical fibers. Structure, guiding mechanisms, spectra, doping, Photonic optical fibers.

LM 2h

2

- Introduction to laboratory Presentation. Description of tools and instruments. Safety and precautions on handling. Power meter, dependence on wavelength. Optical fibers, connectors, couplers. Attenuation and speed of light in optical fibres

LM 1h LB 2h TI-1 TG-1

3

- Optical Spectrum Analyzer (I): Active components Introduction to the OSA Measuring spectral characteristics of LEDs: emission wavelength, spectral width, optical power vs intensity Measuring spectral characteristics of FP-LDs: emission wavelength, spectral width, FP cavity, threshold current Measuring spectral characteristics of DFB: emission wavelength, spectral width, threshold current, comparison with above laser

LM 1h LB 2h TI-2 TG-2

4

- Optical Spectrum Analyzer (II): Passive components Wide-spectrum light sources. Calibration and baseline. Absorption spectrum of guiding media: optical fibers. Communication windows. Bragg filters: characterization, integration in optical lines. Optional: Wavelength division multiplexers (WDM), characterization

LB 3h TI-3 TG-3

Part 2: LIGHT AMPLIFICATION

5

- Photons, electrons, atoms, molecules Electromagnetic spectrum. Spectroscopic techniques. Photophysics, primary processes. Fluorescence, phosphorescence, relaxation. Optical amplifiers: EDFA Bragg structures and filters, Bragg-based photonic devices. Circulators: based concepts and uses

LM 2h

6

- Optical amplification: let's make a laser EDFA optical amplifier: spectral characteristics and handling Bragg filter: characterization in broad spectrum Construction and measurement of an optical fiber laser

LB 2h TI-4 TG-4

7

- Laser structures Laser types, laser cavities Spatial and temporal coherence Spectral broadening: homogeneous, heterogeneous, hole burning

LM 2h

8 - Non-linear effects Photon-phonon interactions, inelastic scattering: Brillouin scattering, Raman scattering Four-wave mixing, self-focusing, self-phase modulation

LM 2h

9 - Active Fabry-Pérot: let's make an OSA FP control and parameters: Free spectral range, spectral width, finesse Creating an OSA out of a tunable FP

LB 2h TI-5 TG-5

Page 69: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 69 de 79

Part 3: ELECTRO-OPTIC MATERIALS AND POLARIZATION OF LIGHT

10 Active Fabry-Pérot and EDFA: let's make a tunable laser Use the combination of the selective transmission of the tunable lasers and the wide EDFA spectrum to make a tunable laser.

LB 3h TI-5 TG-5

11

- General concepts on polarization: a review State of polarization (SOP). Mathematical description. Jones algebra, SOP modification Müller algebra, Stokes parameters, Poincaré sphere

LM 2h

12

- Characterization of electro-optic materials Characterization of liquid crystal cells: optical and polarization properties Dynamic response of EO materials Measuring angular dependence of transmission: using an integrated spectrogoniometer Angular intensity and contrast, color coordinates

LB 4h TI-6 TG-6

13 - Review of learnt concepts, problem resolution 2h

14 - Recovery of lost sessions TBD

15 - Exam 3h

Page 70: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 70 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

339 Polymeric materials for advanced

applications

Department (School) / Departamento (Escuela)

Departamento de Ingeniería Química Industrial y del Medio Ambiente / ETSI Industriales

Nombre de la Asignatura / Name of the Subject

Materiales poliméricos para aplicaciones avanzadas

Polymeric materials for advanced applications

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000339

Lecturers (Name) Contact email Office hours (Tutorials)

Victoria Alcázar Montero [email protected] Tuesday and Wednesday 10:00 – 13:00 (by appointment)

De-Yi Wang [email protected] by appointment

Assessment criteria

Ordinary evaluation According to the UPM regulations all the students will be evaluated by continuous assessment unless the students make a written request showing their preference for the final exam (Art. 13, Normativa de Evaluación del Aprendizaje en las Titulaciones de Grado y Máster Universitario con Planes de Estudio Adaptados al R.D. 1393/2007,http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Alumnos/Informacion/Normativa/Normativa_Evaluacion.pdf).

Continuous assessment The final mark is obtained through the following items:

- class activities and homework assignments CA - written exam EX

Pass mark: 0.50*CA+0.50*EX ≥ 5

Final exam The final mark is obtained only by the contribution of the written exam EX

Pass mark: EX ≥ 5 Extraordinary evaluation Only final exam with a total weight of 100%. Pass mark: EX ≥ 5 For ordinary and extraordinary evaluation, a minimum score of 5 is required.

Justification and Objectives

In this subject the students will learn some of the new trends in the field of polymers, covering different topics: power generation through organic photovoltaic cells, molecular imprinted polymers for development of sensors and catalysts or fire retardant polymers. At the end of the course the students will have widened their knowledge about polymers, discovering new possibilities and applications of these versatile materials.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The knowledge acquired during their graduate studies.

Contents in coordination with other subjects

Materials for Electronic and Optoelectronic Devices, Materials and Microfabrication Technologies for Electronic Devices, Materials and Applications in Nanotechnology.

Page 71: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 71 de 79

Generic competencies

CG1, Use of English language CG5, Use of communication and Information technologies CG8, Communication Skills (verbal and written) CG9, Capacity to adapt to new situations CG10, Responsibility and professional ethics

Specific competencies

CE1, Knowledge of the structure of materials and the techniques for their characterization and analysis CE2, Capacity for designing, assessment, selection and manufacture of materials CE4, Ability to communicate ideas and results related to the behavior and uses of materials CE5, Capacity for autonomous learning

Bibliography

So, F., Organic Electronics. Materials, Processing, Devices and Applications. CRC Press 2010. Alvarez-Lorenzo, C. and Concheiro, A., Handbook of Molecularly Imprinted Polymers. Smithers Rapra Technology Ltd, 2013. Sequeira, C. and Santos, D., Polymer electrolytes. Fundamentals and Applications. Woodhead Publishing 2010. Aguilar, M. R. and San Román, J., Smart Polymers and their Applications. Woodhead Publishing 2014.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Introduction of the course Polymers. Natural and synthetic polymers. Polymers: the most versatile materials.

LM

2 Introduction. Conductive polymers. Conjugated polymers: HOMO and LUMO. Organic versus inorganic semiconductors.

LM RP

3 Optoelectronic processes. Electroluminescence. Materials for organic light emission diodes (OLEDS). Single and double layer OLED devices. Other multiple layered devices.

LM RP

4 Organic photovoltaic cells (OPV). Photovoltaic effect. Efficiency limit. Operation of an OPV. Polymer photovoltaic devices.

LM RP

5 Molecularly imprinted polymers (MIPs). Molecular recognition: examples (enzymes, antibodies). Non covalent interactions. Design of man-made (artificial) receptors.

LM RP

6 Preparation of MIPs: covalent and non-covalent approach. Design of the template. Applications of MIPs: chromatography, sensors, traps for environmental applications, catalysts and components of drug delivery systems.

LM RP

7 Introduction to polymer electrolyte materials. Natural polymer-based systems and composite polymer electrolytes.

LM RP

8 Hybrid inorganic–organic polymer electrolytes. LM, RP

9 Applications of polymer electrolytes: dye-sensitized solar cells, supercapacitors, high temperature fuel cells and electrochemical devices.

LM RP

10 Fire retardant polymers. Fire and polymers. Theories of fire retardancy: free radical trap, barrier, thermal and dilution by non-combustible gases.

LM RP

11 High Performance Polymer Nanocomposites: Processing and Functionalization. LM, RP

12 High Performance Polymer Nanocomposites: Properties. LM, RP

13 Smart polymers. Introduction to smart materials. Types of stimuli: chemical, physical or biochemical. Selected examples.

LM RP

14

Temperature-responsive polymers: shape-memory materials, liquid crystalline materials and responsive polymer solutions (LCST and UCST). Applications: temperature sensors, reversible transport of water through a membrane, water collection and energy efficient buildings.

LM RP

15

pH-responsive polymers: natural and synthetic. Applications: drug delivery systems, biosensors. Photo-responsive polymers: photochromic conjugated polymers, polymers with photo-responsive terminal groups, side-chain photochromic polymers and photosensitive dendritic polymers.

LM RP

Page 72: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 72 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

340 Materials and applications in

nanotechnology

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Materiales y Aplicaciones en Nanotecnología

Materials and Applications in Nanotechnology

ECTS Type Year / Semester Language Sylabus code Subject Code

6 Optional 1 / 2 EN 04AF 43000340

Lecturers (Name) Contact email Office hours (Tutorials)

Fernando Calle Gómez [email protected] By appointment

Jorge Pedrós Ayala [email protected] By appointment

Fátima Romero Rojo [email protected] By appointment

Assessment criteria

The progress of the students will be monitored through the exams, laboratory sessions and individual assignments. Exam: 20% Simulations: 80% Final exam: 20% (exam) + 80% (simulations)

Justification and Objectives

Continuation of the module Nanotechnology, in the 3rd year of the Graduate program, the main objectives of this module are two: - first, the students should achieve advanced knowledge on materials and structures used in nanotechnology, especially for applications in areas like electronics, heat transfer, fluidics, surface coatings, sensors, energy harvesting, information technology, medicine, etc. Both organic and inorganic materials will be considered. Some selected nanofabrication processes will be also presented. - second, the students should practice the simulation of advanced nanodevices for several of the above applications. Selected cases in scaling MOSFETS, nanowire and and nanotube TRTs will be considered. Students will develop skills for the assessment of critical parameters, representation of results, and their interpretation to extract conclusions.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Nanotechnology; Structure of Materials I,II; Quantum Physics; Instrumentation Engineering; Properties of Materials

Contents in coordination with other subjects

Modules of the Graduate of Materials Engineering Program Modules of the Master of Materials Engineering Program, in particular: Functional Materials at Macro and Micro/Nanometer Scales, New Materials and Emerging Technologies, Materials for Electronic and Optoelectronic Devices, Polymeric Materials for Advanced Applications, Materials and Microfabrication Technologies for Electronic Devices, and Spintronics and Nanomagnetism

Generic competencies

CG1, CG3, CG8, CG9, CG10

Page 73: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 73 de 79

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Bibliography

- B. Rogers, S. Pennathur, J. Adams, “Nanotechnology. Understanding small systems”, 2nd ed. CRC Press (2011). - R. Kelsall, I.W. Hamley and M. Geoghegan (eds.), “Nanoscale Science and Technology”, Wiley (2005). - V. Mitin et al., "Introduction to Nanoelectronics", Cambridge University Press (2008). - R. Wasser (ed.), "Nanoelectronics and Information Technology", Wiley-VCH (2005). - Bharat Bhushan (ed.), “Springer Handbook of Nanotechnology” 3rd ed., Springer (2010). Simulations - M. Lundstrom and J. Guo, “Nanoscale Transistors: Device Physics, Modeling and Simulation”, Springer (2006). - Mark Lundstrom, “Online Presentations”, https://nanohub.org/resources/5306 - Software: FETToy 2.0 at https://nanohub.org/resources/107.

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

The contents of the course are shown in the following table. Student attendance is divided in theory and practical lessons (LM) and simulation work in the computer laboratory (LB). The students will make individual reports (TI) or answer to exams and tests, according to the classes. Also, they will present specific reports for each of the simulation practices, according to some forms which include questions, tables, graphs, etc

Weeks Contents Code

1-3 PART 1 – Nanomaterials and applications

1-2

. Review of Nanomaterials - Introduction to Nanotechnology - Nanomaterials and nanostructures based in semiconductors, C-based nanostructures, organic materials - Electronic properties of nanostructures: transport and confinement - Nanofabrication and nanocharacterization

LM (6h)

2-3

2. Devices and applications - Nanotechnology for heat transfer, nanofluidics, surface coatings, energy harvesting, etc. - Nanoelectronics for computation, memories, sensors and actuators. - Nanotechnology in portable systems: inertial systems and displays.

LM (5h) TI-1 (1h)

4-15 PART 2 - Practical sessions of device simulation

4-5

3. Simulations - Physics of Nanoscale MOSFETs: scaling down MOSFET, nanowire FET, CNT/G FET - Basics of simulation. Software FETToy 2.0: device, model, environment, outputs

LM (8h)

6-15

- Simulation 1: Introduction to MOSFET - Simulation 2: Scaling transistors - Simulation 3: Si NanoWire MOSFET - Simulation 4: CNT / Graphene FET - Discussion and reports

TI-2 TI-3 TI-4 TI-5 (40h)

Tutorials, Office hours

A cooperative methodology will be used, favouring student-professor and student-student interactions by means of discussion sessions, team work, and individual sessions for doubt solving. Office hours give students the opportunity to ask in-depth questions and to explore points of confusion or interest that cannot be fully addressed in class

Page 74: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 74 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

341 Materials and microfabrication

technologies for electronic devices

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Materiales y tecnologías de microfabricación de dispositivos electrónicos

Materials and microfabrication technologies for electronic devices

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000341

Lecturers (Name) Contact email Office hours (Tutorials)

Jimena Olivares Roza [email protected] Monday and Wednesday 10:00 - 12:00

Marta Clement Lorenzo mclement@ etsit.upm.es Tuesday and Thursday 10:00 - 12:00

Jesús Sangrador García jsangra@ etsit.upm.es Tuesday and Thursday 11:00 - 13:00

Enrique Iborra Grau eiborra@ etsit.upm.es Monday and Wednesday 8:00 - 10:00

Assessment criteria

Continuous assessment Final mark required to pass the course: ≥ 5/10 The final mark consists of continuous assessment and is obtained through the following items: test 1 (30%), test 2 (40%), deliverables (20%) and oral presentation (10%) Minimum mark in each part: 4/10 Attendance to lab sessions is mandatory. Absences (if any) must be duly justified.

Final Exam Final exam with a total weight of 100% Attendance to lab sessions is mandatory. Absences (if any) must be duly justified.

Justification and Objectives

The students will become familiar with the most relevant techniques used in thin film materials technology for the fabrication of electronic devices, different from silicon-based integrated circuits. These devices include sensors, actuators, RF passive components and devices with complex functionality such as microelectromechanical systems (MEMS). Some particular issues in thin film technology will be studied, which include thin film deposition techniques and control of the film properties, design of a complete technology and specific characterization techniques of amorphous and polycrystalline thin films. Design and fabrication principles of typical thin-film-based devices will be studied and the fabrication of operative devices will be undertaken. The course contains practical sessions, which include the design of a complete technology for the fabrication of functional devices and the subsequent characterization of their behaviour.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Basic knowledge of instrumentation, physics, thermodynamics, electricity and magnetism Basic knowledge of semiconductors and device physics

Contents in coordination with other subjects

Structural Characterization of Materials I: Microscopy and Diffraction, Structural Characterization of Materials II: Spectroscopy, Materials for Electronic and Optoelectronic Devices, Materials and applications in nanotechnology

Page 75: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 75 de 79

Generic competencies

CG1, CG3, CG8, CH9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Bibliography

Handbook of Thin Film Technology. Frey, Hartmut, Khan, H. R. Springer (2015) Thin Films Material Technology: Sputtering of Compound Materials. Wasa, Kiyotaka, Kitabatake, Makoto, Adachi, Hideaki. Springer (2004) Sputtering Materials for VLSI and Thin Film Devices. Jaydeep Sarkar. Elsevier (2013) Thin Film Technology Handbook. Aicha Elshabini, Aicha Elshabini-Riad, Fred D. Barlow. McGraw Hill Professional (1998) Introduction to Surface and Thin Film Processes. John A. Venables. Cambridge U. Press (2001)

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Contents

Week Schedule

Theoretical sessions Lab sessions Code

1 T0. Module rules LM

2 T1. Introduction + Fabrication technology description LM

3 T2. Thin film technology LM

P1. Technology I: Simulation LB

4 T3. Functional materials (1) LM

P2. Technology I: Fabrication (1) LB

5 T3. Functional materials (2) LM

P3. Technology I: Fabrication (2) LB

6 T4. Vacuum technologies LM

P4. Technology I: Fabrication (3) LB

7 T5. Deposition techniques (1) LM

P5. Technology I: Devices characterization LB

8 Test 1 EV

9 T5. Deposition techniques (2) LM

P6. Technology II: Simulation LB

10 T5. Deposition techniques (3) LM

P7. Technology II: Fabrication (1) LB

11 T5. Deposition techniques (4) LM

P8. Technology II: Fabrication (2) LB

12 T6. Technologies for microfabrication LM

P9. Technology II: Fabrication (3) LB

13 T7. Some examples of thin film devices LM

P10. Technology II: Devices characterization LB

14 Oral presentations EV

15 Test 2 EV

Page 76: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 76 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

342 Spintronic and Nano magnetism

Department (School) / Departamento (Escuela)

Ingeniería Electrónica (ETSI de Telecomunicación)

Nombre de la Asignatura / Name of the Subject

Nanomagnetismo y Espintrónica

Nanomagnetism and Spintronics

ECTS Type Year / Semester Language Sylabus code Subject Code

3 Optional 1 / 2 EN 04AF 43000342

Lecturers (Name) Contact email Office hours (Tutorials)

Jose Luis Prieto [email protected] Monday and Friday 10-00 – 12:00

Mariana Proença [email protected] Wednesdays 12:00-13:00

Marco Maicas [email protected] Wednesdays 12:00-13:00

Manuel Muñoz [email protected] Wednesdays 12:00-13:00

Lucas Perez [email protected] Wednesdays 12:00-13:00

Assessment criteria

The evaluation will be done through 2 exams of mainly theoretical nature, asking about some of the concepts covered during the course. Each exam is 50% of the final score.

Final Exam Final exam with a total weight of 100%

Justification and Objectives

The main objective is to introduce the student to the latest developments in nanomagnetism and spintronics. Both branches started only relatively recently and have become very important at the level of research and market applications. The subject covers the most actual technological and scientific breakthroughs in nanomagnetism. In particular the student should acquire knowledge in the following aspects: particularities of magnetism at the nanometric level, Giant Magnetoresistance and the different types of devices related to this effect, Magnetic recording. Past, present and future trends, Materials for spintronics, Modern spintronic Devices, Magnetic Nanoparticles and their biological applications.

Prerequisites

There are no prerequisites

Previous knowledge of the student

Basic knowledge of magnetism and magnetic materials.

Contents in coordination with other subjects

Optical, Electric and Magnetic characterization techniques

Generic competencies

CG1, CG3, CG8, CG9, CG10

Specific competencies

CE1, CE2, CE3, CE4, CE5, CE7

Bibliography

-B.D. Cullity & Graham, “Introduction to Magnetic Materials”, IEEE press – Willey, 2009 -S. Chikazumi & Graham, “Physics of Ferromagnetism”, Oxford Science Publications,1997 -Robert C. O’Handley, “Modern Magnetic Materials. Principles and Applications”, Willey, 2000 -Supriyo Bandyopadhyay and Marc Cahay. Introduction to Spintronics. CRC Press, 2008 -Dey P., Mandal Sanjay Kumar. Spintronics for beginners. Scholars' Press, 2014

Page 77: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 77 de 79

Subject contents and time distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory,, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

1 Reminders of basic Magnetism, with special incidence in band theory, Fermi paramagnetims and spin polarized currents.

LM

2 Biological applications of magnetic nanoparticles LM

3 Magnetic nanowires. Electrodeposition Techniques LM

4 Nanomagnetism and permanent magnets LM

5 Micromagnetic Simulations LM

6 Magnetoresistance, AMR, GMR, Spin Valves, TMR LM

7 Exam EV

8 Magnetic recording LM

9 Racetrack memory and domain wall devices LM

10 Spin Transfer Oscillators LM

11 2D Magnetism LM

12 Magnetic Semiconductors and devices LM

13 Spin Caloritronics LM

14 Memristors and neuromorphic applications LM

15 Exam LM

Page 78: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

Pág. 78 de 79

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales

356 Materials for Renewable Energies

Department (School) / Departamento (Escuela)

Departamento de Ciencia de Materiales (ETSI Caminos Canales y Puertos)

Subject / Asignatura

Materials for the Development of Renewable Energy

Materiales para energías renovables

ECTS Type Year / Semester Language Sylabus code Subject Code

6 Optional 1 / 2 EN 04AF 43000356

Lecturers (Name) Contact email Office hours (Tutorials)

Jose Ygnacio Pastor Caño [email protected] By appointment

Elena María Tejado Garrido [email protected] By appointment

Assessment criteria

Evaluation Methods and Grading Policy:

During the first week of the course the student must choose between continued evaluation and final ordinary exam.

Regular attendance, active and creative participation in classes and in Moodle, subjective teacher evaluation, others (up to 10 % extra points).

Two partial exams (up to 30 % of the final mark each one), minimum 50 % of the maximum grade in each partial is required.

Coursework (up to 40 % of the final mark each one).

Final ordinary exam and Coursework (up to 100 % of the final mark).

Final extraordinary exam and Coursework (up to 100 % of the final mark). Course Policies:

The exam can be composed of practical and theoretical questions about the subject.

Make-up exams are not allowed.

Students are expected to exhibit academic honesty at all times. Violations against academic honesty like cheating, plagiarism, collusion, fabrication, forgery, falsification, destruction, multiple submission, solicitation, misrepresentation… will result in assignation of grade of "F" for the course, in addition to other possible academic sanctions from UPM authorities and courts.

Justification and Objectives

The student will acquire: 1. Understanding of the global problem of the energy. 2. Fundamental knowledge of needs of materials for green energy and storage. 3. Fundamental knowledge of energetic audit. 4. Fundamental knowledge of green production of materials. 5. Fundamental knowledge of materials for biomass energy production. 6. Applications of materials for green economy.

Prerequisites

There are no prerequisites

Previous knowledge of the student

The student is assumed to have taken at least classes on basic structure of materials, economics and mechanical behaviour.

Contents in coordination with other subjects

Not specified

Page 79: MASTER EN INGENIERÍA DE MATERIALES · 2017-07-20 · Materiales por la Universidad Politécnica de Madrid fue aprobada por el Consejo de Universidades en 2013. El plan, está publicado

ESCUELA DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Curso académico 2017-18

Resumen de la programación docente de Grado y Master en Ingeniería de Materiales Pág. 79 de 79

Generic competencies

CG1, CG2, CG3, CG4, CG7, CG9

Specific competencies

CE1, CE2, CE5 CE6,CE10

Bibliography

Textbooks and Materials

Will be provide by teachers in class and the virtual learning space

Subject contents and distribution

LM: Lesson at room, RP: Problems Resolution, LB: Laboratory, TI: Individual Work, TG: Group Work, DB: Debate at Room, VI: Visits, EV: Exams, OT: Other procedures

Item Contents Code

Class schedule: 15 weeks, 4-hours lecture per week Some contents of this course:

10. The global problem of the energy. 11. Energy, economy and materials. 12. Policy, energy and materials. 13. Technical and legal reports. Energetic audit 14. Solar energy for materials production. 15. Ecological processing of materials: sol-gel process. 16. Fuel cells. Impedance spectroscopy. 17. Materials for biomass energy production. 18. Energy, technology and materials. 19. Materials for water, wind and solar energy. 20. Thermo-electrical materials.