introducción a las estructuras - cj000528.ferozo.com³n porque es monolítica con la losa y la...

10
Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado. 1 Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones transversales de las piezas estructurales. Para las vigas o entrepisos, la sección de los elementos deben cumplir con: La elástica o deformación no debe superar los límites indica- dos en los reglamentos de construcción o del criterio impuesto por el proyectista. Los esfuerzos o tensiones internas deben estar por debajo de las rotura de madera o de fluencia del hierro. Es costumbre primero verificar la deformación de las piezas y luego efectuar el control de las tensiones internas. 1.2. Los métodos de cálculo. En la actualidad no existe un método único de cálculo. En general pa- ra el hormigón armado y para las metálicas se utiliza el método de la rotura, pero para las maderas y las fundaciones (interacción suelo estructura) el método de las tensiones admisibles. En lo que sigue del capítulo usaremos los dos métodos con la inten- ción de destacar su similitud, a pesar que sus principios difieren de manera notables. Recordemos: Método clásico o de tensiones admisibles: se emplean las cargas reales para las acciones y para la resistencia las tensiones admisi- bles que resultan de disminuir los esfuerzos de rotura.

Upload: dinhkien

Post on 22-Apr-2018

219 views

Category:

Documents


4 download

TRANSCRIPT

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

1

Introducción a las Estructuras

Capítulo once: Dimensionado UNO

1. Introducción. 1.1. Para el control de las elásticas.

En este capítulo presentamos la metodología a seguir para establecer

las dimensiones transversales de las piezas estructurales. Para las vigas o

entrepisos, la sección de los elementos deben cumplir con:

La elástica o deformación no debe superar los límites indica-

dos en los reglamentos de construcción o del criterio impuesto

por el proyectista.

Los esfuerzos o tensiones internas deben estar por debajo de

las rotura de madera o de fluencia del hierro.

Es costumbre primero verificar la deformación de las piezas y luego

efectuar el control de las tensiones internas.

1.2. Los métodos de cálculo.

En la actualidad no existe un método único de cálculo. En general pa-

ra el hormigón armado y para las metálicas se utiliza el método de la rotura,

pero para las maderas y las fundaciones (interacción suelo estructura) el

método de las tensiones admisibles.

En lo que sigue del capítulo usaremos los dos métodos con la inten-

ción de destacar su similitud, a pesar que sus principios difieren de manera

notables. Recordemos:

Método clásico o de tensiones admisibles: se emplean las cargas

reales para las acciones y para la resistencia las tensiones admisi-

bles que resultan de disminuir los esfuerzos de rotura.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

2

Método de resistencia último o rotura: se emplean las cargas ma-

yoradas con coeficientes de seguridad y para las tensiones del ma-

terial las últimas de rotura.

2. Control de las elásticas. Las fórmulas que siguen son aplicables para hierro y madera. Para las

piezas de hormigón armado solo se pueden utilizar como herramientas de

aproximación porque es un material heterogéneo y además es afectado de la

fluencia lenta. Por otro lado es difícil establecer el “I” de una viga de hormi-

gón porque es monolítica con la losa y la columna.

En estos casos la condición de borde de los apoyos es variable, enton-

ces para cada tipo de viga tendremos una expresión distinta (la carga es uni-

forme):

a) Viga en voladizo:

b) Viga de apoyos simples

c) Viga con un apoyo simple y otro empotrado.

d) Viga con ambos apoyos empotrados.

La secuencia anterior de las condiciones de borde se muestra en la fi-

gura que sigue:

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

3

También se puede utilizar la expresión general:

Tipo de viga (condición de borde) Valor de “C”

Voladizo. 1/8 Apoyos articulados en ambos extre-

mos. 5/384

Apoyos emporado y articulado. 1/185 Apoyos empotrados en ambos extre-

mos. 1/384

Para vigas con otras condiciones de borde o de cargas ver las fórmulas

en el capítulo trece (Tablas).

3. Madera. 3.1. Introducción.

Es costumbre dimensionar las piezas de madera por el “Método de las

tensiones admisibles” porque es el proyectista quien debe establecer la ten-

sión de trabajo en función de las características mecánicas de la madera. No

solo hay diferencias en los tipos de madera, sino también en el tipo de corte

realizado en los aserraderos.

Uno de los posibles pasos para el dimensionado de madera puede ser:

a) Establecer de normativas la elástica máxima en centímetros.

b) Elegir la tensión admisible que se utilizará (depende del tipo y ca-

lidad).

c) Desde la ecuación de la elástica obtener la base y altura de la sec-

ción rectangular.

d) Desde la ecuación de la tensión controlar la tensión de trabajo.

3.2. Elásticas admisibles.

Lo repetimos, las dimensiones de la pieza de madera se calculan por

resistencia y se controlan por elástica, en los casos de vigas menores a los

4,00 metros. Pero con longitudes de apoyos mayores es necesario invertir el

procedimiento; se calcula según la elástica límite y se controla la tensión.

Consideramos que las bajas tensiones adoptadas en la madera no es

solo por una cuestión de resistencia, también influye su alta elasticidad, su

facilidad de deformarse ante las cargas. Los reglamentos no pueden suminis-

trar un proceso matemático que determine la deformación “admisible” de

una viga. Es el proyectista o calculista quien debe establecer la magnitud de

la elástica porque existen muchos parámetros en juego.

En general se utiliza la relación entre longitud de viga y un coeficien-

te. Por ejemplo, en el caso de una viga de madera que se utilice como sopor-

te de cubierta recomiendan diferentes elásticas según el cielorraso cuelgue

de la viga o tenga estructura independiente.

f = l/ 240 para vigas sin cargas de cielorraso.

f = l/360 para vigas con cargas de cielorraso.

f: flecha o elástica permitida.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

4

l: longitud de la pieza.

No es un problema de cargas, en realidad es un asunto estético; el cie-

lorraso, para el confort visual de los usuarios debe ser plano, no debe tener

elásticas. Lo conveniente y recomendable es calcular la flecha, mediante las

fórmulas ya vistas y decidir si ese descenso se encuentra dentro de valores

razonables.

Se determina la flecha o la elástica límite y con ese valor se aplica la

ecuación despejando el término de la inercia.

De la inercia se despeja la altura de la viga. El ancho fue estimado an-

tes.

Si adoptamos una relación entre base y altura: α = h/b

( )

3.3. Tensiones admisibles.

General.

Las tensiones de rotura de la madera son muy altas, en especial cuan-

do se realizan en laboratorios los ensayos con probetas pequeñas y sin im-

perfecciones. Pero la madera a lo largo de la viga posee irregularidades que

reducen su capacidad resistente, en especial los nudos.

En muchas maderas los coeficientes de seguridad utilizados para ob-

tener las tensiones admisibles de trabajo superan al valor cinco. Es el caso de

maderas que rompen a compresión a los 500 kg/cm2 pero sus tensiones ad-

misibles solo alcanzan los 100 kg/cm2.

Maderas duras: 100 a 90 kg/cm2.

Maderas semiduras: 90 a 80 kg/cm2.

Maderas blandas: 80 a 60 kg/cm2.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

5

Para un mismo tipo de madera existen diferentes calidades. No es po-

sible establecer un valor fijo para todas las maderas del tipo “pino”. Antes de

realizar el dimensionado es necesario conocer o reconocer la calidad de esa

madera, en especial el grado de estacionamiento y la cantidad de nudos.

Control de las tensiones:

σ: Tensión de trabajo en la sección estudiada.

M: momento flector externo que solicita la sección.

W: módulo resistente.

En esta expresión se incorporan el “b” y el “h” establecidos en la verifica-

ción de la flecha.

Dimensionado a tensión de trabajo:

Conocido el momento flector externo y la tensión admisible de la ma-

dera, se aplica:

En general se adopta una “forma” de la sección: rectangular que cum-

pla con alguna relación:

Cálculo mediante tablas.

Dimensiones:

Utilizando las tablas 24 del capítulo 13 se puede dimensionar de

acuerdo a la tensión admisible elegida y se determinan las relaciones de la-

dos más convenientes.

Flechas:

En la tabla 25 se ingresa con las dimensiones de la pieza (b y h) en

centímetros y con la distancia entre apoyos “l” en metros; se determina f´.

Estos valores fueron calculados par vigas de apoyos simples y carga unifor-

me q´= 100 kg/ml. El valor real de la flecha será:

β: q/q´ (q: carga de servicio)

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

6

δ: coeficiente que depende de las condiciones de borde de la viga y

que se encuentran indicados en la tabla.

3.4. Ejemplo de aplicación.

Mediante fórmulas.

Carga: q = 2,5 kg/cm

Luz de cálculo: 350 cm

Tensión admisible: 70 kg/cm2

Flector externo: 383 kgm = 3,83 kNm = 38.300 kgcm

a) Dimensiones.

Adoptamos: α = h/b = 2

( )

Adoptamos b = 10 cm h = 20 cm.

a) Flechas.

Momento de inercia de la sección: 6.667 cm4

La elástica máxima se encuentra dentro de los parámetros aceptables.

Mediante tablas.

Dimensiones:

Entramos en la tabla (24) correspondiente a la tensión de σadm = 70

kg/cm2, buscamos el momento igual o inmediato superior a Mf = 383 kgm.

Se nos presentan tres alternativas:

a) Viga de 10 . 20: W = 466 kgm

b) Viga de 12,5 . 17,5: W 446 kgm

c) Viga de 15 . 15: W = 393 kgm

Elegimos la de 10 . 20, similar a la anterior calculada con fórmulas.

Flechas:

En la tabla 25, buscamos el coeficiente para una luz de 3,50 metros y

una sección de 10 . 20: encontramos el valor de f´= 0,42. El valor de β =

250/100 = 2,5. El valor δ = 1

Flecha máxima:

Valor coincidente con el calculado por fórmulas.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

7

4. Hierro. 4.1. General.

Son similares a las utilizadas e madera, inclusive más sencillas. Los

perfiles metálicos al estar normalizaos, todos sus valores estáticos se encuen-

tran tabulados; no hay necesidad de calcular los módulos resistentes o los

momentos de inercia.

En general los perfiles metálicos son del tipo St 37 con una tensión

admisible de 1.400 kg/m2 (140 Mpa), esto es una ventaja para el proyectista

por facilita la elección de los esfuerzos de trabajo. La tensión de fluencia se

encuentra a los 2.400 kg/cm2; es decir que hay un margen de seguridad de

1.000 kg/cm2.

Recordemos que los elementos de hierro se pueden calcular:

Por el método clásico de tensiones admisibles (cargas reales y

tensión reducida).

Por le método de rotura (cargas mayoradas y tensión de rotu-

ra.

En cuanto a deformaciones, lo indicado para vigas de maderas se ajus-

ta a las de hierro. Reiteramos, las deformaciones límites deben ser impuesta

por el proyectista en función de varios parámetros que los reglamentos no

pueden tenerlos en cuenta.

4.2. Metodología de cálculo mediante fórmulas.

Mediante fórmulas:

Dimensiones.

Con este valor de “W” se busca en tablas el perfil más adecuado.

Flechas.

Aplicamos las expresiones indicadas antes y que se corresponda con

las condiciones de borde de la viga metálica.

4.3. Cálculo mediante tablas.

Dimensiones.

Utilizando las tablas (26) se ingresa con el Momento Flector y se de-

termina el perfil.

Flechas.

Con la luz de apoyo se ingresa a la tabla 27 y se determina la flecha.

Aquí también se necesario recordar que el valor obtenidos debe ser multipli-

cado por “β” y por “δ”

4.4. Ejemplo de aplicación (método clásico).

Carga: q = 2,5 kg/cm (carga real).

Luz de cálculo: 350 cm

Tensión admisible: 1.400 kg/cm2

Flector externo: 383 kgm = 3,83 kNm = 38.300 kgcm

Calculamos la viga anterior en perfil doble “T”.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

8

Mediante fórmulas:

Dimensiones:

Flechas:

E = 2.100.000 kg/cm2 Ixx = 171 cm4

Mediante tablas:

Dimensiones:

En tabla (26) se busca el momento igual o mayor a 383 kgm, se en-

cuentra 479 kgm para un perfil PNI 100.

Flechas:

En tabla (27) para el PNI100 y una luz de 3,50 metros se encuentra:

f´= 0,54

δ= 1: para viga con apoyos simples.

β= 250/100 = 2,50

Flecha definitiva: f = δβf´= 0,55 . 2,50 = 1,37 cm BC

5. Vigas reticuladas.

5.1. Entrada.

Estas vigas sustituyen a las macizas cuando las luces de cálculo son

elevadas o en el caso de momentos flectores grandes. El análisis que hare-

mos para la determinación de las solicitaciones principales será tanto para las

reticuladas de madera como de acero.

5.2. Vigas de cordones paralelos.

Buscamos las barras más solicitadas para cada tipo de reticulado. La

viga con apoyos simples de cordones paralelos, las barras más solicitadas

están en los extremos (por corte) y en el medio (por flector).

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

9

El esquema de la viga y el momento flector se representa como sigue:

La cupla interna posee un brazo de palanca igual a la distancia entre

los baricentros de los cordones:

La posición de la primera diagonal genera tracción o compresión, se lo

representa de la siguiente forma:

En el esquema de la izquierda las diagonales trabajan a tracción, mien-

tras que en el de la derecha, los esfuerzos son de compresión.

Esfuerzos en el centro del tramo.

El momento flector externo “Mf” es resistido por la cupla interna:

Esfuerzos en el extremo:

Las diagonales y cordones extremos pueden trabajar a compresión o

tracción, según como resulta la geometría de la diagonal.

Caso (a): Te = Ra / senα Ce = Ra/tgα

Caso (b): Ce = Ra / senα Te = Ra/tgα

5.3. Viga reticulada de cordones inclinados.

Esfuerzo en el centro del tramo.

Introducción a las Estructuras - Jorge Bernal Libro: Capítulo once UNO - Dimensionado.

10

Esfuerzos en el extremo:

Viga reticulada en voladizo.

Con estos esfuerzos que son los máximos, se dimensionan los montan-

tes y diagonales, tal como se indican en el capítulo de Ejemplos Prácticos.

Fin capítulo 11 dimensionado parte uno