introducción a la ing aeroespacialintroducción a la ing....

29
Introducción a la Ing Aeroespacial Introducción a la Ing. Aeroespacial Tema 3 – El Campo Fluido Sergio Esteban Roncero Francisco Gavilán Jiménez Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros Universidad de Sevilla Curso 2011-2012 1 Curso 2011 2012 Introducción a la Ingeniería Aeroespacial

Upload: others

Post on 14-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Introducción a la Ing AeroespacialIntroducción a la Ing. Aeroespacial Tema 3 – El Campo Fluido

Sergio Esteban RonceroFrancisco Gavilán JiménezFrancisco Gavilán Jiménez

Departamento de Ingeniería Aeroespacial y Mecánica de FluidosEscuela Superior de Ingenieros

Universidad de SevillaCurso 2011-2012

1

Curso 2011 2012

Introducción a la Ingeniería Aeroespacial

Page 2: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Contenido

Descripción general de los fluidosVariables fluidos Variables fluidos

Compresibilidadp Viscosidad y conductividad térmica

El núme o de Re nolds El número de Reynolds El número de Mach Ecuación de Bernoulli

At f tá d i t i l Atmosfera estándar internacional

Introducción a la Ingeniería Aeroespacial 2

Page 3: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Descripción general de los fluidos - Ip g

Las fuerzas que actúan entre las moléculas de los sólidos, líquidos y gases, definen la estructura molecular de estos y sus propiedadesdefinen la estructura molecular de estos, y sus propiedades.

La fuerza entre dos moléculas eléctricamente neutras que no formen enlace químico se representa como función de la distancia entre ellas.

La fuerza es de repulsión y fuerte para distancias menores que una cierta La fuerza es de repulsión y fuerte para distancias menores que una cierta d0

La fuerza es de atracción y débil para distancias mayores que d0. Un valor típico de d0 es 10−10 m. Un valor típico de d0 es 10 m.

Distancia media entre moléculas en condiciones normales presión y temperatura Líquidos: d0 Gases: 10d0

3Introducción a la Ingeniería Aeroespacial

Page 4: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Descripción general de los fluidos - IIp g

Distinciones entre sólidos y fluidos: y La propiedad que permite diferenciar entre sólidos y fluidos es la

capacidad para deformarse indefinidamente bajo la acción de f t ifuerzas exteriores. Sólidos: forma definida que cambia únicamente cuando lo hacen las

condiciones externas que actúan sobre él.condiciones externas que actúan sobre él. Fluidos (líquidos y gases)

Fluidez: propiedad de un líquido para adquirir formas diferentes bajo i di i tunas mismas condiciones externas

Gas: tiende a llenar completamente el recipiente que lo contiene, independientemente de la forma de éste.

Líquido: se deforma hasta llenar una parte del espaciodeterminado por el recipiente

Introducción a la Ingeniería Aeroespacial 4

Page 5: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Descripción general de los fluidos - IIIp g

Gas Perfecto: es un gas que cumple estrictamente la condición l lé l d l i d di t tque las moléculas del gas se mueven independientemente unas

de otras: las moléculas del gas están muy distantes de otras.g y La energía potencial debida a la atracción entre ellas es mucho

menor que la energía cinética Distinciones líquidos y gases Distinciones líquidos y gases

Densidad del líquido >> densidad del gas (~1000 veces mayor) La diferencia en densidades conduce a una diferencia en la

ómagnitud de las fuerzas requeridas para conseguir una aceleracióndada (F = m a) Pero mismo tipo de movimiento

Compresibilidad: capacidad para cambiar el volumen que ocupa una determinada masa de fluido (Pgases >> Pfluidos) Meteorologíag Balística y aeronáutica

5Introducción a la Ingeniería Aeroespacial

Page 6: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Descripción general de los fluidos - IVp g

Hipótesis del medio continuo: A nivel molecular es muy difícil el estudio de los fluidos debido a la

cantidad de moléculas implicadas gas: 1 mm3 contiene 1016 moléculas gas: 1 mm contiene 10 moléculas líquidos 1000 veces mas (proporcional a la densidad) Seguimiento de las partículas esfuerzo computacional desmesurado

Modelo matemático continuo: comportamiento de un fluido a nivel macroscópico Dominio fluido: se supone en cada instante el fluido ocupa de forma continuaDominio fluido: se supone en cada instante el fluido ocupa de forma continua

una cierta región del espacio. Variables fluidas: funciones continuas y derivables de la posición y del tiempo

definidas en el dominio del fluido:definidas en el dominio del fluido: Masa Cantidad de movimiento Energía Energía

6Introducción a la Ingeniería Aeroespacial

Page 7: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Descripción general de los fluidos - IVp g

7Introducción a la Ingeniería Aeroespacial

Page 8: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Variables Fluidas - I

Las variables fluidas se definen en cualquier punto del Las variables fluidas se definen en cualquier punto del dominio (x) del fluido en el instante (t) como promedios sobre todas las moléculas contenidas en un elemento de volumen( centrado en el punto (x) en el instante (t).( centrado en el punto (x) en el instante (t).

Validez de los modelos macroscópicos (cumplir 2 condiciones) contenga un número suficientemente grande de moléculas para

que los promedios no fluctúenque los promedios no fluctúen lc – distancia media entre molécula

sea lo suficiente pequeño para que dichas variables reflejen las variaciones del estado macroscópico del fluido

L longitud que es necesario recorrer para encontrar variaciones de Lc – longitud que es necesario recorrer para encontrar variaciones de dicho estado macroscópico

Los problemas fluidos más frecuentes en aeronáutica estánlc << Lc

Los problemas fluidos más frecuentes en aeronáutica están caracterizados por escalas > 10-6, Un volumen de 10-18 m3 contiene aproximadamente 107 moléculas de gas.

HIPÓTESIS ADMMISIBLE

8Introducción a la Ingeniería Aeroespacial

Page 9: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Variables Fluidas - II Presión:

Es la fuerza normal por unidad de área que se ejerce en una superficie debida a la i ió l ti d l tid d d t d l lé l d l didvariación con el tiempo de la cantidad de momento de las moléculas del gas a medida

que van impactando en dicha superficie. Densidad:

Magnitud referida a la cantidad de masa contenida en un determinado volumen, y g , ypuede utilizarse en términos absolutos o relativos.

Temperatura: La temperatura es una medida de la energía cinética media de las partículas del fluido.

Velocidad local: Velocidad local: La velocidad local en cualquier punto fijo B en un fluido en movimiento es la velocidad

de un elemento infinitesimalmente pequeño a medida que pasa por B Energía total por unidad de masa:

La Energía total es la suma de la energía cinética macroscópica por unidad de masa, de un elemento de fluido centrado en el punto en el instante t, más una energía interna contenida en dicho elemento

+=

9Introducción a la Ingeniería Aeroespacial

Page 10: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Equilibrio Termodinámico Local - Iq

La termodinámica es la rama de la física que estudia la energía la La termodinámica es la rama de la física que estudia la energía, la transformación entre sus distintas manifestaciones, como el calor, y su capacidad para producir un trabajo.p p p j

La termodinámica muestra que se puede especificar el estadomacroscópico de un fluido en equilibrio mediante los valores de algunas variables de estado:

presión densidad temperatura energía interna presión, densidad, temperatura, energía interna. Se tienen ecuaciones de estado que permiten relacionar unas variables

termodinámicas con otras P es la presión a la que está sometida el gas

Ejemplo: pV=nRT (ecuación de estado) V es el volumen que ocupa el gasn es la cantidad de moles del gas presenteT es la temperatura absoluta del gasR es la constante universal de los gases

Para aplicar las ecuaciones de estado, es necesario el equilibrio termodinámico local

10Introducción a la Ingeniería Aeroespacial

Page 11: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Equilibrio Termodinámico Local - IIq Interpretación física:

En un volumen fluido existen tantas moléculas y chocan con tanta frecuencia, y ,que puede considerarse que los intercambios energéticos son tan rápidos que se alcanza el estado de equilibrio de forma instantánea.

En esta situación de equilibrio termodinámico local: En esta situación de equilibrio termodinámico local: El fluido parece estar localmente en equilibrio, es decir, En cada instante t, las variables termodinámicas en cada punto (x) están

relacionadas entre sí como lo estarían si todo el fluido estuviese en equilibrio a larelacionadas entre sí como lo estarían si todo el fluido estuviese en equilibrio a la presión y temperatura locales

Camino libre Distancia que una molécula recorre en media entre dos colisiones sucesivas con otras

moléculas l di t i dimoléculas

Número de Knudsen (pequeño)

V lid d d l ó i

Camino libre

lc – distancia media entre molécula

Validez de modelos macroscópicos

En consecuencia, pueden aplicarse las ecuaciones de estado En consecuencia, pueden aplicarse las ecuaciones de estado

11Introducción a la Ingeniería Aeroespacial

Page 12: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fenómenos del Transporte - Ip En un sistema aislado del exterior, en el cual alguna propiedad de la materia

no es inicialmente uniforme, ocurren cambios que tienden a llevar el sistemahacia un estado de equilibrio fenómenos de transporte.

¿Qué se transporta? ¿Qué se transporta? Transporte de masa. Transporte de cantidad de movimiento. Transporte de energía interna.

¿Cómo se transporta? Transporte por difusión Transporte por difusión

Asociado a los gradientes de las variables fluidas (concentración, velocidad y temperatura)

Transporte por convección: Transporte por convección: Asociado a la velocidad local del fluido

Transporte por radiación

12Introducción a la Ingeniería Aeroespacial

Page 13: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fenómenos del Transporte - IIp

Transporte Difusivo:p Manifestación macroscópica de procesos que tienen lugar a escala

molecular, asociados al movimiento de agitación de las moléculas y a las fuerzas de interacción entre ellasa las fuerzas de interacción entre ellas. Se manifiestan microscópicamente a través de la superficie que separa

dos porciones adyacentes cualesquiera de fluido si entre ellas existe un di t (dif i ) d l i bl fl id VARIABLES FLUIDASgradiente (diferencia) de las variables fluidas.

Difusión de masa: mezcla de fluidos con diferentes concentraciones tienden a igualar las

VARIABLES FLUIDAS - Masa- Cantidad de movimiento- Energía

gconcentraciones

Conducción de calor: el transporte de energía interna del fluido tiende a ir de la zona donde el transporte de energía interna del fluido tiende a ir de la zona donde la temperatura es mayor a la zona donde es menor

Fricción (difusión de cantidad de movimiento): fluidos con diferentes velocidades medias, cuando entran en contacto,

el fluido con menor velocidad media tiende a frenar el fluido del otro lado con mayor velocidad y viceversa.

13

Disipación de energía.

Introducción a la Ingeniería Aeroespacial

Page 14: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Partículas Fluidas - I Fluido desde el punto de vista macroscópico -> partícula fluida Partícula fluida es aquella que en cada punto (x) y en cada instante (t) se considera una masaq q p ( ) y ( )

elemental de fluido, dm = (x, t) d, centrada en x, que se mueve con velocidad V (x, t) y tiene una energía interna (x, t) e(x, t) d

La especificación de las variables fluidas no está ligada a las partículas fluidas, sino a los puntos del espacio ocupado por el fluido: el valor de una variable fluida en un punto x y en un instante t es l d l í l fl del de la partícula fluida que se encuentra es ese punto en ese instante

VARIABLES FLUIDAS - Masa- Cantidad de movimiento

í- Energía

Trayectoriay Ley que da la posición de una partícula fluida como función de t y de su posición inicial. Si se supone conocido

el campo de velocidades las ecuaciones que determinan la trayectoria

Senda Curva recorrida por una partícula fluida en su movimiento. Las ecuaciones de la trayectoria proporcionan

también la senda, ya que dichas ecuaciones son también las de la senda en forma paramétrica, cuando se utiliza el tiempo como parámetro.

Volumen fluidoSuperficie continua y cerrada del espacio en el que todas las partículas fluidas se mantienen siempre

14

Superficie continua y cerrada del espacio en el que todas las partículas fluidas se mantienen siempreen su interior

Introducción a la Ingeniería Aeroespacial

Page 15: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fuerzas Macroscópicas - Ip

Las fuerzas macroscópicas son las interacciones mecánicas entre la porción de p pvolumen cuyo movimiento se desea analizar y la materia que la rodea: Fuerzas de volumen o másicas:

son fuerzas que penetran en el interior del fluido y actúan sobre todas las partículas fluidasq p y p(largo alcance).

fuerzas debidas a campos de fuerza externos al fluido, como por ejemplo el campo gravitatorio terrestre, fuerzas de inercia asociadas movimiento de sistemas de referencia no inercialesno inerciales.

fuerza por unidad de masa fuerza por unidad de volumen

Fuerzas de superficie:Fuerzas que tienen su origen en la agitación molecular y en la interacción entre moléculas

volumen finito volumen centrado en x

Fuerzas que tienen su origen en la agitación molecular y en la interacción entre moléculas(corto alcance- sólo son apreciables en distancias de interacción molecular)

Desde el punto de vista macroscópico, son fuerzas que ejerce una porción de fluido sobre otra porción adyacente, a través de la superficie que las separa, siendo proporcionales al áárea de dicha superficie

En cada punto del fluido la fuerza por unidad de área, o esfuerzo, varía con la orientaciónde la superficie (definida normal n), posición y tiempo.

Fuerzas de presión

15

Fuerzas de presión Fuerzas de fricción

Introducción a la Ingeniería Aeroespacial

Page 16: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fricción – Fluidos Newtonianos - I

La fricción se produce en un fluido cuando hay gradientes de velocidad, de forma que haya movimiento relativo entre distintas partes del mismo (ejemplo: manifestación). Puede demostrarse que está asociado a velocidades de deformación

Fluidos newtonianios la relación entre los esfuerzos y las velocidades de deformación es lineal Mayoría de gases y muchos líquidos (agua)

Fluidos no newtonianos Relación lineal no valida líquidos de estructura molecular compleja, emulsiones y mezclas (ketchup, sangre, pintura).

El coeficiente de proporcionalidad () se denomina coeficiente de viscosidad del fluido: depende del estado termodinámico local depende fundamentalmente de la temperatura.

Viscosidadscos dad Se aplica una fuerza tangencial sobre un material sólido (ej: goma de borrar) el cual opone una resistencia a

la fuerza aplicada, pero se deforma (b), tanto más cuanto menor sea su resistencia. Imaginamos que la goma de borrar está formada por delgadas capas unas sobre otras, el resultado de la

deformación es el desplazamiento relativo de unas capas respecto de las adyacentes (c)deformación es el desplazamiento relativo de unas capas respecto de las adyacentes (c). En los líquidos, el pequeño rozamiento existente entre capas adyacentes se denomina viscosidad.

16Introducción a la Ingeniería Aeroespacial

Page 17: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fricción – Fluidos Newtonianos - II Fricción fluidos gradientes velocidad entre distintas partes del fluido El esfuerzo de fricción viene dado por fuerzas superficie tensor

Velocidad de deformaciónTensor de esfuerzos de fricción

La falta de uniformidad en la distribución de velocidades fuerzas de superficie en el fluido.

e oc dad de de o ac ó

Coeficiente de viscosidad

Fuerza neta debido al esfuerzo de fricción tangencial sobre el fluido dxdydz

La fuerza neta por unidad de volumenp

U(y)

Campo de velocidades (y)dy

17

dz

dx

Introducción a la Ingeniería Aeroespacial

Page 18: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Fluidos Perfectos y Fluidos Idealesy

Un líquido se dice que es perfecto cuando su densidad es constante, y se dice que es caloríficamente perfecto si además su calor específico c es constante (esque es caloríficamente perfecto si además su calor específico c es constante (es decir, no depende de la temperatura). El calor específico o capacidad calorífica específica, c, de una sustancia es la cantidad

de calor necesaria para aumentar su temperatura en una unidad por unidad de masa, i bi d t dsin cambio de estado. El agua líquido caloríficamente perfecto de = 1000 kg/m3 y c = 4180 J/(kgK)

Los gases perfectos están caracterizados por una ecuación de estado:p presión del gas p - presión del gas

T - temperaturas del gas - densidad del gas

R constante del gas Rg – constante del gas. Un gas se llama caloríficamente perfecto si además los calores específicos a presión

constante (cp) y a volumen constante (cv) no dependen de la temperatura. Aire se comporta como un gas perfecto:p g p

Rg = 287 J/(kgK), cp=1004 J/(kgK) =1.40. En ciertos tipos de movimiento, los efectos de la viscosidad y de la conducción

de calor son despreciables. Un fluido que verifica estas condiciones se d i fl id id l t di t ó i i lifi tdenomina fluido ideal, y su estudio teórico se simplifica enormemente. Esta simplificación es válida en el estudio de muchos flujos aerodinámicos

En otros, como la capa límite, estela, ondas de choque -> efectos disipativos no son despreciables

18Introducción a la Ingeniería Aeroespacial

Page 19: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Flujos Incompresibles - Ij p

El movimiento de un fluido se dice que es incompresible si las variaciones de presión que se producen no dan lugar a variaciones significativas de densidad Dos posibles situaciones:no dan lugar a variaciones significativas de densidad. Dos posibles situaciones: La compresibilidad del fluido sea muy pequeña, por lo que, aunque las variaciones de presión sean grandes, las

variaciones de densidad que producen son pequeñas: líquidos.

Las variaciones de presión sean lo suficientemente pequeñas para que, aun si la compresibilidad no es pequeña, las variaciones de densidad sí lo sean:las variaciones de densidad sí lo sean:

gases en movimiento a baja velocidad

d d d b l d d l d d d l d d d d á d f l Medida de compresibilidad La velocidad del sonido es una propiedad termodinámica que define la velocidad a la que se propagan pequeñas perturbaciones (ondas) en el fluido en reposo

El Número Mach es una medida de velocidad relativa que se define como el cociente entre la velocidad de un objeto y la velocidad del sonido en el medio en que se mueve dicho objeto

Se considera que un flujo es incompresible si:

19Introducción a la Ingeniería Aeroespacial

Page 20: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Ecuaciones de la Mecánica de Fluidos - I

La resolución del problema fluidomecánico consiste en La resolución del problema fluidomecánico consiste en determinar las variables fluidas cómo función de la posición y del tiempo:

Principio de la conservación de la masa:VARIABLES FLUIDAS - Masa

Principio de la conservación de la masa: La masa de un volumen fluido no cambia con el tiempo.

Principio de la conservación de la cantidad de movimiento:

Masa- Cantidad de movimiento- Energía

La variación en la unidad de tiempo de la cantidad de movimiento de un volumen fluido es igual a la resultante de las fuerzas exteriores que actúan sobre él (fuerzas másicas y de superficie)superficie).

Principio de la conservación de la cantidad de energía: la variación en la unidad de tiempo de la energía total de un

ol men fl ido i l l t b j li d l id d d tivolumen fluido es igual al trabajo realizado en la unidad de tiempo por las fuerzas exteriores que actúan sobre el volumen fluido, más el calor recibido del exterior por el volumen fluido en la unidad de tiempo.tiempo.

Para cerrar el problema (tener el mismo número de incógnitas y ecuaciones), es necesario definir dos ecuaciones de estado: T=T( e)

20

T=T(,e) p=p(,e)

Introducción a la Ingeniería Aeroespacial

Page 21: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Ecuaciones de la Mecánica de Fluidos - II

Incógnitas: Incógnitas: densidad velocidad

í i t energía interna presión temperaturap

Sistema de ecuaciones muy complejas, el cual se suelen introducir simplificaciones:

Propiedades del fluido (densidad constante viscosidad pequeña etc ) Propiedades del fluido (densidad constante, viscosidad pequeña, etc.) Propiedades del fluido (bidimensional, estacionarios etc.)

Simplificaciones en este curso: Movimiento incompresible ( constante) Viscosidad constante

Despreciar los efectos disipativos (viscosos y de conducción) en la ecuación Despreciar los efectos disipativos (viscosos y de conducción) en la ecuación de la cantidad de movimiento

Teoría de la capa límite

21Introducción a la Ingeniería Aeroespacial

Page 22: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Número de Reynoldsy El número de Reynolds es un número adimensional utilizado en mecánica de fluidos, para comparar la

impo tancia elati a ent e las f e as de ine cia las f e as de iscosidad de n dete minado fl joimportancia relativa entre las fuerzas de inercia y las fuerzas de viscosidad de un determinado flujo.

Fuerzas de inercia convectivaTiempo

Fuerzas de inercia convectiva Fuerzas de viscosidadcaracterístico

Aceleración t í ti

fuerza neta por unidad de volumen

característica

El número de Reynolds es utilizado en mecánica de fluidos, diseño de reactores y fenómenos de transporte para caracterizar el movimiento de un fluido. Re >> 1 fuerzas de inercia son dominantes por lo que los efectos viscosos pueden ser despreciados Re >> 1 fuerzas de inercia son dominantes, por lo que los efectos viscosos pueden ser despreciados.

Problemas aerodinámicos (el aire 1kg/m3 y μ ~ 10−5 kg/(ms) Re ~ 107 >>1.

Re << 1 fuerzas viscosas son dominantes, y las fuerzas de inercia convectiva pueden ser despreciadas. lubricación fluidomecánica y los aerosoles.

S t t d á t f d t l l tú l d i t l iti ti l Se trata de un parámetro fundamental en los ensayos en túnel de viento al permitir garantizar la semejanza física de los experimentos.

22Introducción a la Ingeniería Aeroespacial

Page 23: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Ecuación de Bernoulli - I Simplificaciones en este curso:

Movimiento incompresible ( constante) Viscosidad constante Despreciar los efectos disipativos (viscosos y de conducción) en la ecuación de la

cantidad de movimiento Teoría de la capa límite

Despreciar los efectos viscosos

S id l fl j idi i l d d ió i bl Se considera el flujo unidimensional en un conducto de sección variableA(x) conocida, flujo en el que las variables fluidas son uniformes en cada sección, dependiendo sólo de la variable longitudinal x. Las variables fluidas son

( id ) ( ) V ( ) (conocida), p(x) y V (x).

Ecuación de la continuidadReducción de la complejidad

flujo volumétrico

Ecuación de la cantidad de movimiento

23Introducción a la Ingeniería Aeroespacial

Page 24: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Ecuación de Bernoulli - II

Presión dinámicaPresión estática Presión de remanso

24Introducción a la Ingeniería Aeroespacial

Page 25: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Ecuación de Bernoulli - III Una aplicación muy importante de la ecuación de Bernoulli es la

medida de la velocidad del aire (en flujos incompresibles). Tubo de Pitot-estática mide la presión estática (p) y la presión de remanso

(p0) y mediante la ecuación de Bernoulli se calcula la velocidad del fluido.(p0) y mediante la ecuación de Bernoulli se calcula la velocidad del fluido. Sólo válido para flujos incompresibles. Presión dinámicaPresión estática Presión de remanso

25Introducción a la Ingeniería Aeroespacial

Page 26: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Atmósfera Estándar Internacional - I

Internation Standard Atmosphere (ISA) p ( )es la necesidad de establecer una atmósfera tipo en problemas de diseño y operaciones de aeronaves. Hipótesis:

L t ó f tá t La atmósfera está en reposo respecto a tierra.

El aire es un gas perfecto. La presión y temperatura al nivel delLa presión y temperatura al nivel del

mar: p0=101325 N/m2

T0=288.15 K =1 225 kg/m3 0=1.225 kg/m

La aceleración debida a la fuerza de la gravedad es constante:

g=9.80665 m/s2

ó La variación de la temperatura con la altura viene dada por observación experimental

26Introducción a la Ingeniería Aeroespacial

Page 27: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Atmósfera Estándar Internacional - II

El aire está en reposo, por lo que es posible formular el equilibrio estático de un elemento diferencial de aire sobre el que sólo actúan las fuerzas de volumen gravitatorias y las fuerzas superficiales de presión La temperatura solo depende de la altura T(z) La temperatura solo depende de la altura T(z) La presión solo depende de la altura p(z) y se obtiene integrando la 3ª ecuación La variación de la densidad

27Introducción a la Ingeniería Aeroespacial

Page 28: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Atmósfera Estándar Internacional - III

Desde el punto de vista aeronáutico, los dos tramos más importantes son la troposfera (hasta 11 km) y la baja estratosfera (hasta 20 km) Troposfera

p0=101325 /m2 T0=288.15 K 0=1.225kg/m3

Criterio de estabilidad: la densidad debe disminuir con la altura (de lo contrario se generarían fuerzas de flotación)

Estratosfera

Esta capa se caracteriza por una gran estabilidad atmosférica, el aire permanece estratificado, sin apenas mezcla de unas capas con otras (ésta se produce casi , p p ( pexclusivamente por difusión)

28Introducción a la Ingeniería Aeroespacial

Page 29: Introducción a la Ing AeroespacialIntroducción a la Ing. …aero.us.es/iia/archivos/Y1112/Tema3_Y11_12.pdf · 2012-02-20 · Introducción a la Ing AeroespacialIntroducción a la

Bibliografíag [And00] J.D. Anderson. Introduction to flight. McGraw Hill, 2000. [Riv11] Damián Rivas. Introducción a la Ingeniería Aeroespacial,

Febrero de 2011.[E t G 10] C t id d l i t i t l A V hí l [Est-Gav10] Contenidos de la asignatura virtual, Aeronaves y Vehículos Espaciales, 2009-2010

29Introducción a la Ingeniería Aeroespacial