ingenieria sismologica

Upload: espiritudelucha

Post on 06-Mar-2016

219 views

Category:

Documents


0 download

DESCRIPTION

curso de maestria

TRANSCRIPT

  • INGENIERIA SISMORRESISTENTE

    Fundamentos de Sismologa e Ingenieria Sismolgica

    M.I. Jos Velsquez Vargas Maestra en Ing. Sismorresistente e Ing. Sismolgica (Rose School, Italia)

  • Terremotos

    Terremoto de Pisco (15/08/2007)

    Fuente: Informe de terremotos ocurridos en el mundo - Colegio de Ingenieros del Per

    Terremoto de Chile (27/02/2010)

    Terremoto de Hait (12/01/2010)

    Terremoto de Japn (11/03/2011)

  • Qu es un terremoto?Son vibraciones de la corteza terrestre, generadas por distintos fenmenos, como

    la actividad volcnica, la cada de techos de cavernas subterrneas y hasta por

    explosiones. Sin embargo, los sismos ms severos y ms importantes desde el

    punto de vista de la ingeniera, son los de origen tectnico.

    Estos se deben a los desplazamientos ms bruscos de las grandes placas en que

    est subdividida dicha corteza.

    Placas que conforman la corteza terrestre

  • major eqs 4

    SISMICIDAD GL0BAL

    95% de la energa liberada por terremotos se originan en regionesestrechas alrededor de la Tierra: estas zona marcan los bordes de las placas tectnicas

    Sismicidad global entre 1975-1999 con terremotos de magnitude mayor a 5.5

  • Cinturn de Fuego del PacficoEst situado en las costas del ocano Pacfico y se caracteriza por concentrar

    algunas de las zonas de subduccin ms importantes del mundo, lo que ocasiona

    una intensa actividad ssmica y volcnica en las zonas que abarca.

    Tiene 452 volcanes y concentra ms del 75 % de los volcanes activos e inactivos

    del mundo. Alrededor del 90 % de los terremotos del mundo y el 80 % de los

    terremotos ms grandes del mundo se producen a lo largo del Cinturn de

    Fuego.

  • Qu es un terremoto?La presiones que se generan en la corteza por los flujos de magma desde el

    interior de la tierra llegan a vencer la friccin que mantienen en contacto los

    bordes de las placas y producen cadas de esfuerzo y liberacin de enormes

    cantidades de energa almacenada en la roca. La energa se libera

    principalmente en forma de ondas vibratorias que se propagan a grandes

    distancias a travs de las rocas de la corteza.

  • major eqs 7

    LOS TERREMOTOS

    MS GRANDES

    DESDE 1900

  • CLCULO DEL PELIGRO SSMICO

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 63 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Nu

    me

    ro n

    orm

    aliz

    za

    to

    (10

    0 a

    nn

    i)

    Magnitudo

    7.0008, 0.18595

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 63 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Nu

    me

    ro n

    orm

    aliz

    za

    to

    (10

    0 a

    nn

    i)

    Magnitudo

    7.0008, 0.18595

  • KOBE EARTHQUAKE OF JANUARY 17, 1995

    Magnitude: 6.9 (Mw)

    Duration: 20 Seconds

    Number of Injured: 33,000

    Number of Deaths: 5,470

    Epicenter: 20 km underneath the island of Awaji

    Across a strait from Kobe

    Direct and Indirect Costs:

    $200 Billion in damages (4% of Japan's GDP)

    $100 Billion to restore basic functions

    $50 Billion in losses due to economic dislocation and business interruption

    $50 Billion in losses of private property

    Structural Damage (Buildings):

    144,032 Buildings destroyed by ground shaking

    7,456 Buildings destroyed by fire

    82,091 Collapsed buildings

    86,043 Severely damaged buildings

    Structural Damage (Highways/ Bridges/Ports):

    All Kobe ports shut down to international shipping

    Damage to containing loader piers

    All access to Kobe via highway and railway blocked

    Miscellaneous Facts:

    Largest peak accelerations 0.8g to greater than 1g

    300,000 People were left homeless

  • TERREMOTO DE PAKISTAN M7.6 DE 8 DE OCTUBRE DE 2005

  • MAPA DE PELIGRO SSMICO DE PAKISTAN

  • Mo

    vim

    ien

    to d

    e la

    s p

    laca

    s te

    ct

    nic

    as

    Zona de divergencia

    Zona de fallas

    Zona de convergencia

  • Zona de divergenciaSe generan cuando las placas van en direcciones opuestas, por lo tanto se

    separan. Al separarse dejan el camino abierto para que ingrese el magma desde

    el centro de la tierra. Como la mayora de las zonas de divergencia estn bajo la

    superficie el magma al entrar en contacto con el agua se enfra y genera un

    cuerpo slido, una roca.

    En esta zona casi no se producen sismos de gran relevancia.

  • Zona de fallasSe producen cuando las placas van en direcciones opuestas pero paralelamente,

    es decir, se rozan de lado a lado. Producen sismos menores y actividad volcnica

    casi nula.

    Desde San Francisco (EE. UU.) hasta la pennsula de Baja California en Mxico,

    es una zona de falla.

  • Zona de convergenciaSon zonas en donde dos placas tectnicas se dirigen al mismo lugar, por lo tanto

    colisionan, dando lugar a las zonas de subduccin. La placa ms densa

    comienza a penetrar debajo de la placa menos pesada, se produce entonces una

    zona de contacto directo entre ambas placas que genera gran cantidad de sismos

    y actividad volcnica. Generalmente son las placas ocenicas las que se hunden

    bajo las placas continentales.

  • Sismos histricos

    Terremoto en Chile el 27/02/2010, demagnitud 8.1 en la escala de Richter

  • Sismos histricos

    Terremoto y tsunami en Japn el 11/03/2011, de magnitud 8.9 en laescala de Richter

  • Sismos histricos

    Terremoto en Alaska el 28/03/1964, de magnitud 9 en la escala de Richter

  • Sismos histricos

    Terremoto en Indonesia el 26/12/2004, de magnitud 9.1 en la escala de Richter

  • Sismos histricos

    Megaterremoto registrado en Chile (Valdivia) el 22/05/1960, con una intensidad de 9.4 en la escalade Richter. Es considerado el peor terremoto en la historia de la humanidad

  • Magnitud e Intensidad de un terremoto

    Magnitud: La magnitud de un sismo corresponde a la energa liberada por la rotura o el desplazamiento de rocas en el interior terrestre. Se mide mediante la escala

    de Richter; es una escala objetiva porque se basa en los datos extrados del registro de

    sismgrafos.

    Intensidad: La intensidad de un sismo corresponde a los efectos producidos por la accin de las ondas superficiales. Se puede medir mediante la escala MSK o

    mediante la escala de Mercalli. Las dos son medidas subjetivas porque dependen de la

    apreciacin de las personas

  • ESCALA RICHTER (Se expresa en nmeros rabes)Representa la energa ssmica liberada en cada terremoto y se basa en el registro

    sismogrfico.

    Es una escala que crece en forma potencial o semilogartmica, de manera que cada punto

    de aumento puede significar un aumento de energa diez o ms veces mayor. Una magnitud

    4 no es el doble de 2, sino que 100 veces mayor.

  • ESCALA MERCALLI Se expresa en nmeros romanos.Creada en 1902 por el sismlogo italiano Giusseppe Mercalli, no se basa en los

    registros sismogrficos sino en el efecto o dao producido en las estructuras y en la

    sensacin percibida por la gente. Para establecer la Intensidad se recurre a la

    revisin de registros histricos, entrevistas a la gente, noticias de los diarios pblicos

    y personales, etc. La Intensidad puede ser diferente en los diferentes sitios

    reportados para un mismo terremoto (la Magnitud Richter, en cambio, es una sola) y

    depender de:

    a)La energa del terremoto,

    b)La distancia de la falla donde se produjo el terremoto,

    c)La forma como las ondas llegan al sitio en que se registra (oblicua, perpendicular,

    etc,)

    d)Las caractersticas geolgicas del material subyacente del sitio donde se registra la

    Intensidad y, lo ms importante,

    e)Cmo la poblacin sinti o dej registros del terremoto.

  • El movimiento ssmico del suelo se transmite a los edificios que se apoyen sobre ste. La

    base del edificio tiende a seguir el movimiento del suelo, mientras que, por inercia, la masa

    del edificio se opone a ser desplazada dinmicamente y a seguir el movimiento de su base.

    Las fuerzas de inercia que se generan por la vibracin en los lugares donde se encuentran

    las masas del edificio se transmiten a travs de la estructura por trayectorias que dependen

    de la configuracin estructural. Estas fuerzas generan esfuerzos y deformaciones que

    pueden poner en peligro la estabilidad de la construccin.

    EFECTOS SSMICOS EN LOS EDIFICIOS

  • LA TIERRA Y SUS TERREMOTOS

    Fallas

    Terremotos

    Fallas activadas por terremotos

  • FALLAFRACTURA EN LA ROCA QUE

    MUESTRA DESPLAZAMIENTO

    RELATIVO

    Falla por deslizamiento:el sentido prinicipal del

    movimiento en el plano de

    falla es horizontal

    Falla por inmersin: el sentido principal del

    movimiento en el plano de

    falla es vertical

    Falla Emerson en California:

    Produjo el terremoto de Landers

  • earth & earthquakes 27

    FALLAS POR INMERSIN

    Dip-slip

    Faulting that produces vertical displacements along the strike of the fault.

    90 dip is vertical.

    Two types of dip-slip faults: normal fault and reverse fault.

    Normal fault: when the rock on that side of the fault hanging over fracture (the hanging wall) plane slips downward.

    Reverse fault: when the hanging wall moves upwards over the footwall.

    A thrust fault is a special type of reverse fault in which the dip of the fault is small (shallow). Subduction zones (e.g., Cascadia in the Pacific North West) are the sites of many thrust earthquakes.

    NormalReverse

  • earth & earthquakes 28

    FALLAS POR INMERSIN

    1) Terms: Hanging wall and footwall

    2) Normal faults

    (a) Grabens

    (b) Horsts

    3) Reverse faults

    a) low angle called Thrust faults

    4) Oblique-slip faults

    Thrust

    Oblique

    Blind thrust

  • earth & earthquakes 29

    DIP-SLIP

    FAULTS (3)

  • earth & earthquakes 30Source: John S. Shelton

    NORMAL FAULT: HANGING WALL

    DOWN

    Key

    Bed

  • earth & earthquakes 31

    NORMAL FAULTS

  • earth & earthquakes 32

    REVERSE FAULT (CALLED THRUST FAULT IF SHALLOW ANGLE)

    Younger

    (Hanging wall Up)

  • earth & earthquakes 33

    REVERSE FAULTS

  • EARTHQUAKE GENESIS

    Posicin originalSIN DEFORMACIN

    Almacenamiento de energaDEFORMACIN PROGRESIVA

    Ruptura con emisin de energa : TERREMOTORDESPLAZAMIENTO PERMANENTE

  • earth & earthquakes 35

    TEORA DEL REBOTE ELSTICO

    QuickTime e undecompressore

    sono necessari per visualizzare quest'immagine.

    Harry Fielding Reid postulated that the forces causing earthquakes were not close to the earthquake source but very distant. The earthquake is, then, the result of the elastic rebound of previously stored elastic strain energy

    in the rocks on either side of the fault.

    After the devastating 1906 San Francisco, California earthquake, a fault trace was discovered that could be followed along the ground in a more or less straight line for 270 miles. It was found that the Earth on one side of the fault had slipped compared to the Earth on the other side of the fault by

    up to 7 m.

  • earth & earthquakes 36

    REBOTE

    ELSTICO

    Mechanism for earthquakes

    Rocks on sides of fault are deformed by tectonic forces

    Rocks bend and store elastic energy

    Frictional resistance holding the rocks together is overcome by tectonic forces

    Earthquake mechanism

    Slip starts at the weakest point (the focus)

    Earthquakes occur as the deformed rock springs back to its original shape (elastic rebound)

    The motion moves neighboring rocks

    And so on

  • earth & earthquakes 37

    RPLICAS

    -The change in stress that follows a mainshockcreates smaller earthquakes called aftershocks

    - The aftershocks

    illuminate the fault

    that ruptured in the mainshock

    Red dots show location ofaftershocks formed by 3earthquakes in Missouriand Tennessee in 1811/1812

  • earth & earthquakes 38

    PROFUNDIDAD DE LOS TERREMOTOS

    Earthquakes originate at depths ranging from 5 to nearly 700 kilometers.

    Definite patterns exist:

    shallow focus occur along mid ocean ridges;

    deep earthquakes occur in Pacific landward of oceanic trenches;

    central continent (intraplate) earthquakes of various causes: some causes still uncertain.

    Devastating earthquakes less than 60 kilometers because cold rock more elastic, transmits waves better than warmer rock below.

  • earth & earthquakes 39

    EARTHQUAKE DEPTH AND PLATE TECTONIC

    SETTING

    Subduction Zones discovered by Benioff

    Weakest are the divergent zone earthquakes

  • earth & earthquakes 40

    TERREMOTOS EN ZONAS DE SUBDUCCIN

    Recent example, 9.0 Christmas 2004 Earthquake and Tsunami, Sumatra

  • earth & earthquakes 41

    SAN FRANCISCO EARTHQUAKE APRIL 18, 1906

    Fault trace 2 miles north of the Skinner Ranch at Olema. View is north.

    Fence offset by the causative fault on ranch of E.R. Strain, 1 1/2 miles north of Bolinas Lagoon, looking northeast. The sheer offset is 8 1/2 feet; the total displacement, shown partly by crooking of fence, is 11 feet.

    Example of a strike-slip fault

  • earth & earthquakes 42

    ALASKA EARTHQUAKE OF MARCH 27, 1964

    Example of a thrust fault

    Hanning Bay fault scarp on Montague Island, looking northwest. Vertical displacement in the foreground, in rock, is about 12 feet. The maximum measured displacement of 14 feet is at the beach ridge near the trees in the background.

    Hanning Bay fault on Montague Island, looking southwest from the bay. The fault trace on the ridge is marked by active landslides.

  • earth & earthquakes 43

    SAN FERNANDO EARTHQUAKE OF FEBRUARY 9, 1971

    Example of a reverse fault

    Trace of the main reverse fault where it crosses Little Tujunga Road. By the time this photograph was taken a dirt ramp at right had been built up the scarp. The scarp indicates more than 1-meter reverse dip-slip movement. The fence indicates little strike-slip displacement at this place, which is near the last end of the line of surface rupture.

    Compression of freeway

  • instrumental seismology 44

    INSTRUMENTAL

    SEISMOLOGY Seismic waves Theory of the seismograph Locating earthquakes Magnitude Fault plane solutions

  • instrumental seismology 45

    ORIGIN OF SEISMIC WAVES

    A wave is a disturbance that transfers energythrough a medium.

    Seismic waves are generated by manydifferent processes:

    earthquakes, volcanoes,

    explosions (especially nuclear bombs),

    wind,

    planes (supersonic),

    people,

    vehicles.

  • instrumental seismology 46

    MAGNITUDE (1)

    Magnitude measures the strenght of the earthquake.It is proportional to the elastic energy released by the quake.It is measured on the basis of the wave amplitude on the seismogram considering the epicentral distance.The most utilized magnitudes in the last century were the following:

    1) original magnitude for local shocks obtained using the standardWood-Anderson torsion seismometer indicated as ML, or MAW according tothe Karnik nomenclature (circular of 1976);2) magnitude from body waves obtained using short or long periodinstruments, for epicentral distance greater than 1800 km, called mB if itis derived from the long period recording and mb if derived from the shortperiod one, respectively MPV and M according to the Karnik nomenclature(circular of 1976);3) magnitude from surface waves recorded by long periodseismometers, for epicentral distance greater than 2200 km, indicated asMS, or MLH according to the Karnik nomenclature (circular of 1976).

    There is also a magnitude calculated from the duration of the recording of a local shock.

  • instrumental seismology 47

    MAGNITUDE (2)

    Kanamori (1977) has recently developed a standard magnitude scale that iscompletely independent of the type of instrument. It is called the momentmagnitude, indicated with M or MW, and it comes from the seismic moment M0.

    M0 = Adwhere is the shear strength (rigidity modulus) of the faulted rock (about 3.31010

    N/m2), A is the area of the fault (i.e.: the product of its length and width), and d is the average displacement on the fault (i.e.: the slip which is the length of the slip vector of the rupture measured in the plane of the fault).There is a standard way to convert a seismic moment to a magnitude (Hanks and Kanamori, 1979). The equation is:

    Mw logM0

    1.510.7

    with M0 in dynexcm.

  • instrumental seismology 48

    LOCAL MAGNITUDE

    QuickTime e undecompressore

    sono necessari per visualizzare quest'immagine.

    The concept of magnitude was introduced by Richter (1935): the magnitude of any shock is taken as the logarithm of the maximum trace amplitude with which the standard torsion seismometer would register that shock at an epicentral distance of 100 km.

    ML logA logA0

    Charles F. Richter (1900-1985)

  • instrumental seismology 49

    DURATION MAGNITUDE

    There is also a magnitude calculated from the duration of the recording of alocal shock: the equation has to be derived empirically by comparison withactual ML estimates. Duration magnitude is indicated with MD and thegeneral relation has the form:

    where is the duration of the signal, computed from the P-wave arrival tothe moment when the earthquake wave amplitude has the same amplitudeas the background noise, is the epicentral distance and a, b, and c areparameters calculated by regression analysis. In practice, c is very smallindicating a slight dependence of MD on distance.

    MD ablog c

  • instrumental seismology 50

    BODY-WAVE MAGNITUDE

    The general formula recommended fromthe IASPEI's Committee of Zurich 1967is the following, given by Gutenberg in1945:

    where A is the maximum true amplitude and T the period of the used wave, Q is the Gutenberg-Richter's correction value for hypocentral depth and distance and is the station correction obtained by statistical analysis of the resulting systematic divergences.

    m logA

    T

    maxQ

  • instrumental seismology 51

    SURFACE-WAVE MAGNITUDE

    The magnitude from surface waves can also be computed using different waves andvertical or horizontal components. The most common is the one computed with thewaves of maximum amplitude having period from 10 to 30 seconds. The magnitudeexpression, given by Karnik (1962) is:

    where A is the maximum true amplitude of the wave used, computed as the square root of the sum of the squares of the two horizontal components, T is the period and d is the epicentral distance in degrees.

    M logA

    T

    max1.66logd 3.3

  • instrumental seismology 52

    SUMMARY ABOUT MAGNITUDES

  • instrumental seismology 53

    COMPARISON OF THE DIFFERENT MAGNITUDES

    Only Mw does not saturate

  • seismic hazard 54

    PELIGRO SSMICO

    DSHA

    PSHA

    Ingredients of PSHA

    Hazard maps

    Ground motion parameters and maps

  • seismic hazard 55

    RISK = HAZARD * VULNERABILITY * EXPOSED VALUE

    RISK = probability to observe a certain damage or loss of operativity

    HAZARD = probability to observe a certain ground shaking

    (acceleration, intensity, etc.)

    in a fixed time period

    VULNERABILITY = tendency of the study item (building, complex system, etc.)

    to suffer damage or modifications

    EXPOSED VALUE = (economic, social, etc.) quantification of the study item

  • seismic hazard 56

    DETERMINISTIC AND STATISTICAL-

    PROBABILISTIC MODELS

    Determinism = the process IS KNOWNand it is possible to write the equation

    E.g.: gravity law s = 1/2 g*t2

    Probabilism = the process IS NOT KNOWNand it is possible to approximate itfrom observationsE.g.: exit poll

  • seismic hazard 57

    APPROACHES FOR SHA

    SEISMIC HAZARD ASSESSMENT

    Historical determinism

    Historical probabilism

    Seismotectonic probabilism

    Non-Poissonian probabilism

    Eq prediction

    Reference ground motion

    Detailed scenario

    Probabilistic approaches Deterministic approaches

    Muir Wood (1993)

  • seismic hazard 58

    DETERMINISTIC APPROACH

    Select a small number of individual earthquake scenarios: M, R (Location) pairs

    Compute the ground motion for each scenario (typically use ground motion with 50% or 16% chance of being exceeded if the selected scenario earthquake occurs

    Select the largest ground motion from any of the scenarios

  • seismic hazard 59

    PROBABILISTIC APPROACH (1)

    Source Characterization Develop a comprehensive set of possible scenario

    earthquakes: M, R (location)

    Specify the rate at which each scenario earthquake (M, R) occurs

    Ground Motion Characterization Develop a full range of possible ground motions for each

    earthquake scenario (number of std dev above or below the median)

    Specify the probability of each ground motion for each scenario

  • seismic hazard 60

    PROBABILISTIC APPROACH (2)

    Hazard Calculation

    Rank scenarios (M,R, ) in order of decreasing severity of shaking

    Table of scenarios with ground motions and rates

    Sum up rates of scenarios (hazard curve)

    Select a ground motion for the design hazard level

    Back off from worst case ground motion until the sum of the rates of scenarios exceeding the ground motion is large

    enough to warrant consideration (e.g. the design hazard

    level)

  • seismic hazard 61

    SEISMIC RISK APPLICATION IN THEDETERMINISTIC-PROBABILISTIC SPECTRUM

    McGuire (2001)

  • seismic hazard 62

    EXAMPLES OF EARTHQUAKE DECISIONS

    McGuire (2001)

  • seismic hazard 63

    DETERMINISTIC APPROACHES

    SEISMIC HAZARD ASSESSMENT

    Historical determinism

    Historical probabilism

    Seismotectonic probabilism

    Non-Poissonian probabilism

    Eq prediction

    Reference ground motion

    Detailed scenario

    Probabilistic approaches Deterministic approaches

    Muir Wood (1993)

  • seismic hazard 64

    STEPS OF THE DETERMINISTIC APPROACH

    1. Identification and characterization of all earthquake

    sources capable of producing significant ground

    motion at the site.

    2. Selection of a source-to-site distance parameter for

    each source zone. In most DSHAs, the shortest

    distance between the source zone and the site

    of interest is selected.

    3. Selection of the controlling earthquake (i.e., the

    earthquake that is expected to produce the

    strongest level of shaking), generally expressed

    in terms of some ground motion parameter, at

    the site.

    4. The hazard at the site is formally defined, usually in

    terms of the ground motions produced at the site

    by the controlling earthquake. Its characteristics

    are usually described by one or more ground

    motion parameters obtained from predictive

    relationships.

  • seismic hazard 65

    DETERMINISTIC APPROACH

    SOURCE CHARACTERISATION

    Focus = historical & instrumental seismicity

    Mechanism = geology, instrumental seismicity

    Magnitude = geology, instrumental seismicity

    PATH DESCRIPTION

    Intensity attenuation = historical seismicity

    acceleration attenuation = instrumental seismicity

    SITE EFFECTS

    Stratigraphy = geology, instrumental seismicity

    Morphology = geology

    Reference ground motion

    -Empirical attenuation relations

    Detailed scenario

    -Modeling

  • seismic hazard 66

    PSHA AND DETERMINISTIC SCENARIO FOR A

    SITE

    PSHA

    1000-yr return period PGA on rock

    Deterministic Scenario

    Regional max mag = 6.4

    (Kijko and Graham 1999 method)

    PGA attenuation relation for rock

    0.23 Ambraseys et al. 1996

    0.30 Sabetta & Pugliese 1987

    0.30 Chiaruttini & Siro 1981

    PSHA

    1000-yr return period PGA on rock

  • seismic hazard 67

    GENERATIONS OF

    PSHA

    SEISMIC HAZARD ASSESSMENT

    Probabilistic Approaches

    Historical Determinism

    Historical Probabilism

    Seismotectonic Probabilism

    Non-Poissonian Probabilism

    Earthquake Prediction

    (Muir-Wood, 1993)

    Deterministic Approaches

    Reference Shaking

    Detailed Scenario

  • seismic hazard 68

    THE FIRST HAZARD MAP

    (?)

    Map of world earthquake occurrence by Robert Mallet in 1854

  • seismic hazard 69

    1ST GENERATION

    HISTORICAL

    DETERMINISM

  • seismic hazard 70

    2ND GENERATION

    HISTORICAL

    PROBABILISM

    P[Imax i] Im axF (i) exp{[(w i)/(wu)]k}

    XF (x) i /(n1)

    iy ln{ln[ XF (xi)]}

    iy (xi u)

    The Gumbel approach

    Given Imax = max Xi, with i=1, , n and n largeType 1: no upper limit of Xi

    ApplicationPutting

    P[Imax i] FIm ax(i) exp[e iu ]

    Type 3: upper limit of Xi

    Introducing the reduced variable

    Gumbel approach (1)

  • seismic hazard 71

    2ND GENERATION HISTORICAL

    PROBABILISM

    Example of the Gumbel approachGiven an eq catalogue, lets take the maximum annual (extreme)magnitudes and order them x1, x2, , xn: xi xi+1 " i

    XF (x) i /(n 1) lets assign the annual non exceedence probability:

    iy ln{ ln[ XF (xi)]}

    lets calculate the Gumbel reduced variable:

    iy (xi u) we obtain:

    lets compute and u by regression analysis:

    lets compute the hazard estimates(e.g.: extreme exceeded with probability p in T years:

    p,Ty u {ln[ ln(1 p)] lnT}/

    Gumbel approach (2)

  • seismic hazard 72

    2ND GENERATION

    HISTORICAL

    PROBABILISM

    i n je

    ij2

    / c2

    je ij

    2 / c 2

    j

    (u u0) 1

    Ti

    i

    P[u u0m min

    mu

    | di,mj] fm(m)dm

    The smoothed seismicity approach

    The hazard computation is based on the number ni of earthquakes with magnitude greater than Mref in each cell i of a grid: this count represents the maximum likelihood estimate of 10a for that cell. The grid of ni values is then smoothed spatially by multiplying by a Gaussian function with correlation distance c, obtaining :

    The annual rate (u>u0) of exceeding ground motion u0 at a specific site is determined from a sum over distance and magnitude

    fm(m) bln10 10b(mm 0)

    110b(mum 0)

    P[u u0 | di,mj] 1

    2

    lnu0 lnu(di ,m j)

    2

    where

    (from Frankel, 1995 and

    Lapajne et al., 1997)

    The smoothed seismicity approach (1)

  • seismic hazard 73

    2ND GENERATION

    HISTORICAL

    PROBABILISM The smoothed seismicity approach (2)

    Options:

    the activity rate can be computed considering different seismicity models;

    the b-value and Mmax can vary in space;

    different attenuation relations can be used.

    Seismicity models:

    m0 = 3, low seismicity contributes to define hazard

    (activity rates normalized over different Ts

    according to the zone)

    m0 = 5, only high seismicity contributes to define hazard

    (activity rates normalized over different Ts

    according to the zone)

  • seismic hazard 74

    2ND GENERATION:

    HISTORICAL

    PROBABILISM

    The smoothed seismicity approach (3)

    Zonation models

    in each zone b-value and Mmax are constant

    Average PGA

    with T=475 from

    zonation models

  • seismic hazard 75

    3RD GENERATION

    SEISMOTECTONIC PROBABILISM The 4 steps

    of PSHA

  • seismic hazard 76

    3RD GENERATION

    SEISMOTECTONIC PROBABILISM The Cornell (1968) approach (1)

    P[E] P E | S fs(s)ds

    z ii1

    N

    iP(Z z |m,r) fr o

    r

    mo

    mu

    (m) if (r)drdm

    T t /ln(1P(ZT z))

    The Cornell (1968) approach

    Application

    The total probability theorem

    for all SZs GR distributionSZ geometry

    If it is a Poisson process (stationary, independent, non-multiple events)

    SF (s) P[S s]

    Sf (s) SF (s)/swhere is the PDF of S

    is the CDF of Sand

    where: T=return period;

    t=period of analysis

    Attenuation model

    P ZT z 1 ezT

    Mean annual rate

    of exceedence

    Mean annual rate

    of occurrence

  • seismic hazard 77

    3RD GENERATION

    SEISMOTECTONIC PROBABILISM The Cornell (1968) approach (2)

    Working hypotheses of the

    Cornell (1968) approach

    The eq magnitude is exponentially distributed

    The eq number in time forms a Poisson process

    The seismicity is spatially uniform inside the seismic sources (faults,

    areas, etc.)

    (from Algermissen & Perkins, 1976)

  • seismic hazard 78

    3RD GENERATION

    SEISMOTECTONIC PROBABILISM The Cornell (1968) approach (3)

    a b

    c

    d e

    Contributing information

    a = geology, historical & instrumental

    seismicity

    b = historical & instrumental

    seismicity

    c = instrumental seismicity for PGA

    historical seismicity for intensity

    d = statistics

    e = statistics

    (from Algermissen & Perkins, 1976)

  • seismic hazard 79

    3RD GENERATION

    SEISMOTECTONIC PROBABILISM The Cornell (1968) approach (4)

    The actual steps

    in PSHA computation

    A) Definition of SZs

    B) Seismicity characterisation

    Attenuation relation

    C) Probability of ground motion

    exceedence

    D) Probability of ground motion

    exceedence in T yrs

    Uniformely distributed seismicity

    Gutenberg-Richter law

    Poisson distribution

    (from Algermissen & Perkins, 1976)

  • seismic hazard 80

    SOURCE-TO-

    SITE

    DISTANCE

    Arcs of circles with centers at the site approximate in Seisrisk III the area of the quadrilater.

    Examples of different earthquake source geometries: a) short fault that can be modelled as a point source; b) shallow fault that can be modelled as a linear source; c) 3D source zone modelled as an area source

    (from Kramer, 1996)

  • seismic hazard 81

    FR(R)

    Variations of source-to-site distance for different source zone geometries. The shape of the PDF can be visualized by considering the relative portions of the source zone that would fall between each of a series of circles (or spheres for 3D problems) with equal differences in radius

    (from Kramer, 1996)

    fL(l)dl fR(r )dr

    fR(r) fL(l)dl

    dr

    fL(l) l /Lf

    l2 r 2 rmin2

    fR(r) r

    Lf r2 rmin

    2

    (b)

    Many single sources, see (a)

  • seismic hazard 82

    FM(M)

    GUTENBERG - RICHTER

    LAW

    lognm abm

    nm 0em

    nm 0e (mm0 )

    with m0 = threshold magnitude

    b ln10

    0 10a

    FM (m) P[M m | M m0] nm0 nm

    nm0

    1 e (mm0 )

    fM (m) d

    dmFM (m) e

    (mm0 )

    Gutenberg-Richter recurrence law: a) meaning of a and b parameters; b) application of Gutenberg-Richter law to worldwide seismicity data

  • seismic hazard 83

    FM(M)

    BOUNDED GUTENBERG -

    RICHTER LAW

    Bounded Gutenberg-Richter recurrence laws for mo=4 and mmax=6, 7, and 8 constrained by constant seismicity rate

    where =exp(m0) is the rate of occurrence of earthquakes exceeding m0

    nm exp m m0 exp mmax m0

    1 exp mmax m0

    FM (m) P[M m |m0 M mmax ] 1 e (mm0 )

    1 e (mmax m0 )

    fM (m) e (mm0 )

    1 e (mmax m0 )

  • seismic hazard 84

    CHARACTERISTIC

    EARTHQUAKE

    Youngs & Coppersmith developed a generalized magnitude-frequency PDF that combined an exponential magnitude distribution at lower magnitudes with a uniform distribution in the vicinity of the characteristic earthquake.

    Comparison of recurrence laws from bounded Gutenberg-Richter and characteristic earthquake models (from Youngs & Coppersmith, 1985).Inconsistency of mean annual rate of exceedance as determined from seismicity data and geologic data (from Schwartz and Coppersmith, 1984).

  • seismic hazard 85

    SEISMIC HAZARD

    CURVE The individual components of the Eq are

    complicated that the integrals cannot be evaluated analitically: numerical integration is required

    P[E] P E | S fS (s)ds

    P[Z z] iP(Z z |m,r) f

    r o

    r

    mo

    mu

    (m) if (r)drdm

    z ii1

    NS

    iP(Z z |m,r) fr o

    r

    mo

    mu

    (m) if (r)drdm

    z ik1

    N R

    j1

    NM

    i1

    NS

    P(Z z |m j ,rk ) fM i (m j ) fR i (rk )mr

    z ik1

    N R

    j1

    NM

    i1

    NS

    P(Z z |m j ,rk )P[M m j ]P[R rk ]

    P ZT z 1 ezT

    Magnitude and distance ranges are divided into segments

    Poisson model

    PGA with 10% exceedance probability over various exposure times for 14 areas in North America

    Mean annual rate

    of exceedence

    Hazard curve

    Exceedence

    probability

  • seismic hazard 86

    0.001

    0.01

    0.1

    1

    0.1 1

    ponti del Veneto

    exc

    ee

    de

    nce

    pro

    bab

    ilit

    y in

    50

    yrs

    PGA

    Spresiano

    BotteonPeron

    Fener

    Hazard curves for 4 bridges in Veneto