informe técnico invera gogo - onet 16

28
UNIVERSIDAD BLAS PASCAL 16º Olimpiadas Nacionales de Electrónica y Telecomunicaciones Titulo: InvenaGoGo 1.0 - Se lo que hiciste el invierno pasadoAlumnos expositores: - Barros, David DNI: 38.061.619 3º año Electrónica - Coelho, Manuel DNI: 38.794.124 3º año Electrónica - Mayl, Nicolás Sergio DNI: 38.854.849 3º año Electrónica - Ulloa, Héctor DNI: 37.202.578 3º año Electrónica - Benitez, Lucas DNI: 36.308.362 3º año Electrónica Docentes orientadores: - Vera, Liza Daniela DNI: 23.029.642 - Orué, Jorge Luis DNI: 32.337.646 Docentes acompañantes: - Vidal, Karina Paz DNI: 93.888.393 - Barros, Rodrigo Nicolás DNI: 32.469.843 Escuela: Industrial Nº6 - ``X Brigada Aérea´´ Provincia: Santa Cruz Localidad: Güer Aike Ciudad: Río Gallegos Año: 2012

Upload: industrial-n6

Post on 14-Jul-2015

719 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Informe técnico   invera gogo - onet 16

UNIVERSIDAD BLAS PASCAL

16º Olimpiadas Nacionales de Electrónica y Telecomunicaciones

Titulo: InvenaGoGo 1.0 - “Se lo que hiciste el invierno pasado”

Alumnos expositores:

- Barros, David

DNI: 38.061.619

3º año Electrónica

- Coelho, Manuel

DNI: 38.794.124

3º año Electrónica

- Mayl, Nicolás Sergio

DNI: 38.854.849

3º año Electrónica

- Ulloa, Héctor

DNI: 37.202.578

3º año Electrónica

- Benitez, Lucas

DNI: 36.308.362

3º año Electrónica

Docentes orientadores:

- Vera, Liza Daniela

DNI: 23.029.642

- Orué, Jorge Luis

DNI: 32.337.646

Docentes acompañantes:

- Vidal, Karina Paz

DNI: 93.888.393

- Barros, Rodrigo Nicolás

DNI: 32.469.843

Escuela: Industrial Nº6 - ``X Brigada Aérea´´

Provincia: Santa Cruz

Localidad: Güer Aike

Ciudad: Río Gallegos

Año: 2012

Page 2: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 2

ÍNDICE Introducción Pág. 3

Objetivos del proyecto Pág. 3

Alcances Pág. 3

Destinatarios Pág. 3

Resumen del proyecto Pág. 3

Antecedentes del tema Pág. 3

Desarrollo Pág. 8

Planes de mecanismos y montaje Pág. 8

Explicación del funcionamiento del sistema Pág. 8

Diagrama de bloques principal Pág. 8

Esquema o circuitos eléctricos Pág. 9

Placa GoGo: Configuración de entradas y salidas Pág. 9

Circuito de potencia para comandar los dispositivos de salida: control mediante relé Pág. 10

Circuito de iluminación de parcelas: iluminación con LED de alta intensidad

Pág. 11

Distribución eléctrica en el invernadero: Instalación eléctrica del hardware a controlar Pág. 12

Sensores: Explicación del funcionamiento de los sensores seleccionados Pág. 13

Mediciones tomadas sobre los circuitos Pág. 15

Mediciones sobre la placa GoGo: Pág. 15

Mediciones sobre el circuito de potencia con relés Pág. 17

Mediciones para el circuito de iluminación de parcelas Pág. 18

Diagramas de flujo Pág. 18

Esquema de la maqueta Pág. 22

Costos del proyecto Pág. 25

Conclusiones Pág. 26

Balance comparativo Pág. 26

Recomendaciones Pág. 26

Propuestas Pág. 27

Mejoras al trabajo Pág. 27

Bibliografía y recursos consultados Pág. 28

Page 3: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 3

INTRODUCCIÓN

Objetivos del proyecto

El objetivo del proyecto es crear un invernadero prácticamente autónomo que controle tres factores fundamentales, como lo son la temperatura, humedad y luminosidad del ambiente, para realizar el cultivo de una forma optima, ajustando los valores de estos parámetros según la especie a cultivar.

Alcances

Se considera que el proyecto puede ser utilizado para plantaciones, ya sean a micro o macro escala, es decir, que puede ser manipulado para la plantación de frutas o verduras para el abastecimiento de una familia, o para cultivo y suministro de una estancia o empresa dedicada al rubro, sin importar las condiciones climáticas, ya que los factores intervinientes en el desarrollo de las plantas serán controlados constantemente por diversos sensores, garantizando la optimización de recursos que van desde el mismo momento de la siembra hasta los correspondientes al consumo energético.

Destinatarios

Principalmente se direcciona la idea a micro escala, dadas las condiciones y características que nos brinda cada placa GoGo destinando la construcción de pequeños invernaderos que permitan el cultivo de una especie en particular, adaptando todas las lecturas de los diversos sensores a las necesidades de la misma, generando el correspondiente ambiente controlado para el desarrollo factible de dicha especie.

Resumen del proyecto

El proyecto se comenzó a desarrollar durante el mes de mayo del 2012 en el Industrial N°6, motivados por la propuesta que lanzara la Universidad Blas Pascal en las jornadas de ONET 15, y para llevar adelante durante las jornadas de ONET 16, de controlar mediante la placa GoGo algún sistema propuesto por los alumnos; para lo cual se propuso como idea principal el sensado y control de las variables fundamentales que intervienen en el desarrollo y cultivo de diversas especies de plantas en regiones con climas adversos, comandados mediante el microcontrolador y la electrónica necesaria y asociada a la placa GoGo.

Recordando que la automatización es la capacidad de los dispositivos para llevar a cabo determinadas tareas controlando secuencias de operaciones sin intervención humana, se busca generar la manera de que con un sistema preciso, rápido, económico y sobre todo, autónomo, poder controlar un invernadero para lograr mayor eficiencia y aprovechamiento de éste.

En nuestra localidad donde el clima impide el desarrollo de cultivos, se necesita de un sistema que ayude proporcionando el ambiente ideal del que requieren las plantas para lograr su buen crecimiento dentro de un medio en el que los factores externos sean algo sin importancia. Cuando se quiere sembrar en una zona poco fértil, lo más probable es que no se de la cosecha, y si hay brotes, es muy difícil que se mantengan estables hasta su maduración. Cuando se cuenta con un ambiente templado y húmedo el cultivo puede incluso crecer más rápido de lo normal y, en consecuencia, proporcionar una mejor y más abundante cosecha que si se sembrara a la intemperie en un clima desfavorecido.

Al hacer uso del InvernaGoGo, obtenemos el beneficio de un cultivo creciendo en un entorno favorable a su desarrollo, donde el sistema realiza el trabajo por nosotros, garantizando ser completamente fiable y efectivo, de manera que ahorre ese rato de atención al cultivo permitiéndonos realizar otras actividades con la confianza de que nuestro cultivo se mantendrá en buen estado gracias a la automatización que estará a cargo de ello.

Antecedentes del tema

Un invernadero es un edificio con paredes de vidrio o plástico translucido, empleado para el cultivo y la conservación de plantas, que pueden o no ser delicadas, siendo usado también para forzar el crecimiento de plantas fuera de temporada. Los invernaderos están ideados para controlar la temperatura, humedad y luz, logrando así condiciones ambientales similares a las de otros climas o estaciones de una región o época del año. Esto permite determinar el tipo de construcciones de éstos, pueden variar según distintos aspectos que se deben tener en cuenta para considerarlo efectivo, donde se pueden presentar:

Page 4: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 4

El aire, en éste aspecto podríamos tomar en cuenta las dimensiones con las que construimos el invernadero, éstas deben ser de un tamaño que permita a las plantas respirar, también está la ventilación, que podemos usar para brindar un poco de brisa a nuestras plantas de vez en cuando.

La temperatura, es muy importante que esta se mantenga en el rango ideal para las plantas, ya que si el interior ésta muy frio o muy caliente, puede afectar en el desarrollo de las mismas.

El riego, sabemos que un invernadero proporciona cierto ahorro de agua ya que usualmente su interior es un poco húmedo, pero es importante tener en cuenta la forma en que se van a regar las plantas, fijándonos en que sea de forma distribuida y eficaz para tener un consumo moderado de agua.

También está la iluminación, en éste aspecto podemos tomar en cuenta la posición del invernadero, lo más eficaz es orientarlo de este a oeste con el lado más largo mirando hacia el norte con el fin de aprovechar eficientemente la energía proveniente del sol según su trayectoria. De esta forma la iluminación al interior del invernadero será mayor permitiendo a las plantas un mejor desarrollo en el proceso de la fotosíntesis. Esto se interpreta claramente en la figura 1.

Por último el clima que se pretende lograr dentro del invernadero, dependiendo de las necesidades de las plantas que le vayamos a introducir.

Figura 1 – Orientación más conveniente para el aprovechamiento de la luz

Sobre la base de estos requerimientos, se realizó una investigación sobre las ventajas y desventajas de los diferentes tipos de construcciones, los que se vuelcan en la tabla 1.

También se investigaron características del clima de nuestra región y particularmente en nuestra localidad, de manera de justificar a quienes va destinado la implementación de este proyecto. En general, el clima de la región es árido y frío con temperaturas muy bajas casi todo el año, con fuertes amplitudes térmicas y lluvias insuficientes.

Dos tipos de clima conviven en nuestra provincia, uno es el clima árido patagónico del centro y este, que se caracteriza por tener temperaturas anuales de entre 5 y 10 ºC, oscilando en enero de 12 a 20 ºC y en julio de -15 a -7 ºC, y otro el clima frío húmedo del oeste ,esto se debe a una delgada franja que se extiende de norte a sur a lo largo de la cordillera patagónica, en consecuencia prevalece el clima frío húmedo que tiene la influencia del Pacífico en lo que hace a la producción de lluvias y nieve.

Las precipitaciones disminuyen de oeste a este, haciendo notorio el contraste paisajístico entre la región montañosa lluviosa del oeste y la meseta de reducidas precipitaciones.

Otro rasgo típico del clima de la mayor parte de la provincia de Santa Cruz es el soplo casi constante de vientos procedentes del océano Pacífico.

El viento que sopla del oeste, noroeste y suroeste, es un verdadero protagonista que erosiona todo a su paso.

Las nevadas son frecuentes en toda la provincia siendo mayores en el oeste en las cercanías de la cordillera que en el este cerca de la costa, pero en general es frecuente ver nieve en toda la provincia.

La luminosidad solar varía notablemente según la época del año. El día más largo del año, 21 de diciembre, el sol sale a las 5:30 y se oculta a las 23. El día más corto del año, 21 de junio, el sol sale a las 9:30 y se oculta a las 17:30.

Seguidamente, para la región donde se pretende implementar InvernaGoGo, se indagó en las características del tipo de suelo predominante, teniendo en cuenta la clasificación elaborada por el Instituto Nacional de Tecnología y Agropecuaria (INTA), el cual bosquejó las regiones argentinas basadas en la clasificación que se utiliza a nivel mundial (Soil Taxonomy de EEUU), la cual entre sus investigaciones de campo, observó la capacidad productiva de cada suelo, de donde pudimos comprobar que el tipo de suelo denominado aridisoles (árido) es el

Page 5: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 5

predominante en nuestra región .Estos suelos se dan en regiones áridas con muy bajo contenido en materia orgánica y escasa fertilidad. Por esta ausencia de nutrientes es que presenta colores muy claros y sus materiales son muy fácilmente erosionables. Estos suelos están cubiertos por pastos duros, por lo que se los utiliza para el pastoreo de ganado poco numeroso y resistente a estas condiciones.

Tipos Definición Ventajas/Desventajas Estructura básica

Plano ó tipo parral

La estructura de estos invernaderos se encuentra constituida por dos partes, una estructura vertical y otra horizontal.

-Ventajas: Económico, adaptación a los terrenos, resistencia al viento, aprovechamiento de agua. -Desventajas: Poco volumen de aire, rápido envejecimiento, no recomendable en lugares lluviosos, dificultad en cultivo, fragilidad.

Raspa y amagado

Su estructura es muy similar al tipo parral pero varia la forma de la cubierta. Se aumenta la altura máxima del invernadero en la cumbrera, formando lo que se conoce como raspa.

-Ventajas: Economía, buen volumen, inercia térmica, poca humedad, ventilación. -Desventajas: Diferencias de luminosidad, no aprovecha las aguas pluviales, se dificulta cambio de plástico.

Asimétrico

Aumento de la superficie en la cara expuesta al sur, con objeto de aumentar su capacidad de captación de la radiación solar.

-Ventajas: Aprovechamiento de la luz, económico, buena ventilación, inercia térmica. -Desventajas: No aprovecha el agua, pérdidas de calor, se dificulta el cambio de plástico.

Capilla

Tiene las alas del techo formando uno o dos planos inclinados, según sea a un agua o a dos aguas.

-Ventajas: Fácil construcción, facilidades para la evacuación del agua. -Desventajas: A veces se dificulta la ventilación.

Tipo túnel o semicilíndrico

Se caracteriza por la forma de su cubierta y por su estructura totalmente metálica.

-Ventajas: Buena ventilación, buen reparto de luminosidad, fácil instalación. -Desventajas: Caro, no aprovecha el agua.

Tabla 1 – Ventajas y desventajas de distintos tipos de invernaderos

Page 6: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 6

Teniendo en cuenta lo presentado en la tabla 1, lo investigado sobre nuestra región, y principalmente las condiciones particulares según los datos estadísticos climatológicos de la localidad de Río Gallegos dados por el Servicio Meteorológico Nacional, y que se aprecian en la figura 2, se determina adecuar el diseño del proyecto al de un modelo tipo asimétrico, al cual se le agrega un sistema de ventilación a fin de mejorar la desventaja que este modelo planteaba, lo que vigoriza la idea propuesta de crear un invernadero que permita generar un ambiente controlado de manera autónoma para el cultivo de una especie en particular.

Figura 2 – Gráfico de barras y tabla de temperaturas y precipitaciones en un año en Río Gallegos

Finalmente se investigó que tipo de nivel tecnológico es el que tendrá InvernaGoGo analizando las ventajas que se tienen al automatizar un sistema, como por ejemplo, sobre la mejora en la productividad, de las condiciones de trabajo del personal que permiten simplificar el mantenimiento de estos, de la reducción de costos, puesto que se racionaliza el trabajo, se reduce el tiempo y dinero dedicado al mantenimiento y se mejora la seguridad de las instalaciones.

Tomando en cuenta lo volcado en la tabla 2, podemos mencionar que nuestro invernadero incorpora un sistema de control de lazo cerrado, debido al sensado de los parámetros ya mencionados, es decir, que las cuatro salidas principales con las que constará, iluminación, riego, ventilación, calefacción dependerán de los valores de tres señales de entrada, nivel de luz, temperatura, y humedad en la tierra.

Asimismo se utilizarán dos salidas más, la alarma propia de la placa GoGo y su LED, los que funcionarán según lo indicado por los sensores de la puerta y de nivel del tanque.

Teniendo en cuenta esto último volcado en la tabla 2, se puede decir que InvernaGoGo, se adapta a un invernadero con un nivel tecnológico alto-automatizado, debido a que puede ser autónomo, permitiendo la monitorización de los datos, registro de los mismos, y el control de manera manual como también automática.

Page 7: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 7

InvernaGoGo busca ser más amigable con nuestro medio aplicando tecnología de manera eficiente para convivir de una forma sana con nuestro planeta.

Tabla 2 – Nivel tecnológico o de automatización aplicable a un invernadero

Imagen Nivel

Tecnológico Descripción

Bajo

Se caracterizan porque en sus instalaciones la mayoría de actividades, que implican el manejo de las estructuras y los cultivos, se realizan en forma manual. En general, son instalaciones que sólo cuentan con herramientas manuales y, en ocasiones, con algunos dispositivos mecánicos como bombas eléctricas para riego, por lo general con manguera manual. Carecen de calentadores o equipos para el control de la temperatura, y la apertura y cierre de ventilas se realiza manualmente.

Medio

Se agrupan todas aquellas unidades con dispositivos mecánicos y eléctricos, como bombas para los sistemas de riego, calentadores de gas que encienden manual o automáticamente, la apertura y cierre de ventilaciones se realiza con malacates manuales y con motores. Cuentan con sistemas de fertirrigación rústicos. Existen dispositivos que necesariamente requieren de operadores humanos para ponerlos en funcionamiento y desactivarlos.

Alto

Se incluyen instalaciones con dispositivos automatizados con sensores y actuadores para controlar el riego. Un ejemplo son los temporizadores o timers, que se propagan para encender y apagar bombas, así como fotoceldas para apagar y encender luces, o sensores para operar calentadores y otros dispositivos similares. Cuentan con algunas actividades por computadora. Los sistemas automáticos proporcionan cierta independencia en el manejo de los cultivos ya que se tiene el control de aspectos vitales, sin la dependencia de los operadores, que están en función de las variaciones ambientales y su efecto sobre las condiciones internas.

Automatizado

Son aquellos con ambientes controlados, en función de datos internos y externos. La mayor parte de los procesos se controlan por computadoras, las cuales se encargan de operar los equipos de riego, mantener estable la temperatura y realizar o inyectar las soluciones nutritivas, así como abrir y cerrar ventanas automáticamente. Cuentan con una serie de sensores que detectan las variaciones ambientales y envían señales a las computadoras para operar los dispositivos que se encargan de compensar o corregir las variaciones. En este tipo de instalaciones existe un control automatizado completo del ambiente y la nutrición de los cultivos, con sistemas de fertirrigación y el uso de pantallas térmicas y mallas de sombreo.

Page 8: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 8

DESARROLLO

Planes de mecanismos y montaje

Primera etapa: Se evaluaron ideas en función de las capacidades de la placa GoGo (entradas y salidas), de la cual surgió la idea de automatizar un invernadero.

Segunda etapa: Se adquirieron los componentes electrónicos para el montaje de la placa GoGo, instalando el software asociado a la misma en una notebook, comprobando su funcionamiento.

Tercera etapa: Se bosquejó el diseño de la maqueta, determinando las dimensiones correspondientes y la disposición del hardware a controlar; lo que derivó en la selección de materiales y construcción de la misma. Además se diseñaron los circuitos eléctricos y las placas impresas anexas a la GoGo.

Cuarta etapa: Ensamblado el prototipo de la maqueta, se lo vinculó con la placa GoGo, para monitorear los valores entregados por los sensores en sus puertos de entrada, de manera de tomar nota de los mismos, para tener en cuenta en la calibración final. También se tomaron mediciones sobre los puertos de salida, y sobre los circuitos anexos.

Quinta etapa: Se realizó un análisis de sistema, con el fin de determinar el funcionamiento del invernadero, lo que derivó en los diagramas de flujo correspondientes, generando la codificación adecuada a estos.

Sexta etapa: Se depuraron errores y modificaciones pertinentes al funcionamiento basándonos en los valores de calibración registrados anteriormente.

Explicación del funcionamiento del sistema

El InvernaGoGo tiene como finalidad brindar un sistema de riego en las parcelas; proporcionar una correcta ventilación, manteniendo una temperatura óptima en el invernáculo y controlando el proceso de fotosíntesis.

El control de estos procesos se realiza de la siguiente manera:

a) Ambiente: - El sistema testea la temperatura ambiente estabilizando la misma en un rango adecuado, para lo cual, si la temperatura aumenta por encima de éste, acciona el sistema de ventilación hasta descender la misma, y si la temperatura disminuye por debajo, se acciona el sistema de calefacción hasta llevar la temperatura al rango adecuado. - Independientemente de la temperatura, una vez al día realizará una renovación del aire dentro del invernadero.

b) Cultivo: - El sistema se encarga del riego por goteo o aspersión (según la regulación que se da manualmente a la salida de la bomba) de las parcelas A y B, habilitando el mismo en forma paralela cuando alguno de los sensores de humedad colocados en dichas parcelas detecten la necesidad de agua.

c) La iluminación interna: - La iluminación interior se acciona cuando el nivel de luz se ve reducido respecto al que se necesita para continuar con el proceso de fotosíntesis del cultivo.

Además se testeará el nivel de agua en el tanque, indicando mediante un determinado “pitido” y una señal luminosa intermitente la falta de agua en el mismo. También ante la detección de la apertura de alguna de las puertas, se emitirá una alarma con una frecuencia de “pitido” más rápida, de manera de alertar al usuario que se está afectando al ambiente controlado.

El prototipo InvernaGoGo cuenta con todas estas características, logrando así, un ambiente controlado para la producción de diferentes plantas.

Diagrama en bloques principal

En la figura 3 se puede apreciar el diagrama de bloques que representa al sistema controlado mediante la Placa GoGo, la cuál es la encargada de procesar los datos provistos por los seis sensores para comandar las seis salidas correspondientes, según el funcionamiento establecido.

Page 9: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 9

Figura 3 – Diagrama de bloques para el InvernaGoGo

Entradas:

Sensor Luz: sensa a través de una LDR la luz en el ambiente, dando activación al modulo de Iluminación.

Sensor Humedad 1: testea si la parcela uno requiere riego.

Sensor Humedad 2: testea si la parcela dos requiere riego.

Sensor de Temperatura: testea la temperatura del invernáculo, si este supera el valor promedio, da aviso para la activación de la ventilación; caso contrario, si está por debajo activa la calefacción.

Sensor nivel de tanque: evalúa el nivel de agua en el tanque, para poder habilitar el riego.

Sensor Puerta: verifica si alguna de las puertas es abierta, de ocurrir, se controla además la situación de la luz en el ambiente, activándose las mismas de ser necesario.

Salidas:

Calefacción: activa un electro ventilador asociado a una resistencia calefactora.

Ventilación: activa paralelamente dos ventiladores dispuesto en configuración de inyector y extractor, con la finalidad de generar el flujo de corriente de aire necesario para refrigerar el ambiente.

Riego: controla una electrobomba que habilita el riego de las parcelas.

Iluminación: acciona el sistema de luces dentro del invernadero.

Alarma: permite apreciar de manera auditiva, según la frecuencia de un “pitido”, la realización de un determinado procedimiento.

LED: permite apreciar visualmente, según la frecuencia de la intermitencia, la realización de un determinado procedimiento.

Esquemas o circuitos eléctricos Placa GoGo: Configuración de entradas y salidas

Como se conoce y se viene mencionando en el presente informe, se plantea la automatización de un invernadero a partir de las características y capacidades que nos brinda la placa GoGo. Esta placa posee un circuito integrado programable, PIC 18F4550, que nos permite, como detalle más relevante, la conexión, programación y monitoreo de los sensores de luz, temperatura, humedad y finales de carrera conectados a sus entradas mediante un puerto USB.

Utilizando las salidas destinadas para el control de motores se podrá comandar, también mediante conexión USB, o de manera autónoma una vez descargado el correspondiente programa creado bajo lenguaje Logo, la activación de las entradas de un circuito con relés capaz de entregar mayor potencia a la de la placa GoGo, a cuatro salidas independientes, siendo estas: dos ventiladores conectados en paralelo, un ventilador asociado a una resistencia calefactora, una electroválvula y un sistema de luces.

Placa GoGo

Sensor Luz

Sensor Humedad 1

11

Sensor de Temp.

Sensor Nivel Tanque

Sensor Puerta

Sensor Humedad 2

Calefacción

Iluminación

Riego

Ventilación

LED

Alarma

Page 10: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 10

La placa además posee otros componentes electrónicos asociados, tales como los destinados a la estabilización y filtrado de la tensión de alimentación, un sensor infrarrojo, salidas para conexión de módulos anexos GoGo, entre otros.

En la figura 4 se presenta el bosquejo de la placa GoGo con la configuración asignada para nuestro InvernaGoGo 1.0.

Figura 4 – Configuración de los puertos de entrada y salida de la placa GoGo

Circuito de potencia para comandar los dispositivos de salida: control mediante relé

Los relés son muy útiles cuando se quiere activar o desactivar, por medio de la placa GoGo, algún dispositivo que requiera un mayor consumo de tensión y corriente. Estos se comportan como interruptores capaces de soportar mayor potencia que un circuito integrado como el L293 integrado en dicha placa, permitiendo el correcto accionamiento de dispositivos conectados en sus contactos de salida, restringiendo algunas capacidades que brinda GoGo como la que se da para determinar el nivel de tensión mediante en los bornes de un motor, ya que el relé es un dispositivo de los denominados todo o nada.

En las figuras 5, 6 y 7 se presentan respectivamente el diagrama eléctrico, el diseño de placa impresa y el montaje superficial, del circuito de potencia con relés.

Analizando la figura 5, se ve que dependiendo de la señal de entrada, proveniente de alguna de las cuatro salidas de la placa GoGo se le aplica una polarización a la base del transistor, mediante el divisor resistivo formado por las resistencias de 10KΩ y 220KΩ, el cual funciona entre el corte o la saturación (conmutación), lo que da como consecuencia la polarización del transistor permitiendo la circulación de corriente por el colector del transistor y por ende la polarización de la bobina del relé el cual comanda el accionamiento de los circuitos anexos.

Las resistencias las utilizamos para disminuir la corriente que circulará por la base del transistor cuando ingresa un valor de tensión que puede estar entre los +5 VCC y los +12 VCC.

El diodo que está en paralelo se lo aplica para minimizar el efecto de autoinducción de la bobina, causado por la fuerza contra electromotriz que se genera en el primer instante de tiempo cuando la tensión se aplica a la bobina. Este simple arreglo sirve de protección para el transistor al momento de que la bobina del relé se polariza o despolariza, ya que absorbe de manera efectiva los sobre picos de tensión de ese primer instante de tiempo.

Los capacitores son utilizados como filtro debido a que cuando se trabaja con cargas inductivas, como los motores de los ventiladores, calefactor o electrobombas, las cargas generan ruido, el cual puede perjudicar el

Page 11: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 11

desempeño de la placa GoGo provocando que se reinicie y se pare la ejecución de los procedimientos, o hasta se pierda la conexión con la computadora, debiendo reiniciar la placa y el software asociado a la misma.

Figura 5 – Circuito eléctrico de la placa de potencia anexa a la placa GoGo para el control del hardware de salida

Figura 6 – Diseño impreso de la placa de potencia anexa a la

placa GoGo Figura 7 – Montaje superficial de la placa de potencia anexa a la

placa GoGo

Circuito de iluminación de parcelas: iluminación con LED de alta intensidad En las figura 8 se presenta el sencillo diseño del circuito eléctrico para los sistemas de iluminación de cada una de las parcelas. El mismo es alimentado con +12 VCC, cuando la salida del relé destinado para la iluminación del circuito de la figura 5 se activa, dependiendo este a su vez de la activación de la correspondiente salida de la asignada en la placa GoGo como se indicó en la figura 4.

Page 12: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 12

Cada uno de los módulos de iluminación con los que se cuenta, poseen cuatro diodos LED de alta intensidad con sus correspondientes resistencias limitadoras de 1 KΩ en serie a cada uno de éstos, la cual se calculó mediante la siguiente fórmula:

También se menciona que dos de las cuatro placas del sistema de iluminación poseen dos borneras de dos terminales cada una, por donde ingresa la tensión y de donde se extrae la misma para conectar en paralelo la otra placa, que sólo posee una bornera en uno de sus extremos.

Cabe destacar que las cuatro placas se alimentan en paralelo a la fuente mediante el relé del circuito ya encionado lo que indica que se encenderán los 6 ’s al is o tie po entregando la is a intensidad de luz debido a la disposición en paralelo.

En las figura 9 y 10 se presentan el diseño de la placa impresa y su correspondiente montaje superficial, respectivamente.

Figura 8 – Circuito eléctrico de dos de las placas del sistema de iluminación

Figura 9 – Diseño impreso de dos de las placas del sistema de iluminación

Figura 10 – Montaje superficial de dos de las placas del sistema de iluminación

Distribución eléctrica en el invernadero: Instalación eléctrica del hardware a controlar

En la figura 11 se presenta el diagrama eléctrico correspondiente a la distribución del hardware a manipular dentro del invernadero. En él se pueden apreciar los cuatro módulos correspondientes al sistema de iluminación, los cuales si bien se encuentran conectados en paralelo al relé de comando de iluminación, correspondiente al circuito de potencia presentado en la figura 5, se sectoriza la instalación entre el sector 1 y 2 del invernadero.

También se pueden apreciar los sensores de humedad correspondientes al sector 1 y 2, en donde se tiene para cada sector, los sensores SH 1-1 con SH 1-2 y los sensores SH 2-1 con SH 2-2, los cuales al detectar la falta de conductividad entre sus electrodos, informan a la placa GoGo de manera de poder realizar la activación de la electrobomba, alimentada con +12 VCC desde la placa de potencia de relés.

Se tiene también el sensor para la detección de la puerta, el cual informará a la placa GoGo cuando alguna de las dos puertas sea abierta. Bajo un funcionamiento similar se presenta el sensor de tanque, que informará sobre el nivel de agua en el mismo, indicando si este se encuentra dentro o fuera del nivel óptimo.

Dos sensores fundamentales se ven también en la figura 11, el sensor de temperatura y el sensor de luz, los cuales informarán a la placa, los valores equivalentes en tensión para la temperatura y nivel de luminosidad

Page 13: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 13

respectivamente. La activación del ventilador y su resistencia calefactora, que se alimentan de 220V mediante el circuito de la figura 5, dependerá de que la temperatura se encuentre por debajo del rango determinado como ambiente. Cuando sea superado dicho rango de temperatura ambiente, se activarán paralelamente, los electro ventiladores dispuestos como inyector y extractor de aire, lo que garantizará la circulación de aire y la estabilización de la temperatura.

El LDR será el encargado de sensar constantemente los valores de luminosidad dentro del invernáculo, permitiendo la activación del sistema de iluminación.

Figura 11 – Instalación eléctrica del InvernaGoGo

Sensores: Explicación del funcionamiento de los sensores seleccionados

- Sensor de humedad:

Con éste sensor se trata de utilizar la conductividad que muestra la tierra, la cual va a ser mayor mientras más sea la cantidad de agua presente en ella. Se introducen dos electrodos separados por cierta distancia, para luego ser sometidos a una diferencia de potencial constante, como se ve en la figura 12. La corriente circulante será entonces proporcional a la cantidad de agua presente en la muestra. Cuando no exista humedad en la tierra, el sensor indicará valores a la placa GoGo, lo cual provocará que se active el sistema de riego, dado por la electroválvula conectada en la salida b de la misma, hasta que el nivel de todas las parcelas de humedad sea el suficiente.

Figura 12 – Sensor de humedad adoptado para Inverna GoGo

Page 14: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 14

- Sensor de temperatura:

Este dispositivo no es más que un circuito que se encarga de registrar la temperatura que hay en cierto ambiente con ayuda de un transductor conocido como LM35, cuya función es la de aumentar o disminuir la tensión de salida que entrega por el pin Vout. Este transductor tambien se encuentra encapsulado en una disposición similar a la de un transistor, observándose por ende sus tres terminales (figura 13), donde los otros dos de ellas son para la alimentación (VCC y GND) y la tercera terminal, como ya se dijo, es la que brinda la tensión de salida cuyo valor depende de la cantidad de temperatura que sea capaz de registrar.

La variación que este da es de 10mV por cada grado centígrado que se incrementa la temperatura, es decir que, Vout nos dará 10mV si tiene una temperatura de 1°C, 20mV para 2°C, 30mV para 3°C, 230mV para 23°C, etc.

Si esta señal es muy pequeña, puede ser amplificada con un operacional y alguna de las configuraciones sencillas que se tienen para éstos.

Figura 13 – Características del sensor de temperatura LM35 empleado en InvernaGoGo

- Sensor de luz:

Para sensar el nivel de Luz, lo que se utilizó es un LDR, el cual trata de una resistencia que varia cuando cambia la intensidad de la luz que en el incide, lo que se puede apreciar en la figura 14. Son sensores pasivos, y por lo tanto se pueden conectar con dos pines en la placa GoGo, uno en masa y el otro a +5 VCC.

Figura 14 – Curva de respuesta básica de un LDR como el utilizado en InvernaGoGo

- Sensor de puerta y sensor de tanque:

Estos sensores son muy simples, y también responden al funcionamiento todo o nada, los cuales reportarán a la placa GoGo si la puerta esta abierta o no, para el primer caso, o si el tanque tiene agua o no para el segundo. En la figura 15 se puede ver uno de estos senosres.

Puntualmente para el caso del sensor del tanque, se trabajó con un flotante el cual tiene unido a él una varilla conductora con un determinado potencial, que cerrará el paso cuando el nivel del tanque alcance su mínimo, o lo abrira cuando se tenga niveles adecuados de agua.

Figura 15 – Micro switch similar al implementado en InvernaGoGo

Page 15: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 15

Mediciones tomadas sobre los circuitos

A continuación se presentan tablas y explicaciones de las mismas, que se desprenden de las mediciones tomadas sobre el hardware instalado en el invernadero, en las salidas y entradas de la placa GoGo, en las placas anexas y sobre el monitor correspondiente al software GoGo.

Mediciones sobre la placa GoGo:

En la tabla 3 se presenta información sobre el hardware conectado en los seis puertos de entrada y en los seis puertos de salida de la placa GoGo, donde se puede ver que los valores de los sensores pueden oscilar desde los 0 a los +5V y en las salidas se puede llegar a tener entre 0 y 12V según donde sea colocado el jumper de dicha placa, el cual permite optar por alimentar con la propia tensión del puerto USB, o bien con una alimentación externa de mayor potencia.

El Led y su correspondiente resistencia limitadora son alimentados con 5 V provenientes de uno de los puertos del PIC 18F4550. De la misma manera, se alimenta el buzzer piezoeléctrico, que se utiliza como dispositivo de salida en la placa GoGo.

Puerto Hardware conectado

Salida Entrada Sin uso Medición

Sensor 1 LM35 X 0 V a +5 V

Sensor 2 LDR X 0 V a +5 V

Sensor 3 N/C X 0 V a +5 V

Sensor 4 N/C X 0 V a +5 V

Sensor 5 Sensor tanque X 0 V a +5 V

Sensor 6 Sensor humedad 1 X 0 V a +5 V

Sensor 7 Sensor humedad 2 X 0 V a +5 V

Sensor 8 Sensor de puerta X 0 V a +5 V

A Ventiladores X +5 V a 12 V

B Electrobomba X +5 V a 12 V

C Iluminación X +5 V a 12 V

D Calefacción X +5 V a 12 V

Buzzer X +5 V

LED X +5 V

Tabla 3 – Mediciones realizadas en los puertos utilizados de la placa GoGo

En las figuras desde la 16 a la 24 se presentan los valores tomados desde el software GoGo Monitor, los cuales presentan un valor digital equivalente a uno de tensión obtenido en bornes de cada puerto y sensor conectado a éste. Todos estos datos y los brindados en las siguientes explicaciones se vuelcan en la tabla 4.

Puntualmente en las figuras 16, 17 y 18 se presentan las mediciones realizas en el puerto 2 de la placa, donde se pueden apreciar el nivel digital dado para el caso de presencia plena de luz, valor intermedio de la misma y oscuridad absoluto respectivamente

Tanto en las figuras 19 y 21 como en las 20 y 22 se tienen las mediciones tomadas para los sensores de humedad 1 y 2, donde en las primeras mencionadas se tiene la condición de sequedad total de la tierra, y en las segundas la condición de humedad media sobre la parcela. En la figura 24, se indican los puertos 6 y 7 en los que se tiene el nivel de humedad máxima en las parcelas de ambos sectores.

Por último podemos ver que en las figuras 23 y 24 se indican los sensores 5 y 8, correspondientes al sensor de tanque y al de las puertas respectivamente, los cuales presentan un nivel máximo cuando el tanque está vacío y las puertas cerradas, y un nivel mínimo cuando se da la situación contraria, es decir, tanque lleno y puertas abiertas.

Page 16: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 16

Figura 16, 17 y 18 – Mediciones tomadas para el sensor de luz LDR

Figura 19 y 20 – Mediciones tomadas para el sensor de humedad del sector 1

Figura 21 y 22 – Mediciones tomadas para el sensor de humedad del sector 2

Figura 23 y 24 – Mediciones tomadas para ambos sensores de humedad, los de las puertas y tanque.

Page 17: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 17

Imagen Situación Valor digital del

puerto Valor analógico

de tensión

16 LDR con incidencia plena de luz

47 0,32 V

17 LDR con media incidencia luz 511 2,48 V

18 LDR sin incidencia de luz 1016 5 V

19 Sequedad detectada por sensor de humedad 1

1023 5 V

20 Humedad media detectada por sensor de humedad 1

515 2,53 V

21 Sequedad detectada por sensor de humedad 2

1023 5 V

22 Humedad media detectada por sensor de humedad 2

516 2,56 V

23

Tanque vacío

Puertas cerradas

1023

1023

5 V

5 V

24

Tanque lleno

Sensor de humedad 1

Sensor de humedad 2

Puertas abiertas

0

3

1

1

0 V

0 V

0 V

0 V

Tabla 4 Mediciones tomadas sobre los sensores conectados a los puertos de entrada de la placa GoGo

Mediciones sobre el circuito de potencia con relés

Sobre este circuito se practicaron tres mediciones básicas que se registraron en la tabla 5: medición de la tensión en la base del transistor, entre colector-emisor del mismo y en la bobina del relé.

En la figura 25 se puede apreciar el funcionamiento del circuito del relé, que se repite cuatro veces, el cual se evaluó con valores de salida de 5V entregados por la placa GoGo.

Cuando de algún puerto de salida de ésta placa se produce una salida de 5 V (ó 12V según el valor configurado en ella), logramos polarizar la base del transistor que compone al circuito de control de las mismas, lo que provoca que éste se sature y se tome como medición entre el colector-emisor una tensión de 0V y se tenga la corriente de colector máxima, (determinada por la resistencia interna del bobinado del relé y la fuente de tensión aplicada en el extremo superior del bobinado), donde entre los bornes del relé se miden 12V, lo que se traduce como la activación de la ventilación, electrobomba, luces o calefactor, según sea el puerto de la GoGo activado, como se dijo anteriormente.

En la figura 26 se muestra lo que sucede en el caso contrario al explicado en el párrafo anterior, que determina la no activación de la salida, en este caso, representado para la electrobomba.

Tensión base

transistor

Tensión colector-emisor

Hardware controlado

Estado del hardware

Tensión en bobina del relé

5V 0V Ventilación

Activados 12V

0V 12V Desactivados 0V

5V 0V Electrobomba

Activada 12V

0V 12V Desactivada 0V

5V 0V Luces

Activadas 12V

0V 12V Desactivadas 0V

5V 0V Calefacción

Activada 12V

0V 12V Desactivada 0V

Tabla 5 Mediciones practicadas al circuito de control y potencia de las electrobombas

Page 18: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 18

Figura 25 – Demostración del funcionamiento del circuito de control para la electrobomba Activada

Figura 26 – Demostración del funcionamiento del circuito de control para la electrobomba Desactivada

Mediciones para el circuito de iluminación de parcelas Dos simples mediciones se practicaron a este circuito, las cuales constatan el valor calculado para su resistencia limitadora, donde se registraron aproximadamente 9,2 V y 2,8 V en bornes del led. También se midió la corriente de consumo total de todos los circuitos conectados en paralelo como se muestra en el circuito de la figura 11, donde el amperímetro indicó 180 mA en total.

Cabe destacar que ambos sectores tienen en total 8 leds conectados en paralelo, y estos a su vez en paralelo con los 8 leds del otro sector.

Software utilizado para programar la placa

Software cargado en el PIC to invernadero ledon repeat 2 [ledon beep wait 5 ledoff] forever [ if sensor5 > 10 and sensor6 > 350 [ b, on wait 10 ] if sensor5 > 10 and sensor7 > 350 [ b, on wait 10 ] if sensor6 < 349 and sensor7 < 349 [ b, off ] if sensor5 < 9 [ b, off repeat 4 [beep wait 10] ]

Page 19: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 19

if sensor8 > 10 [ wait 10 repeat 4 [ beep wait 2 ledon beep wait 2 ledoff ] ] ifelse sensor2 > 600 [c, on wait 10] [c, off] ifelse sensor1 < 45 [d, on wait 30] [d, off] ifelse sensor1 > 65 [a, on wait 30] [a, off ] ] End Diagrama de flujo:

Inicio

Encender Led

Encender Buzzer

Apagar Led

Repeat=2

Esperar 0,5 seg.

Sensor5>10 y

Sensor6>350 Encender electrobomba

Esperar 1 seg.

1

si

no

si

no

Page 20: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 20

1

Sensor5>10 y

Sensor7>350 Encender electrobomba

Sensor6<349 y

Sensor7<349 Apagar Electrobomba

Esperar 1 seg.

Sensor5<9

Apagar Electrobomba

Encender Buzzer

Repeat=4

Esperar 1 seg.

2

si

no

si

no

si

no

si

no

Page 21: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 21

2

Sensor8>10

Encender Buzzer

Esperar 0,2 seg.

Encender Led

Encender Buzzer

Esperar 0,2 seg.

Apagar Led

Esperar 1 seg.

Repeat=4

Sensor2>600

Encender Luces

Apagar Luces

Esperar 1 seg.

3

si

no

si

no

si

no

Page 22: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 22

Esquema de la maqueta

En las figuras se presentan distintas vistas del diseño del prototipo trabajado, donde además se indican referencias de manera de poder apreciar la disposición del hardware en dentro del InvernaGoGo.

Según lo explicado en los antecedentes del presente informe, se determinó que el diseño a construir fue el de asimétrico, el cual se trata de una de las estructuras más antiguas, empleadas La pendiente del techo es variable según la radiación y pluviometría de la zona que puede darse entre 15° y 35°.

En escala real, las dimensiones del ancho de este tipo de invernaderos pueden variar entre 6 y 12 m o mayores, por largo variable. Las alturas de los laterales varían entre 2,0 y 2,5 m y el de las cabreadas entre 3,0 y 3,5 m. Pueden construirse más bajos que los señalados, pero no son recomendables.

En la tabla 6 se referencian las partes más importantes que se pueden apreciar en la vista en perspectiva presentada en la figura 25.

3

Sensor1<45

Encender Calefacción

Apagar Calefacción

Esperar 3 seg.

Sensor1>65

Encender Ventilador

Apagar Ventilador

Esperar 3 seg.

Fin

si

no

si

no

Page 23: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 23

Referencia Descripción

1 Parcelas

2 Ubicación del sistema de iluminación

3 Calefactor

4 Electrobomba

5 Tanque de agua y sensor del tanque

6 Ventiladores Inyector de aire

7 Ventanas de apertura manual

Tabla 6 Componentes más destacados del InvernaGoGo

Figura 25 Perspectiva isométrica de la maqueta de InvernaGoGo

Page 24: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 24

Finalmente en las figuras 26, 27 y 28 se presentan las tres vistas suficientes y necesarias del prototipo construido para InvernaGoGo.

Figura 26 Vista frontal de InvernaGoGo

Figura 27 Vista lateral de InvernaGoGo

Page 25: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 25

Figura 28 Vista superior de InvernaGoGo

Costos del proyecto A continuación, en la tabla 6, se exponen los costos que derivaron la realización del dispositivo creado para controlar con nuestra placa GoGo.

Cantidad Descripción Precio unitario [ $ ] Importe [ $ ]

4 Transistores 2N3904 0,3264 1,30

10 Hojas Termotransferibles 4 40

4 Relay 12V 3,586 14,35

1 L Acido Férrico 12 12

1 Placa de 20cm x 20cm 15 15

4 Resistencia 220 KΩ 0,1356 0,55

4 Resistencia 10 KΩ 0,1356 0,55

16 Resistencia 1 KΩ 0,1356 2,17

16 Diodo led de alta intensidad

2,3095 36,95

4 Diodo 1N4007 0,3545 1,42

1 Electrobomba 35 35

2 m Manguera 3,5 7

1 Válvula reguladora para el flujo de la bomba

4 4

1 LDR 1,45 1,45

2 Micro Switch 0,805 1,61

1 Plancha de madera MDF 150 150

1 Policarbonato 75 75

10 Capacitores de 100 nF 0,5064 5,10

Page 26: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 26

Cantidad Descripción Precio unitario [ $ ] Importe [ $ ]

6 Borneras con tornillos para montaje en placa

0,435 2,60

1 Bornera x 10 terminales 3,22 3,22

2 Tomacorriente de arrimar 9,89 19,80

4 Borneras macho 1,25 5

2 Borneras hembra 1,35 2,70

10 Terminales hembra 1 10

3 m Termo contraíble 7 21

20 Tornillos tirafondo para ensamble de madera MDF

1 20

Total $ 487,77

Tabla 6 Costos asumidos para la realización del prototipo de InvernaGoGo

CONCLUSIONES

Balance comparativo

Luego de un intenso trabajo, de horas de investigación, de pruebas, de análisis de los diversos aspectos que componen al dispositivo que propusimos controlar mediante la placa GoGo y principalmente de la superación de inconvenientes que se fueron presentando, podemos evaluar que hemos cumplido en tiempo y forma con el objetivo que se planteó desde un comienzo, “crear un invernadero prácticamente autónomo que controle tres factores fundamentales, como lo son la temperatura, humedad y luminosidad del ambiente, para realizar el cultivo de una forma optima, ajustando los valores de estos parámetros según la especie a cultivar”.

En comparación con los distintos tipos de invernaderos investigados y de su nivel de tecnología que pueden llegar a incorporar, podríamos decir que nuestra propuesta está a la par de muchos de estos, promoviendo la creación de invernaderos a micro escala, capaces de producir una determinada especie, variando los valores de control según las necesidades de cada especie a cultivar, implementando simples detalles como el de alerta cuando la puerta se halle abierta, lo que permite afectar en menor manera el ambiente que se pretende controlar en el invernadero con la placa GoGo, y el sistema de ventilación que mejora la desventaja del tipo de invernadero construido.

Así que éste proyecto es una manera de ser amigables con la naturaleza al proporcionarle un buen entorno valiéndonos de la automatización para lograrlo. Cuando efectuamos la automatización, creamos una forma más sencilla de llevar el cuidado de un cultivo, y también la seguridad de que los sistemas actúan bajo las condiciones y momentos indicados que son requeridos en la atención del plantío. Así que es una ventaja el saber que no tendremos la preocupación de que las plantas necesiten agua o ventilación, pues la automatización dada mediante la placa GoGo lo hará por nosotros

Se asegura entonces, mediante una manera sencilla y económica de automatización la tenencia de una producción sana y fértil que podrá ser aprovechada como alimento, como plantas para jardín, o simplemente especies que se quieran cuidar en él.

Recomendaciones

Haciendo una crítica personal de lo realizado durante la construcción y desarrollo del InvernaGoGo, establecemos una serie de recomendaciones que hablan sobre el mejoramiento de lo ya logrado:

- En primer lugar se podría cambiar el material con el que se construyó la estructura del dispositivo para su mejor estética y para lograr un mejor aprovechamiento de la energía solar, disminuyendo a la vez su peso, y tiempo de construcción, aumentando la practicidad de montaje del mismo.

- También se podría aumentar las dimensiones para que sea dotado de más parcelas, promoviendo así mayor capacidad de cultivo.

- Se podría tener un control más uniforme de la temperatura que hay dentro del invernadero.

- Esta recomendación también puede permitir el cultivo de especies que necesiten distintos valores de temperatura para su desarrollo, determinando las acciones necesarias para cumplir con dichos requerimientos.

- Que las luces vallan compensando el nivel de luz a medida que este desciende de manera paulatina

Page 27: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 27

- Aplicar control automatizado de las aperturas de puertas para el ingreso y egreso a éste, como además el de las ventanas de manera de incorporar una mejor ventilación en para los días mas calidos.

- Controlar mas parámetros que afectan a los cultivos.

- Contar con sensores de humedad electrónicos.

- Finalmente se podria usar un módulo de LCD gráfico para la visualización de mensajes, o para dotar de mayor información al usuario.

Propuestas

Se plantean unas serie de propuestas sobre las recomendaciones antes mencionadas, con el fin de lograr mejores resultados y un mejoramiento a futuro de lo que se logró hasta el momento.

- Se podría usar acrílico u otro materál de mayor transparencia y mejor resistencia mecánica que el material usado, guardando el cuidador de tener un control necesario sobre el nivel de radiación UV que atraviesan a este material, los cuales no son del todo deseado por los cultivos en exceso.

- Apliando el tipo de invernadero seleccionado se puede implementar mas parcelas a controlar, lo que pude permitir el cultivo de más de una especie mas cantidad de producción.

- El control uniforme de la temperatura se podría lograr colocando más sensores de temperatura en partes estratégicas dentro de la estructura lo que puede permitir promediar los valores que arroja cada sensor y después analizar éste valor resultante para accionar el sistema de calefacción o ventilación de manera mas eficiente.

- Las intensidad de las luces podrían controlarse de manera que el nivel de luz necesario para el proceso de fotosintesis de las especies que se cultiven sea el óptimo, reduciendo el consumo innecesario en los momentos que la luz natural puede cubrir parte de ese requerimiento.

- La puertas y ventanas pueden abrirse implementando el control remoto que posee la placa GoGo, añadiendo el hardware correspondiente para abrir estas puertas y ventanas, tales como servomotores.

- Para poder tener más parámetros de control y poder automatizar la aperturas de las ventanas se podría utilizar otra placa gogo

- Un sensor de humedad con mayor resolución y precisión seria un buen punto a proponer, ya que permitiría un mejor control de la humedad que es fundamental para el desarrollo de los cultivos.

- Implementar un LCD sería un punto a lograr, con el fin de que el usuario pueda tener mayor acceso a información precisa de los procesos que se van ejecutando de manera de controlar dinamicamente al invernadero.

Mejoras al trabajo

A continuación planteamos una serie de mejoras que proponemos para implementar a futuro con el fin de mejorar la calidad y nivel de complejdad de InvernaGoGo, es decir, dotarlo de más funciones que logren que el usuario tenga acceso a mayor disponibilidad de cultivos, lo que logrará ampliar las espectativas que el mismo puede tener a la hora obtener alimentos o cultivos de un invernadero.

- Un sensor UV y algun método de bloqueo automático se puede llegar a plantear en caso de que esta radiación supere valores no deseados.

- Se podrían comandar mas parámetros dentro del invernadero y promover el cultivo de diversas especie, colocando mas hardware y placas de control GoGo que trabajen en paralelo,que en conjunto con la recomendación y propuesta de ampliar las dimensiones del mismo, podrían permitir la producción en macro escala de diversas especies.

- Detector de plagas, esto sería sumamente útil para obtener mejoras aún más grandes enla calidad de los productos del cultivo

- Se podría evaluar la forma de almacenar energía solar y/o eólica, para luego transformarla en corriente alterna o continua para alimnetar las distinas partes del invernadero, logrando una mejor autonomía y eficiencia del mismo, independizandolo de todo consumo extra y logrando una mejor integración con el medio ambiente.

Page 28: Informe técnico   invera gogo - onet 16

Informe Técnico InvernaGoGo 1.0 2012

Página 28

Bibliografia y recursos consultados

- Invernadero técnico automatizado, Serie: Recursos didácticos, INET

- Apunte básico GoGo – Universidad Blas Pascal

- http://www.gogoboard.org/downloads-hardware - Fuente: Drupat - Página oficial GoGo Board

- http://www.planetseed.com/es/node/103563 - Fuente: Schlumberger Excellence in Educational Development, Inc. - Conceptos básicos de la placa GoGo

- http://www.datasheetcatalog.com/ - Fuente: datasheet catalog com - Información sobre componentes electrónicos.

- http://es.wikipedia.org/wiki/Ciudad_de_R%C3%ADo_Gallegos - Fuente: Wikipedia – Información sobre la ciudad de Río Gallegos.

- http://es.wikipedia.org/wiki/Provincia_de_Santa_Cruz - Fuente: Wikipedia – Información sobre la provincia de Santa Cruz

- http://www.hydroenv.com.mx/catalogo/index.php?main_page=page&id=44 - Fuente: Hidroenvironment - ¿Qué es un invernadero?

- http://www.noticiasapicolas.com.ar/climajulio-septiembre.htm - Fuente: Noticias Apícolas -Perspectivas climatológicas para regiones apícolas de Argentina

- http://www.portalplanetasedna.com.ar/suelo4.htm - Los suelos: Geografía argentina: suelos de la Republica Argentina