guia1 algebra lineal con aplicaciones

Upload: antonio

Post on 06-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    1/25

    1

    1.- PREREQUISITOS:

    Los temas necesarios para esta unidad son:

      Identificación de una ecuación lineal.  Desarrollo de operaciones aritméticas y algebraicas.  Ecuaciones de primer grado con una incógnita.  Resolución de sistemas de dos ecuaciones de primer grado con dos incógnitas.

    2.- MATERIAL NECESARIO IMPRESCINDIBLE:

      GROSSMAN, Stanley y FLORES José, Algebra Lineal, 7ma Edición. México: Mc Graw Hill, 2012.742 p. 9786071507600

      KOLMAN, Bernard y HILL, David, Algebra Lineal: Fundamentos y aplicaciones. Primera edición.Colombia: Pearson Education, 2013. 544 p. 9789586992251

      Howard Anton. Introducción al Álgebra Lineal. Editorial Limusa. México, 1986.  Fórmulas extraída del texto

    3.- ACTIVIDADES

    3.1. 

     ACTIVIDADES PREVIAS GUIA 1 (extra clase).(Sin uso de la calculadora) 

    INSTITUTO DE CIENCIAS FÍSICAS Y MATEMÁTICAS

    GUÍA DE ESTUDIO Y TRABAJO

     Asignatura : ÁLGEBRA LINEAL Código : 1521

    Unidad 1: Matrices

    Guía No.1/4

    Tiempo estimado para el desarrollo de la guía : 10

    horas Autor de la Guía: ICFM Revisado por: ICFM

    OBJETIVOS ESPECÍFICOS 

    El Estudiante debe estar en capacidad de:

      Resolver sistemas de ecuaciones lineales y matrices

    • Aplicar el método de eliminación de Gauss para la resolución de sistemas deecuaciones lineales

     

    Distinguir los elementos de una matriz y comprender qué es una matriz.  Recalcar los términos básicos asociados con matrices.

      Obtener la matriz traspuesta.

      Desarrollar las operaciones básicas de suma, resta, multiplicación de matrices.

      Conocer cómo obtener la matriz inversa.

      Utilizar el método de la matriz inversa para la solución de sistemas de ecuaciones.

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    2/25

    2

     AP1. Efectuar las operaciones:

    a)  12 34— 3 2 1 2 b) 

    2 7 72

     

     AP2. Resolver y representar en forma fraccionaria:

    a)   

    b) −

    − −   AP3. Resuelva la siguiente ecuación.

      1726512322     x x x x x  

     AP3. Grafique cada uno de los siguientes sistemas e indique el número de soluciones que tiene cada unode ellos. Justifique sus respuestas.

    1) 3664

    1232

     y x

     y x  2)

    103

    832

     y x

     y x  3)

    624

    32

     y x

     y x 

    2) 

    De acuerdo a los resultados obtenidos en la actividad anterior ¿cuáles son las posibilidades parala solución de un sistema de ecuaciones lineales?

     AP4. Resuelva el siguiente sistema a) por el método de eliminación, b) por el método de sustitución y c)gráficamente.

    3

    1

    46

     y x y x

     

    2

    2

    2

    3

    8

    2   y x y x  

     

    DESARROLLO

    Ecuaciones Lineales.

    Una ecuación lineal es aquella que puede representarse de la siguiente forma general:

    ⋯  donde , , …… y b son constantes reales.En una ecuación lineal no se encuentran las variables en forma de productos o raíces, las mismas sepresentan a la primera potencia y no están como argumento de funciones trigonométricas.

    Sistema de Ecuaciones Lineales

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    3/25

    3

    Es un conjunto finito de ecuaciones lineales cuya solución es un grupo de números , , …., donde , , …. ; los valores antes mencionados satisfacen cada una de lasecuaciones del sistema lineal.

    Un sistema de ecuaciones es consistente si al menos tiene una solución, cuando no posee solución se leconsidera inconsistente.

    En el caso de tener un sistema lineal formado por dos ecuaciones:

       Encontrar la solución de este sistema, geométricamente implica determinar el punto de intersección delas rectas. Se pueden generar tres posibles casos graficados en la figura (1), en a) las rectas son paralelas,no existe un punto común entre las dos rectas por lo que el sistema es inconsistente, b) presenta que lasrectas tienen un punto común por lo que el sistema se considera que posee una solución única y en c)

    las rectas coinciden dando como resultado infinitos puntos comunes considerando al sistema coninfinito número de soluciones.

    Fig 1. Dos rectas que no se intersectan, se intersectan en un punto y en un número infinito de puntos

    Métodos de Algebra Matricial para resolver sistemas de Ecuaciones lineales.

    Eliminación Gaussiana

    La eliminación de Gauss pretende llevar una matriz aumentada del sistema de ecuaciones lineales Fig(3) 

    a una matriz donde sea fácilmente observable las soluciones del sistema.

    ++  ++  ++    

     Fig. 2. Sistema de ecuaciones lineales Fig. 3. Matriz aumentada del sistema de

    ecuacionesMediante este método se llega a obtener una matriz en la forma escalonada por reglones a través deoperaciones elementales sobre los renglones de la matriz aumentada, estas operaciones son:

    1. 

    Multiplicar una de las filas por un constante diferente de cero.2.

     

    Intercambiar dos filas.

     x

     y

    l1 l2

     x

     y

    l1l2

     x

     yl1 y l2

    (a) (b) (c)

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    4/25

    4

    3.  Sumar un múltiplo de una de las filas a otra.

    Una matriz escalonada en los renglones es aquella que posee las siguientes propiedades:

    1.  Si una fila no consta completamente de ceros, entonces el primer número diferente de cero es 1.Denominado 1 principal.

    2. 

    Si existen filas que consten completamente de ceros, se agrupan en la parte inferior de la matriz.3.  Si dos filas sucesivas no constan completamente de ceros, el 1 principal de la fila inferior se

    presenta más hacia la derecha que el 1 principal de la fila superior.

    Luego de obtener un matriz en la forma escalonada reducida se despejan las variables y se utiliza latécnica de sustitución hacia atrás para encontrar los valores de las incógnitas.

    Ejemplo 1.

    Resuelva el siguiente sistema de ecuaciones lineales mediante la eliminación Gaussiana.

    2 3 11 4 4 2 3 10 

    Matriz aumentada delsistema.

    1 2 34 1 12 1 3   11410 

    Operaciones para llegar a una matriz escalonada reducida.

    Multiplicar la fila 1 por -4 y le sumar a la segunda fila y multiplicar

    la fila 1 por -2 y sumar a la tercera fila.

    1 2 30 9 130 3 3  114012  Multiplicar la segunda fila por 1/9

    1 2 30 1 13 9⁄0 3 3  

    11 4 0 9⁄12

      Multiplicar la segunda fila por 3 y sumar el producto a la tercera fila

    1 2 30 1 13 9⁄0 0 4 3⁄  11 4 0 9⁄ 4 3⁄  

    Multiplicar la tercera fila por -4/3 de modo que se obtenga unamatriz escalonada reducida.

    1 2 30 1 13 9⁄0 0 1  11 4 0 9⁄1  

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    5/25

    5

    Directamente se puede observar que el valor de 1 , los resultados de  y  los obtenemosmediante sustitución hacia atrás.

     

    Cálculo de   1 3 9⁄ 4 0 9⁄   1 3 9⁄ 4 0 9⁄   1 3 9⁄ 1 40 9⁄    Cálculo de  

    2 3 11  2 3 11  233111 

     

    MÉTODO DE GAUSS- JORDAN

    El método de Gauss- Jordan plantea que la matriz aumenta del sistema se transforme en una matrizescalonada por reglones reducida. Este tipo de matriz posee las tres propiedades descritasanteriormente para una matriz escalonada reducida por reglones más una cuarta condición:

    -  Cada columna que contenga un 1 principal tiene ceros en todas las demás posiciones.

    Ejemplo 2

    Resuelva el siguiente sistema de ecuaciones lineales mediante el método de Gauss-Jordan.

    2 3 11 4 4 

    2 3 10 A partir de la matriz escalonada por reglones obtenida en el ejemplo 1 se obtiene la matriz escalonadapor reglones reducida mediante las operaciones sobre los reglones ya descritas.

    1 2 30 1 13 9⁄0 0 1  11 4 0 9⁄1  

    Multiplicar a la tercera fila por 13/9 y sumar el producto a la segundafila, multiplicar a la tercera fila por -3 y sumar a la primera fila.

    1 2 00 1 00 0 1 831  

    Multiplicar a la segunda fila por 2 y sumar el producto a la primera fila.

    1 0 00 1 00 0 1 

    231

     

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    6/25

    6

    Al obtener la matriz escalonada reducida por reglones se tiene directamente los valores de,  , .

     

       SISTEMAS HOMOGÉNEOS DE ECUACIONES LINEALES

    Un sistema homogéneo de ecuaciones lineales es aquel en el que las constantes o términosindependientes son cero, la representación de un sistema homogéneo de mxn ecuaciones lineales es:

    ⋯ 0 

    ⋯ 0 ⋮  ⋮  ⋮  ⋮ 

    ⋯ 0 Fig. 4 Sistema de ecuaciones homogéneo

    Un sistema de este tipo puede tener una solución, infinito número de soluciones o no tener ningunasolución. Cuando

    0,

    0,

    0……

    0 se tienen una solución trivial o solución cero.

    Un sistema homogéneo tiene infinito número de soluciones si > .MATRICES

    Una matriz es un arreglo de elementos que pueden ser números, constantes, dispuestos en m filas y n columnas. Para representar una matriz se utiliza una letra mayúscula. Si se tiene la matriz “A” cada unode sus elementos es representado como , siendo i el número de fila y j  el número de columna a la quepertenece el elemento.

    1.1 

    Longitud de una matriz.- Se representa por el número de filas m y el número de columnas n, eltamaño de una matriz es m x n.

    1.2 Matriz cuadrada.- Es una matriz cuyo número de filas m es igual al número de columnas n. Loselementos que pertenecen a la posición  ,  , ……  forman la diagonal principal de la matriz.1.3 Matriz identidad.- Es una matriz cuadrada, los elementos de la diagonal principal son uno y losrestantes son cero. Se la describe generalmente mediante la letra I.

    1.4 Matriz triangular superior. Es una matriz cuadrada donde los elementos que se encuentra en laparte inferior de la diagonal principal son cero.

    1.5 Matriz triangular inferior. Es una matriz cuadrada donde los elementos que se encuentra en laparte superior de la diagonal principal son cero.

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    7/25

    7

    1.4 Matriz Transpuesta.- Si A es una matriz de dimensiones m x n, su transpuesta se escribe como  y es la matriz de n x m obtenida al intercambiar las filas por columnas.

    1.6 Traza de una matriz.- Es un escalar determinado por la sumatoria de los valores correspondientesa los elementos de la diagonal principal de una matriz.

     

    Suma de matrices

    Dos matrices pueden ser sumadas si su número de filas m y de columnas n son iguales respectivamente.El resultado es otra matriz cuyos datos se obtiene al sumar miembro a miembro cada elemento de las

    matrices.

    Ejemplo 3:

    Sean A y B dos matrices determinar la matriz C= A+B

      1 34 01 2  6 43 54 1 

    1 6 3 44 3 0 51 4 2 1   

    Multiplicación de una matriz por un escalar

    Sea A una matriz el producto αA está dado por la multiplicación de la constante por cada uno de loselementos de la matriz:

    ∝ ∝ () Multiplicación de Matrices

    Sean A y B dos matrices cuyas longitudes son m x n y  p x q respectivamente, son multiplicables si elnúmero de columnas de la primera matriz es igual al número de filas de la segunda; el tamaño de lamatriz resultante del producto está determinado por el número de filas de la primera matriz y el númerode columnas de la segunda.

    Si se tiene una matriz A y una matriz B multiplicables, cada elemento de la matriz A*B es calculadomediante la suma de los productos de los elementos de la fila i de la primera matriz por los elementosde la fila j de la segunda.

    Ejemplo 4. Dadas las matrices A y B verificar si es posible realizar A*B y realizar el producto de las dosmatrices.

      1 2 42 6 0 

    4 1 4

    0 1 32 7 5 

    3

    12 

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    8/25

    8

    El tamaño de la matriz A es 2 x 3 y el de la matriz B es 3 x 4, se verifica que el número de columnas dela segunda matriz es igual al número de filas de la segunda, concluimos que las matrices si sonmultiplicables, dando como resultado una matriz C de longitud 2 x 4.

    C=A*B

            [1 ∗ 4 2 ∗ 0 4 ∗ 22 ∗ 4 6 ∗ 0 0 ∗ 2  1 ∗ 1 2 ∗ 1 4 ∗ 72 ∗ 1 6 ∗ 1 0 ∗ 7  1 ∗ 4 2 ∗ 3 4 ∗ 52 ∗ 4 6 ∗ 3 0 ∗ 5  1 ∗ 3 2 ∗ 1 4 ∗ 22 ∗ 3 6 ∗ 1 0 ∗ 2] 

    [4 88   1 2 2 82 6   4 6 2 08 1 8   3 2 86 6 ]         

    Inversa de una matriz.

    Si A es una matriz cuadrada y es posible que se encuentre una matriz B que cumpla con la condición A ∗B B ∗ A I, se tiene que A es una matriz invertible y B es la inversa de A.Una matriz invertible tiene solo una inversa. A ∗ A− I Un producto de matrices invertibles siempre es invertible y la inversa del producto es el producto de lasinversas en orden inverso.

    A ∗ B A B  − − − Procedimiento para encontrar la inversa de una matriz.

    1.  Escribir la matriz aumentada (A|I),

    2. 

    Utilizar las operaciones elementales sobre los reglones para poner la matriz A en su formaescalonada reducida por reglones.

    3.  Verificar si A es invertible:

    a)  Si la forma escalonada reducida por reglones de A es la matriz identidad I,entonces − es la matriz que se tiene a la derecha de la barra vertical.

    b)  Si la matriz reducida de A conduce a un renglón de ceros a la izquierda de la barravertical, entonces A no es invertible.

    Ejemplo 5. Determine la matriz inversa de A.

      1 2 02 1 1

    3 1 1

     

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    9/25

    9

    1 2 02 1 13 1 1 |1 0 00 1 00 0 1 

    Multiplicar a la primera fila por -2 y sumar a lasegunda, multiplicar a la primera fila por -3 ysumar a la tercera. Las mencionadas operacionesson realizadas simultáneamente sobre la matrizidentidad.

    1 2 00 3 10 5 1 |1 0 02 1 03 0 1  Multiplicar a la segunda fila por -1/3.

    1 2 00 1 1/30 5 1 |1 0 02/3 1/3 03 0 1 

    Multiplicar la segunda fila por 5 y sumar a latercera.

    1 2 00 1 1/30 0 8/3|1 0 02/3 1/3 01/3 5/3 1  Multiplicar a la tercera fila por 3/8.

    1 2 00 1 1/30 0 1 |1 0 02/3 1/3 01/8 5/8 3/8 

    Multiplicar la tercera fila por -1/3 y sumar a lasegunda.

    1 2 00 1 00 0 1

    | 1 0 05/8 1/8 1/81/8 5/8 3/8

      Multiplicar la segunda fila por -2 y sumar a laprimera.

    1 0 00 1 00 0 1|1/4 1/4 1/45/8 1/8 1/81/8 5/8 3/8  

    La matriz inversa es:

     − / / // / // / /  

    Resolución de sistemas de ecuaciones lineales mediante la inversa.Un sistema de ecuaciones lineales, Fig. 5, puede ser representado como una ecuación matricial.

    ++  ++  ++  Fig.5 Sistema de ecuaciones lineales

     

     

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    10/25

    10

    Fig 6. Representación matricial del sistema de ecuaciones lineales

    Al designar las matrices con A, X y B respectivamente, se reemplaza el sistema de ecuaciones linealesinicial por la ecuación matricial:

       

    La matriz A se conoce como matriz de coeficiente.

    Si A es una matriz invertible de nxn, entonces para cada matriz B de nx1 el sistema de ecuaciones   tiene exactamente una solución dada por:  − 

    Ejemplo 6. Resolver el siguiente sistema de ecuaciones lineales mediante la inversa.

    2   3 

    2 1 

    3 7   1 2 02 1 13 1 1

    317  

     − 1/4 1/4 1/45/8 1/8 1/81/8 5/8 3/8    − 

      1/4 1/4 1/45/8 1/8 1/81/8 5/8 3/8 ∗ 317  

      3/49/829/8  /  / 

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    11/25

    11

    Ejemplo 8.- La lámpara tiene una masa de 15 Kg y es soportada por una polea OA y cables AB y AC. Si lafuerza en la polea actúa a lo largo de estos ejes, determine las fuerzas en OA, AB, y AC por equilibrio.

    Diagrama de cuerpo libre

    2 1.5 6 2 1.5 6  0.30760.2307  0.923 

      6 3 6  6 3 6   0.66670.3333 0.6667 

      2 3 6  2 3 6   0.28570.4287  0.8571 

    15×9.8 147.15 ∑ 0 

           

    ∑ 0 

    0.30760.66670.2857 0∑ 0 

    FAB 

    FAC 

    FOA

    W

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    12/25

    12

    0.2307 0.3333 0.4287 0 ∑ 0  0.9230.6667 0.8571 147.150 El sistema de ecuaciones que se obtuvo de las condiciones de equilibrio es resuelto a continuaciónmediante el método de Gauss-Jordan.

    0.3076 0.6667 0.2857 00.2307 0.3333 0.4287 00.923 0.6667 0.8571 147.15 Multiplicar la primera fila por 1/0.3076

    1 2.1674 0.9288 00.2307 0.3333 0.4287 00.923 0.6667 0.8571 147.15 Multiplicar la primera fila por 0.2307 y sumar ala segunda fila, multiplicar la primera fila ysumar a la tercera fila.

    1 2.1674 0.9288 00 0.1667 0.2144 00 1.3338 1.82410− 147.15

     Multiplicar la segunda fila por -1/0.1667

    1 2.1674 0.9288 00 1 1.2841 00 1.3338 1.82410− 147.15 Multiplicar la segunda fila por -1.3333 y sumar ala tercera.

    1 2.1674 0.9288 00 1 1.2841 00 0 1.7129 147.15 Multiplicar la tercera fila por 1/1.7129.

    1 2.1674 0.9288 00 1 1.2841 00 0 1 85.9069

     Multiplicar la tercera fila por 1.2841 y sumar a lasegunda, multiplicar la tercera fila por 0.9288 y

    sumar a la primera.

    1 2.1674 0 79.79030 1 0 110.3130 0 1 85.9069 Multiplicar la segunda fila por 2.1674 y sumar ala primera.

    1 0 0 318.88260 1 0 110.3130 0 1 85.9069  Las fuerzas que actúan en el sistema son:

    .    .    .  

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    13/25

    13

    EJERCICIOS PROPUESTOS.

     AC1.- Mediante un ejemplo indique la forma general de una ecuación lineal.

     AC2.-  Si tengo una matriz A de 4x3 y multiplico por una matriz B de 3x4, la matriz C resultante quedimensiones tendría o no puedo realizar esta operación:

     AC3.-Dada la siguiente expresión matricial:  

      

     

     

      

      

      

       

    1

    3

    70

    34

    2

    1

     x

     x

     Escribir en forma de sistema de

    ecuaciones lineales.

     AC4.-Obtener la forma matricial del siguiente sistema:

    3244

    1532

     z  y x

     z  y x 

     AC5.-Utilice el método de eliminación de Gauss - Jordán para resolver el sistema de ecuaciones dado.

    3 2 4 5 13 

    2 2 3 2  AC6.- Utilice el método de Eliminación Gaussiana para resolver el sistema de ecuaciones del ejercicioAC5.

     AC7.-  Como debe de ser el último renglón de una matriz para que la solución de la matriz seainconsistente. De un ejemplo.

     AC8.-Como debe de ser el último renglón de una matriz para que la solución sea infinitas soluciones. Deun ejemplo.

     AC9.-Dada la matriz A encontrar a, b, c, d para que la tr A = 10 y A sea simétrica 

    A 3 a bc 5 a1 2 d

     

     AC10.-Dadas las matrices A, B, C, D encontrar:

         

       

    a.  X=3B*C-Db.  Z=2Y-5A donde Y=C*B

    c. 

    W [B ∗ C DT

    0 X/2]  AC11.-Si la matriz aumentada escalonada tiene la forma:

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    14/25

    14

     

     

     

     

    4000

    1010

    3001

     

    a) 

    La solución de sistema de ecuaciones correspondiente es x=3, y=1, z=4

    b)  La solución de sistema de ecuaciones correspondiente es x=3, y=1, z=0

    c)  El sistema no tiene solución

    d)  El sistema tiene cantidad infinita de soluciones

    e)  Ninguna de las anteriores

     AC12. Indique las 3 condiciones que debe cumplir una matriz para que sea INVERTIBLE.

     AC13.  Se puede aplicar el método de la matriz inversa para resolver sistema de ecuaciones con

    una cantidad infinita de soluciones. Justifique su respuesta.

     AC14.  Se puede aplicar el método de matriz inversa para resolver sistema de ecuaciones que no tienensolución o llamada también inconsistente. Justifique su respuesta.

     AC15. Resuelva el sistema de ecuaciones mediante la inversa utilizando la matriz identidad.

    3 2 4 5 13 

    2 2 3 2 

    AC16.Utilice el método de Eliminación de Gauss- Jordan para encontrar las posibles soluciones e indique

    si el sistema:

    a) Tiene solución

    b) No tiene solución o es inconsistente

    c) Infinitas soluciones

    2 4 6 18 

    4 5 6 24 2 7 12 30 

    AC17.Utilice el método de Eliminación de Gauss- Jordan para encontrar las posibles soluciones y indique

    si el sistema:

    a) Tiene solución

    b) No tiene solución o es inconsistente

    c) Infinitas soluciones

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    15/25

    15

    2 3 4 2 6 7 15  2 5 10 

    AC18. Con un ejemplo indique en general que dimensiones deber tener una matriz para poder sumaruna Matriz A más una Matriz B. Y realice la suma.

    AC19. Demuestre mediante un ejemplo cuando se multiplica una matriz A por una matriz B, es diferente

    al multiplicar una matriz B por una matriz A. (AB≠BA). Justifique su respuesta. 

    AC20. En que condición se cumple al multiplicar una matriz A por una matriz B, me da los mismo

    multiplicar la matriz B por la matriz A. (AB=BA) y como se llama la matriz que obtengo sea cual sea laforma de multiplica AB o BA.

    PREGUNTAS DE OPCIÓN MÚLTIPLE

    Señale V si cree que es verdadero, o F si cree que es falso y JUSTIFIQUE LA RESPUESTA

    1)  0, es un ejemplo de ecuación lineal V ( ) F ( )2)  √  3, es un ejemplo de ecuación lineal V ( ) F ( )3)

      √ 6 0, es un ejemplo de ecuación lineal V ( ) F ( )4)  La solución (0,1) es una de las infinitas soluciones para el gráfico adjunto de sistema de

    ecuaciones V ( ) F ( )

    5)  Los puntos A y B son las soluciones para el sistema de ecuaciones lineales V ( ) F ( )

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    16/25

    16

    6)  La Matriz “3x2” tiene 3 filas por 2 columnas V ( ) F ( ) 

    7)  Siendo Ax=b una representación matricial de un sistema de ecuaciones lineales, entoncesx=b/A V ( ) F ( ) 

    8)  Si A es una matriz cuadrada, entonces IA=AI=A V ( ) F ( ) 

    EJERCICIOS DE APLICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES

    PROYECTOS INTEGRADORES

      CIRCUITOS ELÉCTRICOS

    CONCEPTOS PREVIOS:

    Un circuito eléctrico sencillo es una conexión cerrada de resistencias, baterías y cables.

    BATERÍA (PILA).- Es una fuente de corriente directa (o voltaje) en un circuito.

    RESISTENCIA.- Es un dispositivo (como un foco) que reduce la corriente en un circuito y convierte laenergía eléctrica en energía térmica.

    CABLES.- Es un conductor que permite el libre flujo de corriente eléctrica.

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    17/25

    17

    CANTIDADES FÍSICAS

    Corriente Resistencia Diferencia de Potencial

    I R E

    ohms Amperios (A) Voltios (V)

    La diferencia de potencial eléctrico de una batería se considera positiva si se mide de la terminalnegativa (-) a la positiva (+), y negativa si va de (+) a (-).

    La diferencia de potencial eléctrico en una resistencia depende de la corriente que fluye por ella y de laresistencia que ofrece y está dada por la ley de Ohm:

     IRV     

    El signo (-) se usa cuando la diferencia en la resistencia se mide en dirección del flujo de corriente y (+)cuando se mide en dirección opuesta.

    Todos los circuitos eléctricos constan de ciclos de voltaje y nodos de corriente. Un ciclo de voltaje esuna conexión cerrada dentro de un circuito.

    aed cba    

    acba    

    ced c    

    aeca    

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    18/25

    18

    Un nodo de corriente es un punto donde se encuentran tres o más segmentos de cable:

    a, c y e.

    Las leyes físicas que gobiernan el flujo de corriente en un circuito eléctrico:

     

    La conservación de la energía – Ley de voltaje de Kirchhoff (en torno de cualquier ciclo devoltaje, la diferencia total de potencial eléctrico es igual a cero).

      La conservación de la carga - Ley de corriente de Kirchhoff (en cualquier nodo de corriente, elflujo de todas las corrientes que llegan al nodo es igual al flujo de todas las corrientes que salendel nodo. Esto garantiza que la carga en un nodo no aumenta ni disminuye, de modo que el flujode corriente es estacionario a lo largo del nodo).

    Determinar las corrientes que fluyen por cada segmento del circuito propuesto.

      DISTRIBUCIÓN DE TEMPERATUTA

    Una placa cuadrada que da lugar a un sistema de ecuaciones lineales es un modelo sencillo paraestimar la distribución de temperatura. La placa se encuentra aislada por arriba y por abajo por loque el único flujo de calor es a través de la misma placa. Cada lado de la placa se mantiene a unatemperatura constante, pero ésta puede ser diferente en cada lado.

    Para aproximar la temperatura en un punto interior de la placa, utilizamos la regla que promedia lastemperaturas de sus cuatro puntos circunvecinos (norte, sur, este y oeste).

    Ejemplo:

    Aproximar las temperaturas Ti=1, 2, 3,4, en los cuatro puntos interiores igualmente espaciados en

    la placa. Inaugural

    100°

      60°

    40°

    T2

    T3 T4

    T1

     

    4

    1006032

    1

    T T T 

     

     4

    4010041

    2

    T T T 

     

     

    4

    06041

    3

    T T T   

    4

    04023

    4

    T T T   

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    19/25

    19

    404

    604

    1404

    1604

    432

    431

    421

    321

    T T T 

    T T T 

    T T T 

    T T T 

     

    Resolviendo el sistema de ecuaciones lineales en matlab tenemos:

      354060654321

      T T T T   

    Usando el programa ANSYS

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    20/25

    20

    Aproximar las temperaturas Ti=1, 2, 3,4, en los cuatro puntos interiores igualmente espaciados en laplaca.

    30°

      50°

    50°

    T2

    T3 T4

    T1

     

     

    INTERPOLACIÓN POLINOMIAL

    Si nos dan n puntos distintos (x1, y1), (x2, y2),……. (xn, yn). El polinomio que buscamos tiene la forma:

    01

    2

    2

    1

    1  ......   a xa xa xa y

    n

    n

    n

     

     

    Los n puntos dados pueden utilizarse para obtener un sistema lineal n x n cuyas incógnitas son

    110   ,......, naaa . Se puede demostrar que este sistema lineal tiene una única solución. En consecuencia,

    existe un único polinomio de interpolación.

    Cuando n=3 veamos:

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    21/25

    21

    (x1, y1), (x2, y2), (x3, y3) donde 323121   ,,   x x x x x x   , buscamos el polinomio:

    01

    2

    2  a xa xa y    

    Sustituyendo los puntos dados en el sistema lineal:

    3031

    2

    32

    2021

    2

    22

    1011

    2

    12

     ya xa xa

     ya xa xa

     ya xa xa

     

    En general existe un único polinomio de interpolación de grado, a lo más, n-1 que pase por n puntosdados.

    a) 

    Determinar el polinomio cuadrático que interpola los puntos (1,2); (3,3) y (5,8)

    Al plantear el sistema lineal tenemos:

    8525

    339

    2

    012

    012

    012

    aaa

    aaa

    aaa

     

    Resolviendo el sistema de ecuaciones en matlab tenemos:

    a2 = ½ a1= -3/2 a0= 3

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    22/25

    22

    Por lo tanto el polinomio cuadrático de interpolación es:

    32

    3

    2

    1   2   x x y  

    Cuya gráfica es:

    Como podemos observar efectivamente la función pasa por los puntos (1,2); (3,3) y (5,8)

    b) 

    Determinar el polinomio cúbico que interpola los puntos (-1,-6); (1,0); (2,8) y (3,34)

      ECUACIÓN DE PLANOS

    Deduzca la ecuación del plano en el espacio xyz, que pasa por los puntos P (1, 1, 2), Q (1, 2, 0), R (2, 1,5)

    Sea:

    0   d cz byax  

    La ecuación del plano, es preciso determinar los coeficientes a, b, c y la constante d. Como los puntospertenecen al plano, deben satisfacer la ecuación del plano:

    0512

    021

    0211

    d cba

    d ba

    d cba

     

    Despejando el término independiente:

    d cba

    d ba

    d cba

    512

    21

    211

     

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    23/25

    23

    Obteniendo la matriz aumentada:

     

     

     

     

    512

    021

    211

     

    Resolviendo mediante Gauss:

    Tenemos:

     

     

     

     

    110

    0210

    211

     

    Tenemos:

     

     

     

     

    100

    0210

    211

     

    El sistema que obtenemos es:

    d c

    cb

    d cba

    02

    2

     

    De donde c = -d; b=-2d ; a = 3d

    La ecuación es:

    0123

    :

    023

    0

     z  y x

    d  por dividiendo

    d dz dydx

    d cz byax

     

    Graficando vemos que efectivamente el plano contiene a los puntos:

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    24/25

    24

    a)  Determinar la ecuación del plano que pasa por: (2,1,4); (1,0,3); (-1,2,4)

      CÁLCULO INTEGRAL –FRACCIONES PARCIALES

    Usando el método de Gauss calcule las constantes A y B tales que:

    21211

      x

     B

     x

     A

     x x 

      PROBLEMAS DE TRANSPORTE

    El gráfico representa los caminos que comunican diversos lugares, con sus respectivas distancias.Encuentre la matriz de distancias más cortas y analice el tipo de matriz.

  • 8/17/2019 GUIA1 Algebra Lineal Con Aplicaciones

    25/25

    25

    6. BIBLIOGRAFÍA RECOMENDADA PARA REALIZAR LA GUÍA:  GROSSMAN, Stanley y FLORES José, Algebra Lineal, 7ma Edición. México: Mc Graw Hill, 2012.

    742 p. 9786071507600  KOLMAN, Bernard y HILL, David, Algebra Lineal: Fundamentos y aplicaciones. Primera edición.

    Colombia: Pearson Education, 2013. 544 p. 9789586992251

     

    Howard Anton. Introducción al Álgebra Lineal. Editorial Limusa. México, 1986.  Murray R. Spiegel. (Serie Schaum) Algebra Superior. Editorial Mc GrawHill. México, 1998.