funciones parte i

23
Funciones

Upload: alfredo1389p

Post on 24-Jul-2015

323 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Funciones parte I

Funciones

Page 2: Funciones parte I

Relaciones y Funciones

El concepto de Relación-Función es uno de los más importantes en Matemáticas. Comprenderlo y aplicarlo se verá retribuido muchas veces.

Page 3: Funciones parte I

Correspondencia

La noción de correspondencia desempeña un papel fundamental en el concepto de Relación – Función.

En nuestra vida cotidiana frecuentemente hemos tenido experiencia con

correspondencias o RELACIONES.

Page 4: Funciones parte I

Ejemplos de Correspondencias o RELACIONES

En un almacén, a cada artículo le corresponde un precio.

A cada nombre del directorio telefónico le corresponde uno o varios números.

A cada número le corresponde una segunda potencia.

A cada estudiante le corresponde un promedio de calificaciones

Page 5: Funciones parte I

Definición de Relación y de Función

Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Rango, de manera que a cada elemento del Dominio le corresponde uno o más elemento del Recorrido o Rango.

Una Función es una relación a la que se añade la restricción de que a cada valor del Dominio le corresponde uno y sólo un valor del recorrido.

(Todas las funciones son relaciones, pero no todas las relaciones son funciones)

Page 6: Funciones parte I

Toda ecuación es una Relación, pero no toda ecuación es una Función

Page 7: Funciones parte I

Haga clic en las ecuaciones que están ubicadas en el recuadro de la derecha, las que Ud. considere que son funciones.

¿Por qué algunas de las ecuaciones son Funciones?

Page 8: Funciones parte I

Todas las Relaciones pueden ser graficadas en el Plano Cartesiano

Page 9: Funciones parte I

FUNCIÓN

La Respuesta correcta es B

Page 10: Funciones parte I

FUNCIÓN

La Respuesta correcta es D

Page 11: Funciones parte I

Funciones Polinomiales: Def : una función f se llama

función polinomial siF(x) = an xn +an – 1x n-1+…..+a1x +a0

Ejemplos:F(x) = 6x2 + 7x -2F(x)= 2x +3F(x) = 6

Page 12: Funciones parte I

I. FUNCIÓN LINEAL Análisis de la Pendiente

Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente.

• Si m < 0, entonces la función es decreciente.• Si m = 0, entonces la función es constante.• Si m > 0, entonces la función es creciente.

Page 13: Funciones parte I

I. FUNCIÓN LINEAL

I) II)

X

Y

n

m > 0n > 0

X

Y

n m < 0n > 0

X

Y

n

m > 0n < 0

X

Y

n

m < 0n < 0

III) IV)

Page 14: Funciones parte I

I. FUNCIÓN LINEAL Propiedades:

El dominio de la función lineal son todos los números IR.

Las rectas que tienen la misma m serán paralelas.

Las rectas que al multiplicar sus pendientes el producto es -1 serán perpendiculares.

Page 15: Funciones parte I

II. FUNCIÓN CUADRÁTICA Son de la forma:

Gráfica:Siempre es una parábola, dependiendo

su forma y la ubicación de sus coeficientes a, b y c.

f(x) = ax² + bx + c

Page 16: Funciones parte I

II. FUNCIÓN CUADRÁTICA Concavidad:

El coeficiente a de la función cuadrática indica si la parábola es abierta hacia arriba o hacia abajo.

x

y

0 x0

y

a > 0, Abierta hacia arriba

a < 0, Abierta hacia abajo

Page 17: Funciones parte I

II. FUNCIÓN CUADRÁTICA Eje de simetría y vértice:

El eje de simetría es aquella recta paralela al eje Y y que pasa por el vértice de la parábola.

El vértice está dado por:

Vértice = -b , f -b = -b , 4ac – b² 2a 2a 2a 4a

Page 18: Funciones parte I

II. FUNCIÓN CUADRÁTICA

Además, la recta x = , corresponde al Eje de simetría.-b 2a

_ b² - 4ac 4a

x

y

·

-b 2a

x0

y

·_ b² - 4ac 4a

-b 2a

a > 0 a < 0

Page 19: Funciones parte I

II. FUNCIÓN CUADRÁTICA Intersección con los ejes

Intersección con el eje Y El coeficiente c nos da el punto en el cual la parábola corta al eje Y.Sus coordenadas son (0, c)

0

y

x

Page 20: Funciones parte I

II. FUNCIÓN CUADRÁTICA Intersección con el eje X

para determinar el o los puntos donde la parábola corta al eje X, es necesario conocer el valor del discriminante de la función cuadrática.

Se define el discriminante como:

D = b² - 4ac

Page 21: Funciones parte I

II. FUNCIÓN CUADRÁTICA Naturaleza de las raíces de una ecuación de 2º grado

Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º grado en su forma general.

Toda ecuación de 2º grado posee dos soluciones, pudiendo ser reales o imaginarias, las que vienen dadas por la expresión:

x = -b ±√b²- 4ac 2a

x = -b ±√b²- 4ac 2a

1

x = -b ±√b²- 4ac 2a

2

Estas soluciones, raíces o ceros de la ecuación corresponden gráficamente a los puntos donde la función f(x) = ax² + bx + c corta al eje X. Estos puntos tienen como coordenadas (x ,0) y (x , 0)

1 2

Page 22: Funciones parte I

II. FUNCIÓN CUADRÁTICA Tipos de soluciones

Dependen del valor del Discriminante

a) Si D = 0, 2 soluciones reales iguales

b) Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x )

c) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x )

D = b² - 4ac

(x = y)1 1

1 12 2

1 12 2

Page 23: Funciones parte I

II. FUNCIÓN CUADRÁTICA Ejemplo:

Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de esta ecuación?

Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por

En este caso a = 1 b = 2 c = -15Luego,

Luego,

x = 3 x = -5

x = -b ±√b²- 4ac 2a

x = -2 ±√2²- 4·1·(-15) 2·1x = -2 ±√4- 60 2x = -2 ±√64 2x = -2 ±8 2

x = -2 + 8 2

1x = -2 - 8 2

2

1 2