feasibility of nano-satellites constellations for ais...

16
Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection J. Castelvi, E. Lancheros, A. Camps, and H. Park. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain. {jordi.castellvi, estefany , camps, park.hyuck}@tsc.upc.edu

Upload: others

Post on 04-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Feasibility of Nano-Satellites Constellations for AIS

Decoding and Fire detection J. Castelvi, E. Lancheros, A. Camps, and H. Park.

Departament de Teoria del Senyal i Comunicacions,

Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.

{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Page 2: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Outline 1. Gap requirements for Fire detection

• Global look on State of the art. • Requirements.

2. Why Automatic Identification System (AIS) decoding? • Advantages and disadvantages. • Operational and future AIS decoding on CubeSat • Requirements.

3. 3CAT-3 initiative • Threshold Performance Requirements for fire detection

and AIS • Technical data • Sample analysis • Data Budget Simulation

4. Constellation configuration • Coverage and revisit time

5. Conclusions

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection 2

Page 3: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

1. Gap for Fire Detection

LEO-MISSIONS • Moderate-resolution: 300 – 1000 m Global coverage: twice/day – 2 days • High-resolution 8 – 60 m Global coverage: 5 – 90 days

GEO-MISSIONS • Moderate-resolution: 1000 m Full disk each 10 -15 min

User requirements by OSCAR: Nowcasting: at 1 km of spatial resolution; revisit time of 15 min, and global land coverage each 15 min Agricultural meteorology: at 10 m spatial resolution; revisit time of 60 min, and global land of 6 hours.

Main missions time-line that can be used for fire detection

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

3

Page 4: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Why AIS Decoding?

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

4

Source: Review of Maritime Transport 2015. United Nations Conference on Trade and Development (UNCTAD)

Adoption of international AIS as global

regulation for maritime traffic control.

Growth of global demand for container

shipping reached 6 %.

Global container demand boosted in the Far

East–Europe and the trans-Pacific.

Monitoring on continental remote navigation

(coastal areas are covered by the AIS

terrestrial stations)

To improve the security and surveillance

services.

More than 70,000 ships worldwide have

installed AIS system.

Page 5: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Why AIS Decoding?

Several universities are developing AIS

receivers (e.g. UPC AIS uses a SDR for

upcoming nanosat mission).

Advantages Disadvantages

• Accurate information

(position, course, speed).

• Is a normative (IMO) - Required on

board all passenger ships regardless

of size.

• Global Coverage.

• Possible implementation on nano-

satellites. (Low cost, low size, low

power, low weight).

• Huge number of AIS messages

simultaneously received from satellite

antenna footprint, easily exceeds

maximum TDMA time-slots.

• Required on board of ships with gross

tonnage of 300 or more.

Security services: revisit time of 1 hr.

Management services for commercial user: revisit time of 3 hr.

User requirements over remote areas of the ocean :

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

5

Page 6: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Operational and future AIS decoding on Cubesats

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

6

3CAT-3 ZACube-2

AAUSAT-4 AISSat 2 AISAT

AAUSAT-3 AISSat 1 CanX-6 (NTS)

Operator or

contractor

Universidad

Politécnica

de Cataluña

Cape

Peninsula

University of

Technology

Aalborg

University

Cubesat

UTIAS DLR Aalborg

University

Cubesat

UTIAS

UTIAS

Satellite Mass (kg)

9 4 0,88 6 14 0,8 6 6.5

Size 6U 3U 1U -

1 U 1 U - 2 U

Power Consumption

- - 1.15 W 0.97 W 15 W 1.15 W 0.97 W 5.6 W

Launch date - 2017 2016 2014 2014 2013 2010 2008

Payload AIS + high resolution VIS and VNIR camera

AIS + Low resolution NIR imager

AIS AIS AIS AIS AIS AIS

Page 7: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Item Description

CMOS optical sensor Spatial Resolution 10 - 30 m. VIS and VNIR ; Swath: 18 km; bands: 475, 555, 650,710, 870 nm-

AIS system:

162 MHz ± 25 KHz, Power consumption: < 800 mW. Mass: 55 g, volume: 94.7x89.0x6.7 mm

Alternate: SDR-based UPC instrument (under development)

2 Electrical Power System (EPS)

Mass: 200 g; volume: 96x90x16 mm. Batteries providing up to 6-8 W (2 sets)

Batteries Mass: 240 g; volume: 94x88x23 mm Battery heater; heater power: 3.5 to 7 W

Solar Panels 1U 14 solar panels (1U), GaAs, 0.1 A/m2

28.3 % efficiency

On Board Computer (OBC) 400 MHz, 32 MB RAM Mass: 94 g; volumen: 96x90x12.4 mm Power consumption: 400 mW.

S-band transceiver Data rate: 2Mbps Mass: 95 g; volumen: 96x90.2x17 mm. Power consumption < 6 W

UHF-transceiver card for T&T

Data rate: 115 Kbps Mass: 24.5 g; volumen: 65x40x6.5 mm. Power consumption: 0.2 W (receptor mode)

Attitude Determination and Control System (ADCS)

Mass: 865 g; volumen: 100x100x79 mm. Power Consumption: 1.5 W to 4.5 W Pointing accuracy 1°

3Cat-3 mission (6U): technical data

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

7

P/L: MS optical imager, reconfig. SDR RF

receiver (AIS + GNSS-R)

Main application: vegetation/agriculture

Secondary application: fire monitoring

and AIS

6U nano-satellite cost-effective

demonstrator

Page 8: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Threshold Performance Requirements for fire detection and AIS.

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

8

Minimum Acceptable Desired

Spatial resolution for fire detection

1000 m 300 m 10 m

Revisit time for fire detection

6 hours 3 hours 1 hour

Revisit time for AIS decoding

3 hours 2 hours 1 hour

Coverage for fire detection

Contiental EU each 18 hr

EU and Amazon each 12 hr

Gobal land each 6 hrs

Coverage for AIS decoding

Remote areas of Atlantic North ocean

Remote areas of Atlantic North ocean and Pacific North ocean

All remote areas of the oceans

Satellite mass 20 – 30 kg 10 – 20 kg > 10 kg

Page 9: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

9

Target areas for fire detection Target area for AIS event Ground station

Sample Analysis: Ground Stations and Target Areas

Page 10: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Data Budget for a 24 hours simulation:

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

10

Inclined orbit : 55°

Altitude: 600 km

Orbit: circular

2 ground stations. S‐band transmitter ON if visibility with ground station and power budget permitting 2GB SD memory card. AIS active over target areas, imager active over target areas.

Image compression FAPEC

Page 11: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Constellation

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

11

Scenario 1 Scenario 2 Scenario 3

Inclined orbit : 98° 55° 55°

Altitude: 600 km 600 km 600 km

Orbit: Circular Circular Circular

# of satellites: 24 24 50

Orbital planes: 4 4 5

Swath: 18 km Spatial resolution: 10 m

Swath: 50 km Spatial resolution: 30 m

OPTICAL SENSOR

Page 12: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Constellation: Coverage and revisit time

MS Optical Instrument

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

12

Scenario 1

• Inclined orbit : 98°

• # of satellites: 24

• Orbital planes: 4

Swath: 18 km Swath: 50 km

Page 13: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Constellation: Coverage and revisit time

MS Optical Instrument:

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

13

Scenario 2

• Inclined orbit : 55°

• # of satellites: 24

• Orbital planes: 4

Swath: 18 km Swath: 50 km

Page 14: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Constellation: Coverage and revisit time

MS Optical Instrument

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

14

Scenario 3

• Inclined orbit : 55°

• # of satellites: 50

• Orbital planes: 5

Swath: 18 km Swath: 50 km

Page 15: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Constellation: Coverage AIS Decoding

Scenario 1

• Inclined orbit : 98°

• Altitude: 600 km

• Orbit: circular

• # of satellites: 24

• Orbital planes: 4

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

15

Scenario 2

• Inclined orbit : 55°

• Altitude: 600 km

• Orbit: circular

• # of satellites: 24

• Orbital planes: 4

Scenario 3

• Inclined orbit : 55°

• Altitude: 600 km

• Orbit: circular

• # of satellites: 50

• Orbital planes: 5

Page 16: Feasibility of Nano-Satellites Constellations for AIS ...golkar.scripts.mit.edu/fss/wp-content/uploads/2016/10/UPC_Feasibility-of-Nano...{jordi.castellvi, estefany, camps, park.hyuck}@tsc.upc.edu

Conclusion

• A constellation /federation of nanosats can be an excellent candidate low-cost mission to improve the spatial and temporal resolution for fire and AIS measurements to complement the Copernicus system in the mid term.

• Next step: orbit optimization

Detailed power, memory, data Links budgets and thermal analysis

Feasibility of Nano-Satellites Constellations for AIS Decoding and Fire detection

16