el núcleo

14
EL NÚCLEO El núcleo de la célula es un pequeño cuerpo que generalmente tiene forma esférica u ovalada. Su ubicación tiende a estar localizada en el centro de la célula. Sin embargo, es capaz de desplazarse en el caso de algunas células, mientras que en el caso de otras se encuentra fijo. El núcleo tiene funciones de control y dentro de él se encuentra localizados los entes hereditarios. El núcleo se encuentra claramente delimitado por una membrana nuclear que lo separa del citoplasma que lo rodea, además de regular que sustancias entran o salen de él. El núcleo controla las actividades de las otras partes de la célula porque dispone de la información necesaria para su funcionamiento que se encuentra codificada en las cromosomas. Cada vez que la célula se divide esta información debe ser duplicada y colocada en la nueva célula. Dentro del núcleo se encuentra una sustancia acuosa llamada carioplasma, en la que se encuentran suspendidas los cromosomas (cuya forma es la de filamentos). Los cromosomas están compuestos por DNA y proteínas. Mientras la célula no se encuentra en proceso de división las hebras que conforman los cromosomas forman una especie de red irregular de fibras a la que llamamos cromatina. También es posible localizar dentro del núcleo otro cuerpo conocido como nucleolo. La forma del nucleolo también semeja a la de una esfera, pero su forma puede variar. Además podría desaparecer temporalmente del núcleo, cuando la célula está a punto de dividirse. En otros casos puede observarse la presencia de más de un nucleolo en el mismo núcleo. Parece que el nucleolo tiene un papel indispensable en la división de la célula, ya que si se destruye el nucleolo no se produce la división de la célula. Se han realizado importantes experimentos para determinar el comportamiento del núcleo y del nucleolo en la separación celular y los resultados tienden a demostrar lo expresado aquí. Uno de los científicos que han realizado estos trabajos es Hämmerling quien experimentó con varios grupos de amibas. A un grupo las perforo varias veces sin tocar el núcleo. Por otra parte destruyó el núcleo del otro grupo de amibas. Hecho esto, las amibas que habían sido perforadas sin destruir el núcleo siguieron creciendo y reproduciendo. Por otro lado, aquellas a las que se les

Upload: rembert

Post on 14-Jul-2015

218 views

Category:

Health & Medicine


0 download

TRANSCRIPT

Page 1: El núcleo

EL NÚCLEO

El núcleo de la célula es un pequeño cuerpo que generalmente tiene forma esférica u ovalada. Su ubicación tiende a estar localizada en el centro de la célula. Sin embargo, es capaz de desplazarse en el caso de algunas células, mientras que en el caso de otras se encuentra fijo.

El núcleo tiene funciones de control y dentro de él se encuentra localizados los entes hereditarios. El núcleo se encuentra claramente delimitado por una membrana nuclear que lo separa del citoplasma que lo rodea, además de regular que sustancias entran o salen de él.

El núcleo controla las actividades de las otras partes de la célula porque dispone de la información necesaria para su funcionamiento que se encuentra codificada en las cromosomas. Cada vez que la célula se divide esta información debe ser duplicada y colocada en la nueva célula.

Dentro del núcleo se encuentra una sustancia acuosa llamada carioplasma, en la que se encuentran suspendidas los cromosomas (cuya forma es la de filamentos). Los cromosomas están compuestos por DNA y proteínas. Mientras la célula no se encuentra en proceso de división las hebras que conforman los cromosomas forman una especie de red irregular de fibras a la que llamamos cromatina.

También es posible localizar dentro del núcleo otro cuerpo conocido como nucleolo. La forma del nucleolo también semeja a la de una esfera, pero su forma puede variar. Además podría desaparecer temporalmente del núcleo, cuando la célula está a punto de dividirse. En otros casos puede observarse la presencia de más de un nucleolo en el mismo núcleo.

Parece que el nucleolo tiene un papel indispensable en la división de la célula, ya que si se destruye el nucleolo no se produce la división de la célula.

Se han realizado importantes experimentos para determinar el comportamiento del núcleo y del nucleolo en la separación celular y los resultados tienden a demostrar lo expresado aquí. Uno de los científicos que han realizado estos trabajos es Hämmerling quien experimentó con varios grupos de amibas. A un grupo las perforo varias veces sin tocar el núcleo. Por otra parte destruyó el núcleo del otro grupo de amibas. Hecho esto, las amibas que habían sido perforadas sin destruir el núcleo siguieron creciendo y reproduciendo. Por otro lado, aquellas a las que se les

Page 2: El núcleo

destruyó el núcleo, siguieron viviendo por algún tiempo pero no pudieron crecer ni reproducirse.

Cromatina

Las unidades básicas de la cromatina son los nucleosomas. Éstos se encuentran formados por aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico alrededor del que se enrolla la hélice de ADN (da aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ARN e histonas existe un ADN libre llamado ADN "espaciador", de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. Este tipo de organización, permite un primer paso de compactación del material genético, y da lugar a una estructura parecida a un "collar de cuentas".

Posteriormente, un segundo nivel de organización de orden superior lo constituye la "fibra de 30nm" compuestas por grupos de nucleosomas empaquetados uno sobre otros adoptando disposiciones regulares gracias a la acción de la histona H1.

Finalmente continúa el incremento del empaquetamiento del ADN hasta obtener los cromosomas que observamos en la metafase, el cual es el máximo nivel de condensación del ADN.

Tipos de cromatina

La cromatina se puede encontrar en 2 formas

• Heterocromatina, es una forma inactiva condensada localizada sobre todo en la periferia del núcleo, que se tiñe fuertemente con las coloraciones. En 1928 Emil HEITZ, basándose en observaciones histológicas, definió la heterocromatina (HC) como los segmentos cromosómicos que aparecían muy condensados y oscuros en el núcleo en interfase. De hecho, la cromatina está formada de una maraña de fibras cuyo diámetro no solo varía durante el ciclo celular sino que también depende de la región del cromosoma observada.

La eucromatina activa está formada por una fibra de un diámetro que corresponde al del nucleosoma, que es un segmento de ADN bicatenario enrollado alrededor de homodímeros de las histonas H2A, H2B, H3, y H4. En

Page 3: El núcleo

la eucromatina inactiva, esta fibra se enrolla sobre sí misma gracias a las histonas H1 para formar el solenoide. La interacción con otras proteínas no histonas (topoisomerasa II, proteínas de andamiaje, lamininas, …) provoca mayores grados de organización. En cuanto a la heterocromatina, la fibra que la constituye se encuentra más condensada y a menudo aparece formada por agregados. Su formación require numerosas proteínas adicionales, que incluyen las proteínas HP1 (Heterochromatin Protein 1 o proteína de la heterocromatina1).

La heterocromatina puede ser de dos tipos diferentes, la riqueza en ADN satélite determina tanto la naturaleza permanente o reversible de la heterocromatina, como su polimorfismo y propiedades de tinción.:

• la constitutiva, idéntica para todas las células del organismo y que carece de información genética, incluye a los telómeros y centrómeros del cromosoma que no expresan su ADN. La heterocromatina constitutiva contiene un tipo particular de ADN denominado ADN satélite, formado por gran número de secuencias cortas repetidas en tándem. Los tipos principales de este ADN son el ADN satélite alfa, y los ADN satélite I, II y III. Estas secuencias de ADN satélite son capaces de plegarse sobre sí mismas y pueden tener un papel importante en la formación de la estructura altamente compacta de la heterocromatina constitutiva. La heterocromatina constitutiva es estable y conserva sus propiedades heterocromáticas durante todas las etapas del desarrollo y en todos los tejidos. La heterocromatina constitutiva es altamente polimórfica, probablemente debido a la inestabilidad del ADN satélite. Este polimorfismos puede afectar, no solamente a su tamaño sino también a la localización de la heterocromatina, y aparentemente no tiene un efecto fenotípico. La heterocromatina constitutiva se encuentra fuertemente teñida en la técnica de bandas C, lo que es el resultado de una renaturalización muy rápida del ADN satélite tras la desnaturalización.

• la facultativa, diferente en los distintos tipos celulares, contiene información sobre todos aquellos genes que no se expresan o que pueden expresarse en algún momento. Incluye al ADN satélite y al corpúsculo de Barr. La heterocromatina facultativa se caracteriza por la presencia de secuencias repetidas tipo LINE. Estas secuencias, dispersas a lo largo del genoma, podrían promover la propagación de una estructura de cromatina condensada. La heterocromatina facultativa es reversible, su estado heterocromático depende de la etapa

Page 4: El núcleo

del desarrollo y del tipo celular. Dos ejemplos de este tipo de heterocromatina son el cromosoma X inactivo (cuerpo de Barr) de las células somáticas femeninas y la vesícula sexual inactiva en la etapa del paquiteno de las meiosis masculinas. La heterocromatina facultativa no es particularmente rica en ADN satélite, y por ello, no es polimórfica. La heterocromatina facultativa no se encuentra nunca teñida en la técnica de bandas C.

Se ha visto que en la formación de heterocromatina frecuentemente participa el fenómeno de ARN interferente. Por ejemplo, en Schizosaccharomyces pombe, la heterocromatina se forma en el centrómero, telómeros y en el loci mating-type.1 La formación de la heterocromatina en el centrómero depende del mecanismo de ARN interferente (ARNi). ARN doble cadena complementarios son producidos de secuencias repetidas localizadas en el centrómero, que inducen ARNi y seguidamente metilación de la lisina 9 histona 3 y enlazamiento de Swi6 (proteína estructural de la heterocromatina, la cual es homóloga a HP1 en mamíferos).2

Propiedades de la heterocromatina

A pesar de las diferencias descritas anteriormente, la heterocromatina constitutiva y la heterocromatina facultativa tienen propiedades muy similares.

1. La heterocromatina está condensada. Este es, de hecho, lo que define la heterocromatina, y por ello es aplicable tanto a la heterocromatina constitutiva como a la facultativa. Esta elevada condensación la hace fuertemente cromofílica e inaccesible a la DNAsa I y, en general, a otras enzimas de restricción.

• 2. El ADN de la heterocromatina se replica más tarde.

La incorporación de varios análogos de nucleótidos muestra que el ADN de ambos tipos de heterocromatina se replica tarde. Esto es el resultado, por un lado, de su elevado grado de condensación, que evita que la maquinaria replicativa accede fácilmente al ADN y, por otro lado, de su localización en un dominio nuclear periférico pobre en elementos activos.

3. El ADN de la heterocromatina se encuentra metilado.

• •El ADN de la heterocromatina constitutiva se encuentra altamente metilado en las citosinas. Por ello, un anticuerpo anti-5-metil citosina

Page 5: El núcleo

marca fuertemente todas las regiones de este tipo de heterocromatina.

• •Por lo que se refiere a la heterocromatina facultativa, la metilación de su ADN es menor, aunque los análisis mediante enzimas de restricción sensibles a metilación revelan una importante metilación de los islotes CpG, específicamente localizados en las regiones que controlan la expresión de los genes.

4. En la heterocromatina las histonas se encuentran hipoacetiladas. Las histonas puede sufrir una serie de modificaciones post-traduccionales en sus extremos N-terminales que pueden afectar a la propia actividad genética de la cromatina.

• •La hipoacetilación de las colas N-terminales de las histonas, principalmente en las lisinas, están asociadas con la cromatina inactiva. Por el contrario, las histonas hiperacetiladas son características de la cromatina activa.

• •La acetilación/desacetilación de histonas es un mecanismos absolutamente esencial para el control de la expresión génica. Existen numerosos factores de transcripción que presentan una actividad acetiltransferasa de histonas (HAT, Histone Acetyl Transferase) o desacetilasa de histonas (HDAc o Histone De-Acetylase).

5. Las histonas de la heterocromatina se encuentran metiladas en la lisina 9. La metilación de la lisina 9 de la histona H3 (H3-K9) parece que está muy relacionada con el proceso de heterocromatinización del genoma, tanto en la formación de heterocromatina constitutiva como facultativa.

6. La heterocromatina es transcripcionalmente inactiva.

• •A diferencia de lo que ocurre en Drosophila, la heterocromatina constitutiva humana no contiene genes y la incorporación de uridina tritiada en los cultivos celulares no producen ningún tipo de marcaje a este nivel.

• •La heterocromatina facultativa es relativamente pobre en genes, y éstos generalmente no se transcriben en el estado de heterocromatina.

7. La heterocromatina no participa en la recombinación genética.

• •De modo general se acepta que la heterocromatina constitutiva no participa en la recombinación genética. La no existencia de un emparejamiento preliminar de las regiones heterocromatínicas

Page 6: El núcleo

homólogas se podría deber al polimorfismo característico de estas regiones que lo dificultarían, aunque no lo harían imposible. La heterocromatina constitutiva también actúa reprimiendo la recombinación en la regiones de eucromatina adyacentes.•Por lo que respecta a la heterocromatina facultativa, tampoco participa en la recombinación meiótica cuando se encuentra en su forma inactiva.

Funciones de la heterocromatina

Durante mucho tiempo el papel concreto de la heterocromatina ha sido un misterio, ya que su polimorfismo no parecía tener ningún efecto funcional o fenotípico.

1. Papel de la heterocromatina en la organización de los dominios nucleares.

• •La heterocromatina y la eucromatina ocupan dominios nucleares distintos. La heterocromatina se localiza generalmente en la periferia del núcleo anclada a la membrana nuclear. Por el contrario, la cromatina activa se localiza en una posición más central.

• •La localización preferencial de la heterocromatina contra la membrana nuclear puede deberse a la interacción de la proteína HP1 con el receptor de la lámina B, componente de la membrana interna del núcleo. •La localización periférica de la heterocromatina concentra los elementos activos en la porción central del núcleo, permitiendo que eucromatina activa se replique y transcriba con una eficiencia máxima.

2. Papel de la heterocromatina en la función del centrómero. En la mayor parte de eucariotas, los centrómeros se encuentran rodeados de una considerable masa de heterocromatina. Se ha sugerido que la heterocromatina centromérica sería necesaria para la cohesión de las cromátidas hermanas y que permitiría la disyunción normal de los cromosomas mitóticos.

• •En la levadura Schizosaccharomyces pombe, el homólogo Swi6 de la proteína HP1 es absolutamente esencial para la cohesión eficiente de las cromátidas hermanas durante la división celular.

• •Los experimentos en los cuales se ha realizado la deleción del ADN satellite muestran que una gran región de repeticiones de este tipo de ADN es indispensable para el funcionamiento correcto del centrómero.

Page 7: El núcleo

Se supone que la heterocromatina centromérica podría, de facto, crear un compartimento mediante el incremento de la concentración local de la variante centromérica de las histonas, CENP-A, y mediante la promoción de la incorporación de la CENP-A en lugar de la histona H3 durante la replicación.

3. Papel de la heterocromatina en la represión génica (regulación epigenética) La expresión génica puede estar controlada a dos niveles:

• •Primero, a nivel local o control transcripcional, gracias a la formación de complejos locales de transcripción. Este nivel involucra secuencias de ADN relativamente pequeñas unidas a genes.

• •A nivel más global, en cuyo caso se dice que hay un control de la transcriptabilidad. Este control involucra a secuencias más largas que representan un gran dominio de cromatina, que puede estar en estado activo o inactivo. En este caso es la heterocromatina la que parece estar involucrada. Los genes que generalmente se encuentran en la eucromatina pueden, por tanto, ser silenciados cuando se encuentran cercanos a un dominio de heterocromatina.

Mecanismo de inactivación en cis: Los reordenamientos cromosómicos pueden provocar que una región eucromática se yuxtaponga a una región heterocromática. En el momento en el que el reordenamiento elimina ciertas barreras que protegen la eucromatina la estructura heterocromática es capaz de propagarse en cis a la eucromatina adyacente, inactivando los genes que se encuentran en ella. Este es el mecanismo observado en la variegación por efecto de posición (PEV) en Drosophila y en la inactivación de ciertos transgenes en ratón.

Mecanismo de inactivación en trans: Durante la diferenciación celular, ciertos genes activos pueden transponerse a un dominio nuclear heterocromático haciendo que se inactiven. Este mecanismo es el que se ha propuesto como explicación para la co-localización en los núcleos de linfocitos de la proteína IKAROS con la heterocromatina centromérica y de los genes cuya expresión controla.

• Eucromatina , está diseminada por el resto del núcleo (menor condensación), se tiñe débilmente con la coloraciones (su mayor tinción ocurre en la mitosis y no es visible con el microscopio de luz). Representa la forma activa de la cromatina en la que se está transcribiendo el material genético de las moléculas de ADN a moléculas de ARNm, por lo que es aquí donde se encuentran la mayoría de los genes activos.

Page 8: El núcleo

En biología celular, el nucléolo o nucleolo es una región del núcleo que se considera una estructura supramacromolecular, puesto que no posee membrana. La función principal del nucleolo es la producción y ensamblaje de los componentes ribosómicos. El nucleolo es aproximadamente esférico y está rodeado por una capa de cromatina condensada. El nucléolo, es la región heterocromática más destacada del núcleo. No existe membrana que separe el nucleolo del nucleoplasma. El nucleoplasma-el nucleolo(ARN)

Los nucleolos están formados por proteínas y ADN ribosomal (ADNr). El ADNr es un componente fundamental ya que es utilizado como molde para la transcripción del ARN ribosómico, para incorporarlo a nuevos ribosomas. La mayor parte de las células tanto animales como vegetales, tienen uno o más nucleolos, aunque existen ciertos tipos celulares que no los tienen. En el nucleolo además tiene lugar la producción y maduración de los ribosomas,y gran parte de los ribosomas se encuentran dentro de él. Además, se cree que tiene otras funciones en la biogénesis de los ribosomas.

El nucleolo se fragmenta en división (aunque puede ser visto en metafase mitótica). Tras la separación de las células hijas mediante citocinesis, los fragmentos del nucleolo se fusionan de nuevo alrededor de las regiones organizadoras nucleolares de los cromosomas.

Número y Estructura

El número de nucléolos es muy variable dependiendo del tipo de célula estudiado. Incluso en un mismo tipo celular, se pueden dar importantes variaciones en cuanto a cantidad. La mayoría de las células tienen uno o dos nucléolos aunque se pueden llegar a dar muchos como por ejemplo en ovocitos de anfibios, donde se han llegado a encontrar mil nucléolos. a pesar de esta extensa suma de nucleolos no se puede obtener gran parte del ADN algo que se debe señalar con mucha importancia.

Morfológicamente, el nucléolo suele ser esférico pero puede adoptar formas muy irregulares. Suelen encontrarse en el centro del núcleo o ligeramente desplazados hacia la periferia. Su tamaño puede ser también muy variable pero suele oscilar entre una y dos micras. El nucléolo se divide en dos regiones:

• Parte densa: forma el nucleolonema. Esta parte se observa densa a los electrones, pero existen diferentes regiones dependiendo de su grado de densidad:

Page 9: El núcleo

o Centros Fibrilares o Zona Central (NO): es la región con menor densidad. Está formada por una red de fibrillas de 4-5 nanómetros de espesor. La forma es normalmente globular, con un diámetro de entre 50 nm a una micra. El número y tamaño de las zonas centrales es variable y depende de la actividad celular y de la necesidad de producción de más ribosomas. En una célula con gran actividad existen más zonas centrales que en otra célula con poca actividad. Pueden aparecer fibrillas de ADN y algo de ARN. En esta región se encuentre el ADN de los organizadores nucleolares y algunas proteínas y enzimas que intervienen en la transcripción. Estas regiones no son indispensables.

o Componentes Fibrilares Densos o Parte Fibrilar central (PF): es la región más densa. Son estructuras fibrilares de ribonucleoproteínas de un grosor de 8-10 nm. Son regiones con ADN y ARN ribosómico que se forma y al cual se unen proteínas. Normalmente rodean a la zona central, y su tamaño refleja la cantidad de ARNr que se está produciendo.

o Región granular periférica (PG): se observa menos densa a los electrones que la parte fibrilar y más densa que el centro fibrilar. Está formada por estructuras granulares de 25 nm de diámetro que se corresponden con las subunidades de ribosomas que se están formando. En algunos casos se observan masas muy densas de ADN asociadas al nucleolo (heterocromatina asociada al nucleolo). Los componentes granulares son pequeños gránulos con un diámetro de alrededor de 15 nm. Normalmente aparecen formando una masa que rodea a los complejos fibrilares y unen la zona central con los componentes fibrilares densos.

Función

La función principal del nucléolo es la biosíntesis de ribosomas desde sus componentes de ADN para formar ARN ribosomal. Está relacionado con la síntesis de proteínas. En células con una síntesis proteica intensa hay muchos nucleolos.

Además, investigaciones recientes, han descrito al nucléolo como el responsable del tráfico de pequeños segmentos de ARN. El nucléolo además, interviene en la maduración y el transporte del ARN hasta su destino final en la célula.

Page 10: El núcleo

Aunque el nucléolo desaparezca en división, algunos estudios actuales aseguran que regula el ciclo celular. La estructura granular homogénea de los nucleolos puede ser observada con microscopia electrónica.

Ciclo del nucléolo

El nucléolo no se ve a lo largo de todo el ciclo celular. Al igual que los cromosomas, sufre una serie de cambios según se encuentre en interfase o en división. En interfase no sufre cambios morfológicos significativos (se puede dar un aumento o una fusión de varios). Sin embargo en división se dan cambios que determinan el ciclo del nucléolo. En este ciclo hay tres etapas:

1. Desorganización profásica: el nucléolo disminuye de tamaño y se hace bastante irregular. Aparecen pequeñas masas de material nucleolar que se disponen entre los cromosomas profásicos que se están condensando.

2. Transporte metafásico y anafásico: el nucléolo pierde su individualidad y sus componentes se incorporan a los cromosomas metafásicos.

3. Organización telofásica: en la primera mitad de la telofase, los cromosomas se descondensan y aparecen los cuerpos laminares y cuerpos prenucleolares (de mayor tamaño y resultado de la fusión de los primeros). Estos cuerpos son estructuras esféricas con características citoquímicas y estructurales del núcleo interfásico. Los cuerpos prenucleolares aumentan de tamaño y empiezan a formar un nucléolo alrededor de la región de los organizadores nucleolares. La cantidad de nucléolos depende del número de organizadores nucleolares.

NUCLEOPLASMA

El nucleoplasma es el medio interno del núcleo. Es una estructura formada por una dispersión coloidal en forma de gel compuesta por proteínas relacionadas con la síntesis y empaquetamiento de los ácidos nucleicos. También posee nucleótidos, ARN, ADN, agua e iones. Existe en su seno una red de proteínas fibrilares similar a las del citoplasma. Su función es ser el seno en el que se produce la síntesis de ARN diferentes y la síntesis del ADN nuclear. Además, con su red de proteínas, evita la formación de nudos en la cromatina.

Page 11: El núcleo

.- EL NÚCLEO:

Page 12: El núcleo

El núcleo es una estructura constituida por una doble membrana, denominada envoltura nuclear que rodea al ADN de la célula separándolo del citoplasma. El medio interno se denomina nucleoplasma y en él están sumergidas, más o menos condensadas, las fibras de ADN que se llaman cromatina y corpúsculos formados por ARN conocidos como nucléolos.

8.a.- Envoltura nuclear.

La envoltura nuclear presenta una estructura basada en una doble membrana. Entre la membrana externa e interna de esa envoltura existe un espacio intermembranal, llamado espacio perinuclear. Bajo la membrana interna existe una capa de proteínas fibrilares llamada lámina fibrosa. El origen de la membrana nuclear es el retículo endoplasmático. Presenta una serie de poros que comunican ambos sistemas. Estos poros tienen una compleja estructura basada en la organización de una serie de proteínas que forman el complejo del poro nuclear.

Page 13: El núcleo

Las funciones de esta envoltura son: separar al citoplasma del nucleoplasma, y mantener separados los procesos metabólicos de ambos medios. Además regula el intercambio de sustancias a través de los poros y la lámina nuclear permite la unión con las fibras de ADN para formar los cromosomas.

8.b.- Nucleoplasma y nucléolo.

El nucleoplasma es el medio interno del núcleo. Es una estructura formada por una dispersión coloidal en forma de gel compuesta por proteínas relacionadas con la síntesis y empaquetamiento de los ácidos nucleicos. También posee nucleótidos, ARN, ADN, agua e iones. Existe en su seno una red de proteínas fibrilares similar a las del citoplasma. Su función es ser el seno en el que se produce la síntesis de ARN diferentes y la síntesis del ADN nuclear. Además, con su red de proteínas, evita la formación de nudos en la cromatina.

Page 14: El núcleo

El nucléolo es una estructura esférica sin membrana que se visualiza en la célula en interfase. Está formado por ARN y proteínas. Su función fundamental consiste en ser una fábrica de ARN ribosomial, imprescindible para la formación de ribosomas.