distribuciones espectrales de energía de galaxias hiperluminosas en el infrarrojo

Download Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo

If you can't read please download the document

Upload: angel-ruiz-camunas

Post on 24-Jul-2015

118 views

Category:

Documents


0 download

TRANSCRIPT

Distribuciones Espectrales de Energa de Galaxias Hiperluminosas en el Infrarrojo

ngel Ruiz1
Francisco J. Carrera1, Francesca Panessa2, Giovanni Miniutti3

1: Instituto de Fsica de Cantabria (CSIC-UC)2: INAF/IASF Roma3: Laboratoire APC - Paris

7 de Julio de 2008 VIII Reunion Cientfica de la SEA Santander

Coevolucin AGN-galaxia

Indicios fuertes de la coevolucin de AGNs y galaxias:Conexin entre el crecimiento del agujero negro central mediante acrecin y el del esferoide mediante formacin estelar.

Cmo observar la coevolucin de AGNs y galaxias:La formacion estelar tiene lugar en entornos altamente oscurecidos: necesitamos radiacin penetrante:Rayos X: bremsstrahlung trmico, binarias

MIR-FIR-submm: radiacin mas energtica absorbida y reemitida en el IR.

Radio

Crecimiento del agujero negro central por acrecin: actividad AGN:La emisin en rayos X es la prueba definitiva, pero:La mayoria de la acrecin del Universo es absorbida (Fabian & Iwasawa 1999)

Los modelos de sintesis del fondo csmico de rayos X requieren que la mayoria de AGNs del Universo sean absorbidos (Gilli et al. 1999)

MIR-FIR: emisin directa absorbida y reemitida

Radio

In the last years strong evidences have been found supporting the hypothesis that Active Galactic Nuclei and galaxy formation and evolution are closely related, that is, there is a connection between the growth of the central supermassive black hole and the spheroid of the galaxy.

So, how can we study this relationship? On the one hand, star formation takes place in heavily obscured environment, so we need penetrating radiation, like the X-rays, or the MIR-FIR-submm.

On the other hand, BH growth produces AGN activity, and X-ray emission is its signature. However, most of this radiation is absorbed and re-radiated in MIR-FIR bands.

We see that IR and X-ray observations are essential to understand the star formation and AGN phenomena. Fortunately, at this time we have powerful tools to observe the Universe in either ranges, like XMM, Chandra, Spitzer, etc.

Indicios fuertes de la coevolucin de AGNs y galaxias:Conexin entre el crecimiento del agujero negro central mediante acrecin y el del esferoide mediante formacin estelar.

Cmo observar la coevolucin de AGNs y galaxias:La formacion estelar tiene lugar en entornos altamente oscurecidos: necesitamos radiacin penetrante:Rayos X: bremsstrahlung trmico, binarias

MIR-FIR-submm: radiacin mas energtica absorbida y reemitida en el IR.

Radio

Crecimiento del agujero negro central por acrecin: actividad AGN:La emisin en rayos X es la prueba definitiva, pero:La mayoria de la acrecin del Universo es absorbida (Fabian & Iwasawa 1999)

Los modelos de sintesis del fondo csmico de rayos X requieren que la mayoria de AGNs del Universo sean absorbidos (Gilli et al. 1999)

MIR-FIR: emisin directa absorbida y reemitida

Radio

Coevolucin AGN-galaxia

Matrimonio feliz entre la astronoma X y la IR: coincidencia en el tiempo deChandra, XMM-Newton, Suzaku, Spitzer, Akari, Herschel...

In the last years strong evidences have been found supporting the hypothesis that Active Galactic Nuclei and galaxy formation and evolution are closely related, that is, there is a connection between the growth of the central supermassive black hole and the spheroid of the galaxy.

So, how can we study this relationship? On the one hand, star formation takes place in heavily obscured environment, so we need penetrating radiation, like the X-rays, or the MIR-FIR-submm.

On the other hand, BH growth produces AGN activity, and X-ray emission is its signature. However, most of this radiation is absorbed and re-radiated in MIR-FIR bands.

We see that IR and X-ray observations are essential to understand the star formation and AGN phenomena. Fortunately, at this time we have powerful tools to observe the Universe in either ranges, like XMM, Chandra, Spitzer, etc.

Observando la coevolucin de AGNs y galaxias en rayos X y MIR-FIR

Surveys multifrecuencia: AEGIS, GOODS, COSMOS

Observaciones MIR de fuentes de rayos X:QSO absorbidos en rayos X (Stevens et al. 2005)

Observaciones en rayos X de objetos emisores en MIR-FIR:Galaxias Ultraluminosas en el IR (ULIRGs)
(Franceschini et al. 2003, Teng et al. 2005)

Galaxias Hiperluminosas en el IR (HLIRGs)
(Ruiz et al. 2007)

We can observe the AGN-galaxy co-evolution with differents methods,

for instance, through targeted MIR observation of X-ray sources, or by multi-wavelength surveys,

or, through targeted X-ray observations of MIR-FIR sources, like the Ultraluminous or the Hyperluminous infrared galaxies, the core of thid talk.

Por qu HLIRGs?

L8-1000m = 1012-1013 Lsol: ULIRGSAlimentados por starburst (STB) y algunos (~50%)
contienen un AGN (Farrah et al. 2003)

Fraccin de AGNs aumenta con la luminosidad IR
(Veilleux et al. 1999)

La mayora se encuentran en sistemas en interaccin
(Farrah et al. 2001)

Muestras rayos X: compuestas, dominadas por STB
(Franceschini et al. 2003; Teng et al. 2005)

L8-1000m > 1013 Lsol: HLIRGS (Rowan-Robinson 2000 [RROO])La mayora contienen un AGN (RR00, Farrah et al. 2002a)

Solo algunos en interaccin (~30%) (Farrah et al. 2002b)No son simplemente el extremo ms luminoso de los ULIRGs

Algunos presentan una alta absorcin, incluso Compton-Thick (Wilman et al. 2003, Iwasawa et al. 2005; Nandra et al. 2007)

ULIRGs are sources with an infrared luminosity between 10 to the 12 and 10 to the 13 solar luminosities. IR and X-rays studies suggest that they are composite sources, powered by starburst and/or ANG, most of them being starburst dominated. Most are in interacting systems, that is, they are triggered by galaxy mergers.

HLIRGs present an infrared luminosity greater than 10 to the 13 solar luminosities. IR and optical observations support that most harbour and AGN, although the main power source is still controversial. Only about a third are located in interacting system, so we cannot just classified them as the high luminosity end of ULIRGs.

A few have been studied in X-rays, some of them been heavily obscured.

HLIRGs present strong star formation and high AGN fraction, so they are excellent labs to investigate the connection between extreme star formation and BH growth.

L8-1000m = 1012-1013 Lsol: ULIRGSAlimentados por starburst (STB) y algunos (~50%)
contienen un AGN (Farrah et al. 2003)

Fraccin de AGNs aumenta con la luminosidad IR
(Veilleux et al. 1999)

La mayora se encuentran en sistemas en interaccin
(Farrah et al. 2001)

Muestras rayos X: compuestas, dominadas por STB
(Franceschini et al. 2003; Teng et al. 2005)

L8-1000m > 1013 Lsol: HLIRGS (Rowan-Robinson 2000 [RROO])La mayora contienen un AGN (RR00, Farrah et al. 2002a)

Solo algunos en interaccin (~30%) (Farrah et al. 2002b)No son simplemente el extremo ms luminoso de los ULIRGs

Algunos presentan una alta absorcin, incluso Compton-Thick (Wilman et al. 2003, Iwasawa et al. 2005; Nandra et al. 2007)

Por qu HLIRGs?

HLIRGs:

Elevada formcin estelar: > 1000 M / yr

Alta fraccion de AGNs

Excelentes laboratorios para investigar la relacin entre la formacin estelar extrema y el crecimiento de agujeros negros:

Galaxias jovenes con brotes de intensa formacin estelar?

Fase transitoria en la evolucin de los AGNs?

....

ULIRGs are sources with an infrared luminosity between 10 to the 12 and 10 to the 13 solar luminosities. IR and X-rays studies suggest that they are composite sources, powered by starburst and/or ANG, most of them being starburst dominated. Most are in interacting systems, that is, they are triggered by galaxy mergers.

HLIRGs present an infrared luminosity greater than 10 to the 13 solar luminosities. IR and optical observations support that most harbour and AGN, although the main power source is still controversial. Only about a third are located in interacting system, so we cannot just classified them as the high luminosity end of ULIRGs.

A few have been studied in X-rays, some of them been heavily obscured.

HLIRGs present strong star formation and high AGN fraction, so they are excellent labs to investigate the connection between extreme star formation and BH growth.

Estudio de HLIRGs con XMM-Newton: Sample

De la muestra de 45 HLIRGs de RR00, seleccionamos aquellas con:Datos pblicos de XMM-Newton (Dic. 2004)

Datos propios de XMM-Newton (AO-5)

z < ~2: evitamos sesgos por QSO a alto redshift

14 objetos en la muestra final:Todos ellos con sus SED estudiadas en MIR/FIR
(RR00, Farrah et al. 2002, Verma et al. 2002)

We have done the first systematic study of HLIRGs in the X-ray band. We choose those HLIRGs of the Rowan-Robinson sample with public XMM data as of December 2004, and we added our own XMM data. We limited this sample to sources with redshift less than 2, to avoid biasing towards high redshift quasars.

We have fourteen objects in the final sample, all of them with SED fitting in the infrared.

X0.6/0.40.323QSO 1.5IRAS 14026+4341X0.7/0.30.36QSOIRAS 13279+3401X0.6/0.40.780QSOIRAS F12509+3122X1/02.038QSOPG 1247+267X0.6/0.40.292StarburstIRAS 07380-23420.5/0.50.575StarburstIRAS F00235+1024X1/01.158QSOPG 1206+459X0.8/0.21.334QSOIRAS 16347+7037X0.2/0.81.21QSOIRAS F14218+3845X0.6/0.40.297QSOIRAS 18216+64180.7/0.30.926Seyfert 2IRAS F15307+32520.4/0.60.3Seyfert 2IRAS 12514+10271/00.442QSO 2IRAS 09104+41090.35/0.650.327QSO 2IRAS 00182-7112CT?AGN / STB(IR SED fitting)zTipo(opt)Fuente

842This is the final sample. In accord with their optical spectra, we have two starburst galaxies, 4 type 2 and 8 type 1 AGNs, either seyfert and quasars. Previous results suggest that 5 of this objects are Compton Thick candidates.

X