diseño’mecánico’ · diseño’mecánico ... compresión y cortante al fin de elaborar los...

42
Diseño Mecánico Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Upload: dinhkhanh

Post on 30-Sep-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Diseño  Mecánico  

Juan  Manuel  Rodríguez  Prieto  Ing.  M.Sc.  Ph.D.  

Contenidos de la clase Fallas resultantes de carga estática

•  Esfuerzos principales •  Circulo de Mohr •  Teorías de falla •  Teoría de esfuerzo cortante máximo para

materiales dúctiles •  Teoría de la energía de distorsión para materiales

dúctiles  

Esfuerzos principales para un estado de deformación plana

•  Esfuerzos principales

 

σ A ,σ B =σ x +σ y

σ x −σ y

2⎛⎝⎜

⎞⎠⎟

2

+τ xy2

Circulo de Mohr

•  Esfuerzos principales Los esfuerzos cortantes que tienden a rotar al elemento en el sentido de las manecillas del reloj se grafican por encima del eje horizontal

 

Circulo de Mohr

•  Esfuerzos principales Los esfuerzos cortantes que tienden a rotar al elemento en el sentido contrario de las manecillas del reloj se grafican por debajo del eje horizontal

 

Circulo de Mohr

Teorías de falla Deformación permanente Agrietamiento Ruptura No existe una teoría universal de falla Un material se puede comportar de manera dúctil o frágil, aunque bajo situaciones especiales un material considerado como dúctil puede fallar de una manera frágil. Teorías generalmente aceptadas Materiales dúctiles Esfuerzo cortante máximo (ECM) Energía de distorsión (ED) Mohr-Coulumb para materiales dúctiles(CMD) Materiales frágiles Esfuerzo normal máximo Mohr Coulumb para materiales frágiles Mohr modificada

Teoría del esfuerzo cortante máximo para materiales dúctiles

La teoría del esfuerzo cortante máximo estipula que la fluencia comienza cuando el esfuerzo cortante máximo de cualquier elemento iguala al esfuerzo cortante máximo en una pieza de ensayo a tensión del mismo material cuando esta empieza a fluir. La teoría de esfuerzo cortante máximo también se conoce como la teoría de Tresca. La teoría ECM es un predictor aceptable pero conservador de la falla, por tanto, se justifica su uso con bastante frecuencia. Lo anterior implica que la resistencia a la fluencia en cortante esta dada por: Factor de seguridad:

(σ 1 −σ 3) ≥ Sy

τmax =(σ 1 −σ 3)

2≥Sy2

Ssy = 0.5Syn =

Ssyτmax

Teoría del esfuerzo cortante máximo para materiales dúctiles (esfuerzo plano) Supongamos que ¿Qué valores toma ? Existen tres casos a considerar 1. 2.

σ A ≥σ B

σ 1,σ 2,σ 3

σ A ≥σ B ≥ 0

σ 1 =σ A σ 3 = 0

σ A ≥ Syσ A ≥ 0 ≥σ B

σ 1 =σ A σ 3 =σ B

(σ A −σ B ) ≥ Sy

Teoría del esfuerzo cortante máximo para materiales dúctiles (esfuerzo plano) Supongamos que ¿Qué valores toma ? Existen tres casos a considerar 3.

σ A ≥σ B

σ 1,σ 2,σ 3

0 ≥σ A ≥σ B

σ 1 = 0 σ 3 =σ B

σ B ≤ −Sy

Teoría de la energía de distorsión para materiales dúctiles

La teoría de la energía de deformación máxima predice que la falla por fluencia ocurre cuando la energía de deformación total por unidad de volumen alcanza o excede la energía de deformación por unidad de volumen correspondiente a la resistencia a la fluencia en tensión o compresión del mismo material. La teoría de la energía de distorsión se originó debido a que algunos materiales dúctiles sometidos a esfuerzos hidrostáticos (esfuerzos principales iguales) presentan resistencias a la fluencia que exceden en gran medida los valores que resultan del ensayo de tensión simple. La energía de deformación por unidad de volumen para el caso de carga unidimensional es: u = 1

2σε

Teoría de la energía de distorsión para materiales dúctiles

En el caso de un estado general de esfuerzo, se predice la fluencia si El lado izquierdo puede considerarse como un esfuerzo equivalente del estado general de esfuerzo. Por lo general este esfuerzo se llama esfuerzo de von Mises

(σ 1 −σ 2 )2 + (σ 2 −σ 3)

2 + (σ 3 −σ 1)2

2≥ Sy

Teoría de la energía de distorsión para materiales dúctiles

Para el caso de esfuerzo plano El lado izquierdo puede considerarse como un esfuerzo equivalente del estado general de esfuerzo. Por lo general este esfuerzo se llama esfuerzo de von Mises

(σ A2 −σ Aσ B +σ B

2 )12 ≥ Sy

Teoría de la energía de distorsión para materiales dúctiles

Para el caso de esfuerzo tridimensional, el esfuerzo von Mises puede escribirse como

12((σ x −σ y )

2 + (σ y −σ z )2 + (σ z −σ x )

2 + 6(τ xy2 +τ yz

2 +τ zx2 ))

12 ≥ Sy

Ejemplo

Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos a) Dado que no existe esfuerzo cortante en este elemento el esfuerzo, los esfuerzos normales son iguales a los esfuerzos principales. Los esfuerzos principales ordenados son Aplicando la teoría de cortante máximo:

σ x = 70MPa σ y = 70MPa τ xy = 0MPa

σ 1 =σ A = 70MPa σ 2 =σ B = 70MPa σ 3 = 0MPa

τmax =σ 1 −σ 3

2= 70 − 0

2= 35MPa

τmax = 35MPa ≥100MPa

2

No se satisface el criterio, por tanto el material no fluirá

n =Sy2τmax

= 100MPa2*35MPA

= 1.43

Ejemplo

Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos a) Aplicando la teoría de energía de distorsión:

σ x = 70MPa σ y = 70MPa τ xy = 0MPa

No se satisface el criterio, por tanto el material no fluirá

σVM = (σ A2 −σ Aσ B +σ B

2 )12 = 70MPa

70MPa ≥100MPan = Sy

σVM

= 100MPa70MPa

= 1.43

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos b) A partir de la ecuación Aplicando la teoría de cortante máximo:

σ x = 60MPa σ y = 40MPa τ xy = −15MPa

σ 1 =σ A = 68MPa σ 2 =σ B = 32MPa σ 3 = 0MPa

σ A ,σ B =σ x +σ y

σ x −σ y

2⎛⎝⎜

⎞⎠⎟

2

+τ xy2

σ A ,σ B =60 + 402

± 60 − 402

⎛⎝⎜

⎞⎠⎟2

+ (−15)2

σ 1 −σ 3

2= 34MPa n =

Sy2τmax

= 10068

= 1.47

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos b) A partir de la ecuación Aplicando la teoría de la energía de distorsión:

σ x = 60MPa σ y = 40MPa τ xy = −15MPa

σ A ,σ B =60 + 402

± 60 − 402

⎛⎝⎜

⎞⎠⎟2

+ (−15)2

n =SyσVM

= 10059

= 1.70

σVM = (σ A2 −σ Aσ B +σ B

2 )12

= (682 − 68*32 + 322 )12

= 59MPa

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos c) A partir de la ecuación Aplicando la teoría de cortante máximo:

σ x = 0MPa σ y = 40MPa τ xy = 45MPa

σ A ,σ B =0 + 402

± 0 − 402

⎛⎝⎜

⎞⎠⎟2

+ (45)2

n =Sy2τmax

= 1002*50

= 1

σ A = 70MPa σ B = −30MPa

σ 1 =σ A = 70MPa σ 2 =σ B = −30MPa σ 3 = 0MPa

τmax =σ 1 −σ 3

2= 50MPa

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos c) A partir de la ecuación Aplicando la teoría de la energía de distorsión:

σ x = 0MPa σ y = 40MPa τ xy = 45MPa

σ A ,σ B =0 + 402

± 0 − 402

⎛⎝⎜

⎞⎠⎟2

+ (45)2

σ A = 70MPa σ B = −30MPa

σVM = (σ A2 −σ Aσ B +σ A

2 )12

= (702 + 70*30 + 302 )12

= 87.6MPa

n =SyσVM

= 10087.6

= 1.14

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos d) A partir de la ecuación Aplicando la teoría de cortante máximo:

σ x = −40MPa σ y = −600MPa τ xy = 15MPa

σ A ,σ B =−40 − 60

2± −40 + 60

2⎛⎝⎜

⎞⎠⎟2

+ (15)2

n =Sy2τmax

= 1002*34

= 1.47

σ A = −32MPa σ B = −68MPa

σ 1 = 0MPa σ 3 =σ B = −68MPa

τmax =σ 1 −σ 3

2= 34MPa

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos d) A partir de la ecuación Aplicando la teoría de la energía de distorsión

n =SyσVM

= 10059

= 1.70

σ x = −40MPa σ y = −600MPa τ xy = 15MPa

σ A ,σ B =−40 − 60

2± −40 + 60

2⎛⎝⎜

⎞⎠⎟2

+ (15)2

σ A = −32MPa σ B = −68MPa

σVM = (σ A2 −σ Aσ B +σ B

2 )12

= (−322 − 32*68 + 682 )12

= 59MPa

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos e) Aplicando la teoría de cortante máximo:

σ 1 = 30MPa σ 2 = 30MPa σ 3 = 30MPa

n =Sy2τmax

= 1002*0

= ∞

τmax =σ 1 −σ 3

2= 0MPa

Ejemplo Un acero laminado en caliente tiene una resistencia a la fluencia de 100 Mpa y una deformación real a la fractura de 0.55 . Estime el factor de seguridad para los siguientes estados de esfuerzos e) Aplicando la teoría de la energía de distorsión:

σ 1 = 30MPa σ 2 = 30MPa σ 3 = 30MPa

n =SyσVM

= 1000

= ∞

τmax =σ 1 −σ 3

2= 0MPa

σVM = (σ 1 −σ 2 )2 + (σ 2 −σ 3)

2 + (σ 3 −σ 1)2

2σVM = 0MPa

Teoría de Mohr-Coulomb para materiales dúctiles

No todos los materiales tienen resistencias a la compresión iguales a sus valores correspondientes en tensión. Algunos ejemplos se citan a continuación: •  La resistencia a la fluencia de las aleación de magnesio en compresión llega a

ser un 50% de su resistencia a la fluencia en tensión. •  La resistencia última de los hierros fundidos grises en compresión triplica o

cuadruplican la resistencia última a tensión.

En importante entonces, estudiar la falla de materiales cuyas resistencias en tensión y compresión no son iguales. La teoría de Mohr se basa en tres estados de cargas simples: “tensión”, “cortante” y “compresión”, a la fluencia si el material puede fluir, o a la ruptura.

Teoría de Mohr-Coulomb para materiales dúctiles

La teoría de Mohr consistía en usar los resultados de los ensayos a tensión, compresión y cortante al fin de elaborar los tres círculos de Mohr que se presentan en la siguiente figura, con el objeto de definir la envolvente de falla, representada como la línea ABCD, arriba del eje horizontal. Es importante aclarar que la envolvente no es necesario que sea recta. El argumento se basa y que crecen durante la carga hasta que uno de ellos se hace tangente a la evolvente de falla, definiendo ésta.

Teoría de Mohr-Coulomb para materiales dúctiles

Una variación de la teoría de Mohr, llamada teoría de Mohr-Coulomb, o teoría de fricción interna, supone que la frontera BDC es una recta. Con el anterior supuesto sólo son necesarias las resistencias a la tensión y a la compresión. Considerando el ordenamiento convencional de los esfuerzos principales, el circulo de Mohr más grande formado por las tensiones principales, crece durante la carga hasta que se hace tangente a la envolvente de falla, por tanto definiendo la falla.

B2C2 − B1C1C1C2

= B3C3 − B1C1C1C3

Donde

B1C1 =St2

B2C2 =(σ 1 −σ 3)

2B3C3 =

Sc2

La distancia desde el origen hasta

C1 =St2

C3 =Sc2C2 =

σ 1 +σ 3

2

Teoría de Mohr-Coulomb para materiales dúctiles

Así B2C2 − B1C1

C1C2

= B3C3 − B1C1C1C3

(σ 1 −σ 3)2

− St2

St2− σ 1 +σ 3

2

=

Sc2− St2

St2+ Sc2

Simplificando, obtenemos

σ 1

St− σ 3

Sc= 1

La anterior ecuación, representa las condiciones que deben satisfacer las tensiones principales para que el material falle.

Teoría de Mohr-Coulomb para materiales dúctiles

Para el caso de esfuerzo plano, cuando los dos esfuerzos principales diferentes de cero son , se tiene una situación similar a los tres casos dados para la teoría del ECM. Es decir las condiciones de falla son: 1. 3. 2.

σ A ,σ B

σ A ≥σ B ≥ 0

σ 1 =σ A σ 3 = 0

σ A ≥ Stσ A ≥ 0 ≥σ B

σ 1 =σ A σ 3 =σ B

(σ A

St− σ B

Sc) ≥1

0 ≥σ A ≥σ B

σ 1 = 0 σ 3 =σ B

σ B ≤ −SC

Teoría de Mohr-Coulomb para materiales dúctiles

Teoría de Mohr-Coulomb para materiales dúctiles

Un eje de 25 mm de diámetro se somete a un par de torsión estático de 230Nm. El eje está hecho de aluminio fundido 195-T6, con una resistencia a la fluencia en tensión de 160MPa y una resistencia de fluencia a la compresión de 170MPa. Calcule el factor de seguridad del eje Los dos esfuerzos principales diferentes de cero son 75 y -75 MPa. Lo cual hace que los esfuerzos principales ordenados 75,0,-75. Obteniendose como factor de seguridad

J = πr4

2τmax =

TrJ

τmax =2Tπr3

= 2*230π + (12.5*10−3)3

= 75MPa

n = 1σ 1 St −σ c Sc

= 175 160 − (−75) 170

= 1.10

Teoría de esfuerzo normal máximo para materiales frágiles

La teoría de esfuerzo normal máximo (ENM) estipula que la falla ocurre cuando uno de los tres esfuerzos principales es igual o excede la resistencia. De nuevo se colocan los esfuerzos principales de un estado general de esfuerzos en forma ordenada. Entonces, esta teoría predice que la falla ocurre cuando Donde Sut y Suc son las resistencias a la tensión y a la compresión, respectivamente, dadas como cantidades positivas.

σ 1 ≥ Sut σ 3 ≤ −Suc

Teoría de esfuerzo normal máximo para materiales frágiles

(esfuerzo plano) En el caso de esfuerzo plano, con Las ecuaciones de criterio falla pueden convertirse en ecuaciones de diseño. La teoría de esfuerzo normal máximo no es muy buena para predecir la falla en el cuarto cuadrante del plano . Por tanto no se recomienda usar esta teoría de falla, se ha incluido debido a razones históricas. .

σ A ≥ Sut σ B ≤ −Suc

σ A ≥σ B

σ A =Sutn

σ B = − Sucn

σ A ,σ B

Modificaciones de la teoría de Mohr- Coulomb para materiales frágiles

.

σ A =Sutn

σ A ≥σ B ≥ 0

σ A

Sut− σ B

Suc= 1n

σ A ≥ 0 ≥σ B

σ B = − Sucn

0 ≥σ A ≥σ B

Modificaciones de la teoría de Mohr-modificada

.

σ A =Sutn

σ A ≥σ B ≥ 0

(Suc − Sut )σ A

SucSut− σ B

Suc= 1n

σ A ≥ 0 ≥σ B

σ B = − Sucn

0 ≥σ A ≥σ B

σ B

σ A

≤1y  

σ A ≥ 0 ≥σ B

σ B

σ A

>1y  

1.  

2.  

3.  

Modificaciones de la teoría de Mohr-modificada

.

Ejemplo

.

Considere una llave, fabricada con hierro fundido, maquinada a la dimensión La fuerza F que se requiere para fracturar esta parte se puede considerar como la resistencia de la parte componente. Si el material es una fundición de hierro ASTM grado 30, calculo la fuerza F con a)  Modelo de falla de Morh-Coulomb b)  B) Modelo de falla de Morh modificado

En la tabla A-24 obtenemos que la resistencia última a tensión en 31kpsi y la resistencia última a compresión 109 kpsi. Calculamos el esfuerzo de flexión y el cortante en A

Taller

Una barra de acero laminado caliente tiene una resistencia a la fluencia mínima en tensión y compresión de 350 MPa. Usando las teorías de la energía de distorsión y del esfuerzo cortante máximo determine los factores de seguridad de los siguientes estados de esfuerzo plano: .

σ x = 100MPa σ y = 100MPa τ xy = 0MPa

σ x = 100MPa σ y = 50MPa τ xy = 0MPaσ x = 100MPa σ y = 0MPa τ xy = −75MPa

σ x = −50MPa σ y = −75MPa τ xy = −50MPa

σ x = 100MPa σ y = 20MPa τ xy = −20MPa

Taller

Repita el problema anterior para una barra de acero 1030 laminado en caliente y: .

σ x = 25kpsi σ y = 15kpsi τ xy = 0kpsi

σ x = 15kpsi σ y = −15kpsi τ xy = 0kpsiσ x = 20kpsi σ y = 0kpsi τ xy = −10kpsi

σ x = −12kpsi σ y = −15 τ xy = −9kpsi

σ x = −24kpsi σ y = −24kpsi τ xy = −9kpsi

Taller

Un material frágil tienen las propiedades Sut = 30 kpsi y Suc = 90 kpsi. Use las teorías de Mohr- Coulumb frágil y modificada de Mohr para determinar el factor de seguridad en los siguientes estados de esfuerzos: .

σ x = 25kpsi σ y = 15kpsi τ xy = 0kpsiσ x = 15kpsi σ y = −15kpsi τ xy = 0kpsiσ x = 20kpsi σ y = −10kpsi τ xy = 0kpsi

σ x = −15kpsi σ y = −10 τ xy = −15kpsi

σ x = −20kpsi σ y = −20kpsi τ xy = −15kpsi

Taller

Un acero AISI 4142 templado y revenido a 800ºF exhibe Syt= 235 kpsi Syc = 285 kpsi para el estado de esfuerzo dado determine el factor de seguridad: .

σ x = 150kpsi σ y = −50kpsi τ xy = 0kpsiσ x = −150kpsi σ y = 50kpsi τ xy = 0kpsiσ x = 125kpsi σ y = 0kpsi τ xy = −75kpsi

σ x = −80kpsi σ y = −125 τ xy = 50kpsi

σ x = 125kpsi σ y = 80kpsi τ xy = 75kpsi

Tarea

Libro guía 5.36 5.63 .