diseño_calc estruc reser rap v=20 m3-c.xls

40
DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3 I. GEOMETRÍA DEL RESERVORIO TIPO CIRCULAR ADOPTADOS Volumen: 2000.00 m3 Borde libre: 1.00 m Altura del agua h: 6.00 m Diámetro interno (D): 20.00 m Altura ingreso de tubería 0.20 m Peralte viga de borde 0.15 m Altura Interna (H): 7.00 m Altura total la pared: 7.15 m Esbeltez 3.33 m 0 Volumen Final 1884.96 m 0 2.40 Tn/m3 Gravedad: 9.81 m/s2 Resistencia del concreto: f'c= 210.00 Kg/cm2 Módulo de Elasticidad: E= 218820 Kg/cm2 Módulo de Poisson: 0.20 Espesor del Techo : 0.15 RESERVORIO APOYADO CI II. CAPACIDAD DE CARGA DEL SUELO SEGÚN TERZAGHI 17.0 ° (ángulo de fricción interna del suelo) PV.natural = 1620 0.00162 Kg / cm3 C´ = 0.39 B = 1.00 m 100 cm Z = 0.50 m 50 cm Según gráfico de Terzaghi tenemos : a) Factores de Capacidad de Carga Nc = 12.340 Nq = 4.77 Nw = 3.53 qd = qc / cs Cs = 3.00 1) Cimentación Corrida C1 qc = 5.44 Kg/cm² σt = 1.81 Kg/cm² 2) Cimentación Cuadrada C2 qc = 6.82 Kg/cm² σt = 2.27 Kg/cm² 3) Cimentación Circular C3 qc = 6.76 Kg/cm² σt = 2.25 Kg/cm² qd = 1.81 Kg/cm² Tt = 0.72 Kg/cm² P.e. del concreto (γc): Para el siguiente cálculo debemos de asumir un ancho de cimentación igual a un metro lineal (B) de determinar la capacidad portante del suelo. Para fines de diseño se estimará además la profu cimentación, teniendo en cuenta que por lo general el cimiento tiene un espesor t=0.30 a 0.50m. plataformeado del suelo. Φ = Kg / m 3 = proporcionado h(del a 0.40m D H

Upload: carlos-julca-varas

Post on 12-Jan-2016

15 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

I. GEOMETRÍA DEL RESERVORIO TIPO CIRCULAR

ADOPTADOS Volumen: 2000.00 m3Borde libre: 1.00 m

Altura del agua h: 6.00 mDiámetro interno (D): 20.00 m

Altura ingreso de tubería 0.20 mPeralte viga de borde 0.15 m

Altura Interna (H): 7.00 mAltura total la pared: 7.15 m

Esbeltez 3.33 m 0Volumen Final 1884.96 m 0

2.40 Tn/m3Gravedad: 9.81 m/s2

Resistencia del concreto: f'c= 210.00 Kg/cm2Módulo de Elasticidad: E= 218820 Kg/cm2

Módulo de Poisson: 0.20Espesor del Techo : 0.15

RESERVORIO APOYADO CIRCULARII. CAPACIDAD DE CARGA DEL SUELO SEGÚN TERZAGHI

17.0 ° (ángulo de fricción interna del suelo)

PV.natural = 1620 0.00162 Kg / cm3 C´ = 0.39B = 1.00 m = 100 cmZ = 0.50 m = 50 cm

Según gráfico de Terzaghi tenemos :a) Factores de Capacidad de Carga

Nc = 12.340Nq = 4.77Nw = 3.53

qd = qc / csCs = 3.00

1) Cimentación Corrida

q=PVxZ

C1 qc = 5.44 Kg/cm² σt = 1.81 Kg/cm²2) Cimentación Cuadrada

C2 qc = 6.82 Kg/cm² σt = 2.27 Kg/cm²

3) Cimentación Circular

C3 qc = 6.76 Kg/cm² σt = 2.25 Kg/cm²

qd = 1.81 Kg/cm²Tt = 0.72 Kg/cm²

P.e. del concreto (γc):

Para el siguiente cálculo debemos de asumir un ancho de cimentación igual a un metro lineal (B) con la finalidad de determinar la capacidad portante del suelo. Para fines de diseño se estimará además la profundidad de la cimentación, teniendo en cuenta que por lo general el cimiento tiene un espesor t=0.30 a 0.50m. debajo del nivel plataformeado del suelo.

Φ =

Kg / m3 =

Como se cuenta con ensayo de suelos emplearemos el valor proporcionado

h(del agua)

0.40m

D

r

H

C32
DEL ESTUDIO DE SUELOS, DENSIDAD HÚMEDA DEL SUELO
C33
USER: VER HOJA "SUELOS" Nq/Nc
C43
FS
C59
En caso de que se tenga la capacidad portante del suelo mediante otro ensayo, trabajar con ese valor
C60
Capacidad Portante del Suelo
Page 2: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

III. DISEÑO DE LA PARED DEL RESERVORIO

1. PREDIMENSIONAMIENTO DE LA PARED

El Empuje del agua en las paredes de un reservorio circular muestra la siguiente distribución de fuerzas:

1.00 ma) Cálculo del Empuje del agua:

6.00 mW= 1.00 (Tn/m3) P.e. del agua

Wu= 1.65*1.7*W= Wu= 2.80 Tn/m3H= 6.00 m

E= 18.00 Tn

T=ExD/2b) Predimensionamiento del espesor de la pared ( e )

f'c= 210 Kg/cm²fy= 4200 Kg/cm²Ø = 0.65 (Del RNE)σt= 12.53e= 67.16 cm.

Adoptamos: e= 0.400 m Facilitar proceso constructivo

2. PREDIMENSIONAMIENTO DEL TECHOr= 0.025 m

ec= 0.000 m (Se considera entre 7 y 10 cm.)ec= 0.100 m Facilitar proceso constructivo

3. PREDIMENSIONAMIENTO DE LA LOSA DE FONDO

(RNE 2009)

h= 20/20= 1.000 m

4. PREDIMENSIONAMIENTO DEL ANILLO O VIGA CIRCUNFERENCIAL

a) Peralte de la vigaDiámetro Interno: 20.00 m (Considerando la mitad del reservorio)

(RNE 2009)

h= 20/20= 1.00 m (Adoptado)

b) Ancho de la viga

(RNE 2009)

b= 20/20= 1.00 m (Adoptado)

COMBINACIÓN DE CARGA

COM1= INERCIA + IMPULSIVACOM2= COMB1 + CONVECTIVACOM3= 1.4CM + 1.4PH + 1.7CVCOMB4= 1.25CM + 1.25PH + 1.25CVCOMB5= 1.25CM + 1.25PH + 1.25PH - INERCIA - IMPULSIVA - CONVECTIVACOMB6= 1.25CM + 1.25PH + 1.25PH + INERCIA + IMPULSIVA + CONVECTIVAENVOL-COMP.= COMB1+COMB2+…….+COM5+COM6ENVOL-TRACC.= 1.65(COMB1+COMB2+…….+COM5+COM6)ENVOL-FLEXION.= 1.30 (COMB1+COMB2+…….+COM5+COM6)

Emplearemos las siguientes combinaciones, recordemos que la carga wu, presión del agua (considerada como carga viva). Para el diseño por las envolventes debe ser amplificada por el coeficiente 1.65 para traccion, 1.3 para flexion y 1.0 para compresion:

E=(WxH^2)/2

σt=∅1.33√(f^′ c)e=WuxH/4σ D

h=L/20

h=Di/20

b=h

ec=P/180

F101
Es usual tomar igual al espesor de la pared, para espesores menores a 10cm
Page 3: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

VI. DISEÑO DEL ACERO EN LA SUPER ESTRUCTURA

a) Diseño de la Pared del Reservorio

-) DISEÑO ESTRUCTURAL POR FUERZA ANULAR - CARA EXTERNA

T= 16.40 Tn/mPmin= 0.002

As= 4.34 cm²b= 100.00 cmt= 0.40 m re= 2.5 cmd= 37.50 cm

Ash mínimo= 7.50 cm2

- ESPACIAMIENTO DEL ACERO ANULAR INTERNOCONSIDERANDO Ø= 1/2

1.27 cm² S=100xAb/AsS= 15.00 cm

Usaremos 1 Ø 1/2 @ 15.00 cm.

→ Ab =

Acero Horizontal en la Cara Externa y en la Cara Interna

As=T/0.90fy

G142
User: Dato Sap F11
Page 4: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

-) DISEÑO ESTRUCTURAL POR MOMENTO FLEXIONANTE CARA INTERNA

Mr máx = Ø K b d^2d = 37.50 cm.

recubrimi = 2.50 cm. DECRIP. FLEXIONØ = 0.90 Mu (-) = 0.69 Tn/mb = 100.00 cm. W = 0.00260d = 37.50 cm. ρ = 0.00013 OK!

f´c = 210 Kg/cm² ρb= 0.0216fy = 4200 Kg/cm² ρmin = 0.00200

Ku máx = 49.53 Kg/cm² ρmax= 0.01620Mr máx = 62.69 Tn/m As (+)= 7.50 cm2

Ok, cumple DIAM. 1/2Abarra 1.27 cm2Espac. S= 16 cmAs (-) = 1/2 '' @ 25 cm

Acero Vertical hasta-Cara Interna

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

G199
User: Dato Sap M22
Page 5: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

-) DISEÑO ESTRUCTURAL POR MOMENTO FLEXIONANTE CARA EXTERNA

Mr máx = Ø K b d^2d = 37.50 cm.

recubrimi = 2.50 cm. DECRIP. FLEXIONØ = 0.90 Mu (+) = 0.37 Tn/mb = 100.00 cm. W = 0.00139d = 37.50 cm. ρ = 0.00007 OK!

f´c = 210 Kg/cm² ρb= 0.0216fy = 4200 Kg/cm² ρrºtº = 0.00200

Ku máx = 49.53 Kg/cm² ρmax= 0.01620Mr máx = 62.69 Tn/m As (+)= 7.50 cm2

Ok, cumple DIAM. 1/2Abarra 1.27 cm2Espac. S= 16 cmAs (+) = 1/2 '' @ 25 cm

-) VERIFICACIÓN DEL CORTANTE EN LA PARED DEL RESERVORIO

Cortante Positivo (V): 1.44 Tn/mCortante Negativo (V): 3.13 Tn/m

Vc = Ø 0.53 ((f´c)^(1/2)) b d Ø = 0.75

Vc = 21.60 TnVc = 21.60 Tn > Vu. = 3.13 Tn

OK, La sección no necesita refuerzo por corte (Diseño de estribos)

b) Diseño de la viga anular superior

-) ACERO LONGITUDINAL INTERNO EN VIGA ANULAR

T= 1.73 Tn/mPmin= 0.00242

As= 0.59 cm²b'= 100.00 cmh'= 1.00 m re= 2.5 cmd= 97.50 cm

Ash mínimo= 23.60 cm2As= 23.60 cm²

1 1ϕ ϕ

3/8 3/80.71 cm² 0.71 cm²

Área total = 1.42 cm² Cambie combinación

Acero Vertical hasta una Altura H-Cara Externa

As=T/0.70fy

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

G222
User: Dato Sap M22
C238
Sacar del SAP V23
C239
Sacar del SAP V23
G271
User: Dato Sap F11
H275
FRANCISCO: En muros expuestos a la intemperie / Cara expuesta a la humedad
Page 6: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

-) ACERO LONGITUDINAL EXTERNO EN VIGA ANULAR

T= 2.11 Tn/mPmin= 0.00242

As= 0.72 cm²b'= 100.00 cmh'= 1.00 m re= 2.5 cmd= 97.50 cm

Ash mínimo= 23.60 cm2As= 23.60 cm²

1 1ϕ ϕ

3/8 3/80.71 cm² 0.71 cm²

Área total = 1.42 cm² Cambie combinación

-) ACERO POR CORTANTE EN VIGA ANULAR

Vdu= 1.840 TnVc= 74.884 TnVs= -72.431 Tn No necesita Diseño por corteVs< 296.711 Tn

Usaremos: 3/8 OkAv= 1.42 cm²

Smáx= 50.00 cmSmáx= 60.00 cm

S= 50.00 cm

Usaremos Ø de 3/8: Todos '' @⍁ 50.00 cm

As=T/0.70fy

Vc=0.53√(f^′ c) x bd

Vs=Vn-Vc

Vs<2.1√(f^′ c) 〖 b〗_w d

S=(∅Av fy d)/V_s

G294
User: Dato Sap F11
C310
Del SAP F22
Page 7: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

c) Diseño del Techo

-) DISEÑO ESTRUCTURAL POR MOMENTO FLEXIONANTE EN LA LOSA DE TECHO

Momento Positivo Mu (+): 0.28 Tn/mMomento Negativo Mu (-): 0.35 Tn/m

Mr máx = Ø K b d^2d = 7.50 cm.

recubrimi = 2.50 cm. DECRIP. FLEXIONØ = 0.90 Mu (+) = 0.30 Tn/mb = 100.00 cm. W = 0.02870d = 7.50 cm. ρ = 0.00144 OK!

f´c = 210 Kg/cm² ρb= 0.0216fy = 4200 Kg/cm² ρrºtº = 0.00200

Ku máx = 49.53 Kg/cm² ρmax= 0.01620Mr máx = 2.51 Tn/m As (+)= 1.50 cm2

Ok, cumple DIAM. 3/8Abarra 0.71 cm2Espac. S= 30 cmAs (-,+) = 3/8 '' @ 20 cm

-) VERIFICACIÓN DEL CORTANTE EN LA LOSA DE TECHO

Cortante Positivo (V): 0.11 Tn/mCortante Negativo (V): 1.00 Tn/m

Vc = Ø 0.53 ((f´c)^(1/2)) b d Ø = 0.75

Vc = 4.32 TnVc = 4.32 Tn > Vu. = 1.00 Tn

OK, La sección no necesita refuerzo por corte (Diseño de estribos)

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

C341
Sacar del SAP V23
C342
Sacar del SAP V23
G348
User: Dato Sap M22
C378
Sacar del SAP V23
C379
Sacar del SAP V23
Page 8: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

VII. DISEÑO DEL ACERO EN LA SUB ESTRUCTURA

a) Diseño del Cimiento Corrido

1. PREDIMENSIONAMIENTOCapacidad Portante: 0.72

0.40 m* Ancho de Cimentación : ( B )

Asumimos:7.15 m B = 0.60 m OK

6.00 m * Ancho de punta : ( D )

0.50 Consideramos : B/3= 0.201.00 m -0.80 m B/4= 0.15

D = 1.00 m1.00 m

B * Peralte de punta : ( t )0.60 m

t= 1.00 m

ÁREA DE INFLUENCIA DE LAS REACCIONES:

Nº Divisiones= 32Diámetro Interno= 20.00 mDiámetro Externo= 20.80 mÁrea para Reacciones= 0.80 m2

Mediante el programa SAP2000, obtenemos las siguientes reacciones por servicio:RD= 0.45 Tn Reacción por Carga MuertaRL= 0.05 Tn Reacción por Carga VivaPH= 2.50 Tn Reacción por Presion PH

MV= 0.69 Tn-m Momento Resultante de Volteo a Nivel de la Base

CÁLCULO DEL MOMENTO ESTABILIZANTE RESPECTO a B

P.V. Suelo= 1.62 Tn/m3 p.e. Cº= 2.40 Tn/m3 Wu (Agua): 1.65 Tn/m3 (Factor Sanitario)

DESCRIPCIÓN Área Distancia ÁREA X P.E Factor Fuerza Momento1 0.500 0.500 0.810 1.25 1.013 0.5062 0.600 0.300 1.440 1.25 1.800 0.5403 -4.800 1.000 -7.920 1.25 -9.900 -9.900

RD (Por ml) 1.200 0.225 1.25 0.281 0.337RL (por ml) 1.200 0.025 1.25 0.031 0.037PH (por ml) 1.200 1.248 1.25 1.560 1.872

SUMA -5.215 -6.607

CÁLCULO DE LA EXCENTRICIDAD

e = -1.099 m

* Excentricidad maxima :

e máx = B / 6 e máx. = 0.10 m

e = -1.10 < e. máx = 0.1 >e...!O.K.

ESFUERZO A NIVEL DE CIMENTACION :

T = (1 * Sum FV / B ) + - (6 * Sum FV * e ) / B^2

Tmáx = 8.685 Kg / cm2 < Tt <Tmax...!VERIFICAR y ancho de Cim.Tmin. = -10.423 Kg / cm2 > 0 <Tmin...!VERIFICAR

Como se cuenta con ensayo de suelos emplearemos el valor proporcionado

e = B/2 -(ME - MV)/Sum Fv

2

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

3

1

As=T/0.45fy

G414
FRANCISCO: Nunca será menor a 0.30m. Y se varía hasta que sea mayor al cimiento requerido
G420
FRANCISCO: SE CONSIDERA LA MISMA LONGITUD QUE EL ESPESOR DE LA LOSA
G424
FRANCISCO: Empezar con el mismo espesor de la losa de fondo
C428
User: En función de divisiones malla de elemetos finitos SAP
C434
User: Dato Sap
E447
Por metro lineal=Reaccion en punto*por divisiones/perimetro
Page 9: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

2. DISEÑO DEL TALÓN

Según triangulo de esfuerzos tenemos :

( T máx - T min ) / B = ( TH - T min. ) / D'

Despejando TH :

TH = -35.901 Kg / cm2

Cálculo de la Carga y Esfuerzos ejercidos en el Talón"TALON"

1.00 mW1= 15.37 Tn/m (Hacia Abajo)

B= 0.60 m

4.92 Tn-m1.40 -D'= 0.80 m V1=W1XD'= -12.30 Tn

TminTmáx TH

Cálculo del Momento y el Cortante Producidos por el Diagrama de Presiones

D'= -80.00 cm

M2= -60.53 Tn-m V2= 185.30 Tn

Momento Último de Diseño

Mu=lM2-M1l= 130.90 Tn-m Debido a que M1>M2 Se colocará el acero en la cara superior

DECRIP. FLEXIONMr máx = Ø K b d^2 Mu (+) = 130.90 Tn-m

d = 37.50 cm. W = 0.07881r.e= 4.00 cm. ρ = 0.00394 OK!Ø = 0.90 ρb= 0.0216b = 100.00 cm. ρmin = 0.00180 ACI - 318-11d = 96.00 cm. ρmax= 0.01620

f´c = 210 Kg/cm² As (+)= 37.83 cm2fy = 4200 Kg/cm² DIAM. 3/8

Ku máx = 49.53 Kg/cm² Abarra 0.71 cm2Mr máx = 410.82 Tn/m Espac. S= 0 cm

Ok, cumple As (+) = 3/8 '' @ 0 cm

M1=W1xD'2/2=

M2=[(Tmínx〖D′〗^2)/2+((TH-Tmín)x〖D′〗^2)/6]xB V2=[TmínxD′+(TH-Tmín)xD′/2]xB

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

Page 10: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

3. DISEÑO DE LA PUNTA

Según triangulo de esfuerzos tenemos :

( T máx - T min ) / B = ( T3 - T min. ) / (B-D")

Despejando TH :

T3 = -23.162 Kg / cm2

Cálculo de la Carga y Esfuerzos ejercidos en el Talón "PUNTA"

1.00 mW1= 4.01 Tn/m (Hacia Abajo)

B= 0.60 m

2.01 Tn-mD'' 1.00 m. -0.40 V1=W1XD"= 4.01 Tn

T3 TminTmáx

Cálculo del Momento y el Cortante Producidos por el Diagrama de Presiones

D"= 100.00 cm

M2= -9.65 Tn-m V2= -72.39 Tn

Momento Último de Diseño

Mu=lM2-M1l= 23.32 Tn-m Debido a que M1>M2 Se colocará el acero en la cara superior

DECRIP. FLEXIONMr máx = Ø K b d^2 Mu (+) = 23.32 Tn-m

d = 37.50 cm. W = 0.01454r.e= 7.50 cm. ρ = 0.00073 OK!Ø = 0.90 ρb= 0.0216b = 100.00 cm. ρmin = 0.00180 ACI - 318-11d = 92.50 cm. ρmax= 0.01620

f´c = 210 Kg/cm² As (+)= 16.65 cm2fy = 4200 Kg/cm² DIAM. 3/8

Ku máx = 49.53 Kg/cm² Abarra 0.71 cm2Mr máx = 381.41 Tn/m Espac. S= 0 cm

Ok, cumple As (+) = 3/8 '' @ 0 cm

AREA DE ACERO POR REPARTICION :

Asrp = 0.0025 b d /2 = 11.56 cm2

Asrp = 11.56 cm^2 - ESPACIAMIENTO DEL ACERO :

CONSIDERANDO Ø= 3/80.71 cm²

S = 6.14 cm Consideramos s = 5.00 cm

Usaremos 1 Ø 3/8 @ 5.00 cm.

M1=W1xD"2/2=

→ Ab =

M2=[(T3x〖D′′〗^2)/2+((Tmáx-T3)x〖D′′〗^2)/3]xB V2=[T3xD"+(Tmax-T3)xD"/2]xB

w=0.85-√(0.7225-1.70xMu/(Ø∗f^′ cxBxd^2 ))

Page 11: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

4. VERIFICACIÓN DEL CORTANTE-) Cortante Máximo Reistente del Concreto

Vc = Ø 0.53 ((f´c)^(1/2)) b d Vu= 185.30 Tnr.e= 7.50 cm. Ø = 0.75b = 100.00 cm. Vc = 53.28 Tnd = 92.50 cm.

f´c = 210 Kg/cm²

Vc = 53.28 Tn > Vu. = 185.30 TnAUMENTAR PERALTE

b) Diseño de la Losa de Fondo

21.60 mp.e C°A°= 2.40 Tn/m3

Ancho de influencia: 100.00 cm.

A) POR CARGA MUERTA

e. losa: 1.00 mPeso propio: 2.40 Tn/m2

Piso terminado: 0.10 Tn/m22.50 Tn/m2

B) POR CARGA VIVA

Peso del agua= 6.00 Tn/m2

C) CARGA ÚLTIMA FACTORADA

Wu=1.4xCD+1.7xCVWu= 13.70 Tn/m2

Verificamos los esfuerzos admisibles del suelo: T = (1 * Sum FV / B )Tt = 0.72 Kg / cm^2

Tmáx = 1.370 Kg / cm2 >Tt...!REFORZAR!

CHEQUEO DEL CORTANTE MÁXIMO

En todo el tramo: Vu= WuL/2= 147.96 Tn

Vc = Ø 0.53 ((f´c)^(1/2)) b d Ø = 0.75

f'c: 210 Kg/cm²r.e: 4.00 cm.b= 100.00 cm.h= 100.00 cmd= 96.00 cm

Vc = 55.30 TnVc = 55.30 Tn > Vu. = 147.96 Tn

AUMENTAR PERALTE

Se diseñará como si fuera una losa simplemente apoyada con la luz igual al diámetro interno, sin embargo, debido a que no existen excentricidades por fuerzas de volteo a nivel del suelo, únicamente deberán verificarse que los esfuerzos producidos en el mismo no sean mayores a su capacidad portante. Para ello se realizarán los metrados considerando las cargas distribuidas en 1 metro cuadrado.

Page 12: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

DISEÑO POR FLEXIÓNØ = 0.90

Ku máx = 49.53 Kg/cm² ( para f´c y fy indicado )Mr máx = Ø K b d^2= 410.82 Tn - m

DESCR. FLEXION DESCR. FLEXION

266.33 Tn-m OK 532.66 Tn-m AUMENTAR EL PERALTEW = 0.16988 W = 0.39985ρ = 0.00849 OK ρ = 0.01999 NOCUMPLEρb= 0.0216 ρb= 0.0216ρmin = 0.00180 ACI - 318-11 ρmin = 0.00180 ACI - 318-11ρmax= 0.01620 ρmax= 0.01620As (+)= 81.54 cm2 As (-)= 191.93 cm2DIAM. 3/8 DIAM. 3/8Abarra 0.71 cm2 Abarra 0.71 cm2Espac. S= 0.0 cm Espac. S= 0.0 cmAs (+) = 3/8 '' @ 0.0 cm As (-) = 3/8 '' @ 0.0 cm

AREA DE ACERO POR REPARTICION : Asrp= 0.0020 b d = 19.20 cm2

Asrp = 19.20 cm^2CONSIDERANDO Ø= 3/8

0.71 cm²S = 3.70 cm

Consideramos s = 0.00 cmUsaremos 1 Ø 3/8 @ 0.00 cm.

LONGITUD DE DESARROLLO :

L desarr. = 0.06 Av * fy / (f´c)^(1/2)

LONGITUD DE DESARROLLOØ 3/8 '' 1/2 '' 5/8 '' 3/4 '' 1 '' 1 3/8 ''f'c 210 210 210 210 210 210fy 4200 4200 4200 4200 4200 4200Ab 0.71 1.27 1.98 2.85 5.07 9.58

Ld (cm) 30.00 30.00 35.00 50.00 89.00 167.00L.T. TIPO B: 40.00 40.00 50.00 65.00 120.00 220.00L.T. TIPO C: 55.00 55.00 60.00 85.00 155.00 285.00

L. gancho Estribos 0.060 0.075

VIII. BOSQUEJO DEL RESERVORIODistribucion de Armadura Según CEPIS

b= 1.00 m 3/8 '' @ 20.00 cm 3/8 '' @ 20.00 cm

h= 1.00 m

4 Ø 3/8 ''

Ø de 3/8: Todos '' @⍁ @ 50.00 cm

1/2 '' @ 25.00 cm 1/2 '' @ 15.00 cm

7.00 m 1/2 '' @ 25.00 cm

e= 40 cm 6.00 m

1/2 '' @ 25.00 cm 1/2 '' @ 15.00 cm

Mu (+) = WuL2/8 Mu (-) = WuL2/12

→ Ab =

Page 13: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DISEÑO ESTRUCTURAL RESERVORIO CIRCULAR DE 2000.00 m3

3/8 '' @ 0.00 cm 3/8 '' @ 5.00 cm

3/8 '' @ 0.00 cm

1.00 m

3/8 '' @ 0.00 cm

3/8 '' @ 0.00 cm0.60 m

3/8 '' @ 0.00 cm -0.80 m 0.40 m 1.00 m20.00 m

Recubrimiento en la pared: 2.50 cm.Recubrimiento en la viga: 2.50 cm.

Recubrimiento en el cimiento corrido: 4.00 cm.Recubrimiento en la losa de fondo: 4.00 cm.

ESPESOR DE LOSA DE FONDO 100.00 cm.

IX. DISEÑO DE LA TUBERÍA DE LIMPIEZA Y REBOSE

1) DATOS: De acuerdo a las líneas de entrada y de salida, tenemos:

Diámetro de tub. de entrada (conducción) 2 ''Diámetro de tub. de salida 1 1/2 ''Volumen del reservorio (m3) 2000.00 m3Caudal Máximo Horario: 0.720 Lt/seg

2) DIMENSIONAMIENTO DE LA CANASTILLA:

DIAM. TUBERÍA D.Canastilla 3xD 6xD L. Canastilla L. Canast.1 1/2 '' 3 '' 11.43 cm 22.86 cm 18.00 cm 8 ''

3) DISEÑO DE LA TUBERÍA DE LIMPIEZA Y REBOSE:

Q: Qmáxh: 0.72 Lt/seg =0.000720 m³/seg5 m/seg

0.6 m/seg

Dmáx: 1.54 Pulg.Dmin: 0.53 Pulg.

Por lo tanto usaremos diámetro de: 2.00 Pulg.

D. REBOSE D.Cono de Reb.2 '' 4 ''

Este diámetro deberá tener una capacidad mayor al del caudal máximo horario total que ingresa al reservorio. Para que esto se cumpla, dimensionaremos la tubería con una capacidad cercana a su límite máximo.

Vmáx:

Vmín: 4

QD

V

4

QD

V

Page 14: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

DIMENSIONES DEL RESERVORIO

DENOMINACIONDimensiones

(m)Diámetro interno (D): 20.00Altura Interna (H): 7.00Altura del agua h: 6.00Espesor del cilindro 0.40Espesor de la cubierta 0.10Espesor del fondo 1.00

CALCULO DE CARGA MUERTA

CALCULO DEL PESO DE TECHODATOS

Unidades ObservacionesD 20.00 m Radio de techot 0.1 m Espesor de techo

Concreto 2400 kg/m3 Peso especifico del concreto

CALCULOSUnidades Observaciones

A 314.16 m2V 31.42 m3 V=A*tW 75398.22 kg W=V*Concreto

CALCULO DEL PESO DE LAS PAREDESDATOS

Unidades ObservacionesR 10 m Radio de tanqueH 7 m Altura de tanquet 0.4 m Espesor de las paredes

Concreto 2400 kg/m3 Peso especifico del concreto

CALCULOSUnidades Observaciones

V 179.45 m3W 430674.65 kg W=V*concreto

CALCULO DEL PESO DEL FONDODATOS

Unidades ObservacionesR 10 m Radio de tanquet 1 m Espesor del fondo

Concreto 2400 kg/m3 Peso especifico del concreto

CALCULOSUnidades Observaciones

V 314.16 m3W 753982.24 kg W=V*concreto

CALCULO DE CARGA VIVA

CALCULO DE LA CARGA VIVADATOS Unidades Observaciones

CV´ 50 kg/m2 Carga viva en kg/m2A 314.16 m2 Area del techoCALCULOSCV 15707.96 kg CV=CV´*A

CALCULO DE CARGA SISMICA

PESO TOTAL EN LAS PAREDES DEL RESERVORIO

CARGA MUERTA = 1260055.11 kg

CARGA VIVA = 15707.96 kg CARGA VIVA

Ww= 1275763.08 kg

A=π*D^2/4

V=π*H*((R+t)^2-R^2))

V=π*R^2*t

SUMATORIA DE CARGAS MUERTAS

CARGA MUERTA+CARGA VIVA

Page 15: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

Ww= 1275763.08 kg

PESO DEL MURO CON INFLUENCIA DEL AGUADATOS

Unidades ObservacionesHL = 6 m Altura de aguaD = 20 m Diametro del tanqueL = 62.83 mH2O = 1000 kg/m3 Peso especifico del aguaCALCULOS

Unidades Observaciones

V = 1884.96 m3

WL = 1884955.59 kg Peso del agua

ANALISIS (Según metodologia del apendice A del ACI 350.3-01)

ANALISIS SISMICO ESTATICOCalculo de la masa efectiva, según ACI 350.3-01 seccion 9.5.2:Según ACI 350.0-01 seccion 9.5.29.5- Coeficiente de masa efectiva9.5.2- Estanques circulares

Donde:D = 20 Diametro del tanque

HL = 6 Altura del nivel de agua

En el diseño este valor sera : 0.553 OK

Peso del muro (Ww) + peso de techo (Wr) 506072.877 kgPeso del muro (Ww) 430674.654 kgPeso de techo (Wr) 75398.224 kgDiametro interior (D) 20.000 mAltura afectiva de liquido (Hi) 6.000 mCoeficiente de masa efectiva (Por peso propio) 0.553Masa efectiva (We) (por peso propio) 313465.60 kg

CALCULO DE LOS PESOS EFECTIVOS DEL LIQUIDO ALMACENADO COMPONENTE IMPULSIVA (Wi) Y COMPONENTE CONVECTIVA (Wc)

Según ACI 350.3-01 seccion 9.3.1:9.3- Estanques circulares9.3.1- Masas equivalentes de liquidos acelerados

En nuestro diseño:

CARGA MUERTA+CARGA VIVA

Perimetro; L=π*D

Volumen de agua almacenado

ε=[0.0151(D/H_L )^2-0.1908(D/H_L )+1.021]≤1.0

ε=

W_i/W_L =tanh [0.866(D∕H_L ]/0.866(D∕H_L ) W_c/W_L =0.230(D∕H_L ) tanh [3.68(H_L∕D)]

W_i/W_L =

W_e=εW_w+W_r

(ϵ)

Page 16: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

0.3443

0.6148

1884955.59 kg entonces tenemos :

648938.75 kg1158896.98 kg

CALCULO DE LAS ALTURAS AL CENTRO DE GRAVEDAD DE LA UBICACIÓN DE LAS COMPONENTES IMPULSIVAS Y CONVECTIVAS

Según ACI 350.3-01 seccion 9.3.1 :9.3.2 - Alturas a centros de gravedad (Excluyendo la presion de la base)

Para estanques con

Para estanques con

0.375

Para todos los estanques,

Como en nuestro caso 3.33 , entonces :

0.375 por lo tanto hi = 2.25 m

0.545 por lo tanto hc= 3.27 m

CALCULO DE LA FRECUENCIA DE VIBRACION NATURAL COMBINADA (wi) DE LA ESTRUCTURA Y EL COMPONENTE IMPULSIVO DEL LIQUIDO ALMACENADO

Según ACI 350.3-01 secccion 9.3.4 :9.3.4- Propiedades dinamicasPara estanques tipo 2.1 y 2.2 :

De la figura siguiente

Como el valor de WL =

W_i/W_L =W_c/W_L =

W_c=W_i=

D/H_L <1.333h_i/H_L =0.5-0.09375(D/H_L )

D/H_L ≥1.333h_i/H_L =

h_c/H_L =1-cosh 〖[3.68(H_L/D)]-1〗/(3.68(H_L/D)x sinh [3.68(H_L/D)] )D/H_L =

h_i/H_L =h_c/H_L =

ω_i=C_l x 12/H_L √(E_c/ρ_c )

(ω_i=C_l x 1/H_L √((〖10〗^3 E_c)/ρ_c ) en sistema internacional )

C_l=C_w x10√(t_w/12R)〖( C〗_l=C_w x√(t_w/10R) en sistema internacional)

T_i=2π/ω_i

Page 17: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

CALCULO DE LA FRECUENCIA DE VIBRACION NATURAL COMBINADA (wi)D 20.00 mHL 6.00 mHL/D 0.30Coef. Para det. Frecuencia Fund. Tanque -liquido (Cw) 0.14Espesor de muro (tw) 0.40 mRadio circular interno R 10.00 mCoef. Para det. Frecuencia Fund. Tanque -liquido (Cl) 0.286Resistencia a compresion del concreto (f´c) 210.00 kg/cm2Modulo de elasticidad del concreto (Ec) 21737.07 Mpa

2.40 KN.s2/m4Frec. Circ. Del modo de vibracion impulsivo (wi) 143.63 rad/s

Periodo fund. De oscilacion del tanque + comp. Impulsivo (Ti) 0.04 s

CALCULO DE LA FRECUENCIA DE VIBRACION DE LA COMPONENTE CONVECTIVA (Wc)

Según CI 350.3-01 seccion 9.3.4:

En el sistema internacional

Donde:

CALCULO DE LA FRECUENCIA DE VIBRACION DE LA COMPONENTE CONVECTIVA (Wc)HL 6 m 19.69 pieD 20 m 65.62 pieAceleracion debido a la gravedad (g) 9.81 m/s2 32.18 pie/seg2

9.746Frec. Circular de vibracion del primer modo convectivo (wc) 1.203 rad/s

Densidad del concreto (ρc)

ω_c=λ/√Dλ=√(3.68g tanh [3.68∗(H_L/D)] )T_c=2π/ω_c =(2π/λ) √D

[2π/λ] de la figura siguiente

C_w=9.375x〖10〗^(-2)+0.2039(H_L/D)-0.1034(H_L/D)^2-0.1253(H_L/D)^3+0.1267(H_L/D)^4-3.186 x〖〖10〗^(-2) (H_L/D)〗^5

λ

Page 18: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

Periodo natural del primer modo convectivo (Tc) 5.22 s

PARAMETROS PARA EL CALCULO DE LA FUERZA SISMICA, SEGÚN ACI 350.3-01 SECCION 4.2 Y EL RNE

El factor de zona que corresponde a la zona sismica del ACI 350.3 es similar a los valores especificados en la E.030 seccion 2.1. Por encontrarse en la zona de mayor amenaza sismica, se tomara como zona 3 con una aceleracion de 0.40 g ( según RNE E-0.30),lo que equivale a la zona 4 del ACI 350.3-01.

Como valor para el parametro del suelo, según la NTE E-0.30 le corresponde el tipo S3 con un valor de 1.4, esta vez tambien el valor es muy similar al propuesto por el ACI 350.3-01

La NTE E-0.30, categoriza a los reservorios como Edificacion esencial (A) al que le corresponde el factor 1.5. Se ve que la NTE E-030 no tiene mayores categorias para resservorios como el ACI 350.3-01, en el que categorizariamos este modelo en el segundo tipo que corresponde a reservorios destinados a permanecer en uso para propositos de mas alto de 1.5.emergencia en eventos sismicos. Para este modelo usaremos el valor

El coeficiente de reduccion de fuerza sismica en la E-030 no nos proporciona valores especificamente para tanques conteniendo liquidos. Al necesitar factores para componentes impulsiva y convectiva usaremos los valores de Rwi=2.75 y Rwc=1.00 (Tipo b)

Page 19: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

En nuestro caso al ser un tanque empotrado usaremos Rwi=2.75 y Rwc=1

Calculo de los factores de amplificacion espectral Ci y Cc, según ACI 350.3-01 seccion 4.2:

Ci se determina como se indica a continuacion:Para

Para

Cc se determina como se indica a continuacion:Para

En la practica, Tc usualmente sera mayor que 2.4 segundosEn los casos en que Tc < 2.4 s, se puede aproximarse usando la siguiente ecuacion:

Ci o Cc puede ser tomado de una forma conservadora como 2.75/S, para cualquier estanque.

CALCULO DE LOS FACTORES DE AMPLIFICACION ESPECTRAL Ci Y CcCoeficiente representativo de las caracteristicas del suelo (S) 1.2Periodo Fund. De oscilacion del tanque + Comp. Impulsivo (Ti) 0.044 sFactor de amplificacion espectral para el mov. Horizontal Ci 2.292Periodo natural del primer modo convectivo (Tc) 5.22 sFactor de amplificacion espectral para el mov. Horizontal Cc 0.220

Calculo del desplazamiento maximo del liquido contenido (dmax), según ACI 350.3-01 seccion 7.1

Factor de zona (Z) 0.4Factor de importancia (I) 1.5Desplazamiento maximo vertical del liquido contenido (dmax) (m) 1.58

d_max=(L/2)(ZSIxC_C rectangulard_max=(D/2)(ZSIxC_C circular

T_i≤0.31 sC_i=2.75/ST_i>0.31 sC_i=(1.25 )/〖T_i〗^(2/3) < 2.75/ST_c≥2.4 sC_c=6.0/〖T_c〗^2

C_c=1.5x 1.25/〖T_C〗^(2/3) = 1.875/〖T_C〗^(2/3) ≤2.75/S

Page 20: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

Calculo de las fuerzas laterales dinamicas, según ACI 350.3-01 seccion 4.1.1:

CALCULO DE FUERZAS DINAMICAS LATERALESFactor de correccion 𝜖 0.553Factor de zona (Z) 0.4Factor de importancia (I) 1.5Coeficiente representativo de las caracteristicas del suelo (S) 1.2Coef. De modificacion de respuesta fuerzas impulsivas (Rwi) 2Coef. De modificacion de respuesta fuerzas impulsivas (Rwc) 1Peso efectivo del muro del tanque 313465.60 kgPeso del techo del tanque (Wr) 75398.224 kgPeso equivalente de la componente impulsiva Wi 648938.75 kgPeso equivalente de la componente convectiva Wc 1158896.98 kgFactor de amplificacion espectral para el mov. Horizontal Ci 2.292Factor de amplificacion espectral para el mov. Horizontal Cc 0.220Fuerza inercial lateral por aceleracion del muro (Pw) 258609.12 kgFuerza inercial lateral por aceleracion del techo (Pr) 34384.73 kgFuerza lateral impulsiva (Pi) 535374.47 kgFuerza lateral convectiva (Pc) 183546.86 kg

CALCULO DEL CORTANTE BASALSegún ACI 350.3-01 seccion 4.1.14.1.2- Corte basal total, ecuacion generalEl corte basal debido a fuerzas sismicas aplicado en el fondo del estanque sera determinado por la siguiente ecuacion:

P_w=ZSIC_i x (εW_W)/R_wi P_(w´)=ZSIC_i x (εW_(W´))/R_wi P_r=ZSIC_i x W_r/R_wi P_i=ZSIC_i x W_i/R_wi P_c=ZSIC_c x W_c/R_wc

(ϵW_e)

V=√((P_i+P_w+P_r )^2+〖P_c〗^2 )

C505
o de la cupula de ser el caso
Page 21: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

CORTANTE BASALPi 535374.47 kg

Pw 258609.12 kgPr 34384.73 kgPc 183546.86 kgV 848459.50 kg

DISTRIBUCION VERTICAL DE FUERZAS LATERALESEl cortante basal debe ser distribuido sobre la altura de la estructura, de acuerdo a la expresion:

Donde:Fx = La fuerza en el nivel X de la estructura que debe aplicarse sobre toda el area

del tanque a ese nivel, de acuerdo a su distribucion de masa en cada nivel.Wi= Es el peso asignado a cada nivel de la estructura, siendo una fraccion de la

carga reactiva W.

NIVEL Pi (kg) hi(m) Pi.hi Fi(kg) W=Fi/LPESO PROPIO 313465.60 3.5 1097129.61 146622.82 4667.15CONVECTIVO 1158896.98 3.27 3791497.33 506704.07 16128.89IMPULSIVO 648938.75 2.25 1460112.19 195132.61 6211.26

6348739.12 848459.50

Ahora procedemos a calcular la distribucion de presiones en base a diferentes alturas del liquido (por metro lineal de altura) y diferentes angulos de rotacion (por metro cuadrado de area):

Presiones debidas a masa convectiva (Fuerza/Longitud) Presiones debidas a masa impulsiva (Fuerza/Longitud)

HL = altura de liquidoFuerza por unidad de longitud vertical Pcy y Piy

La fuerza producto de las paredes cilindricas de las paredes cilindricas se distribuye en partes o mitades del reservorio

Presiones debidas a masa convectiva ( Fuerza /Area) Presiones debidas a masa impulsiva ( Fuerza /Area)

Presiones en reservorios circulares

La fuerza producto de las paredes cilindricas se distribuye en la mitad del anillo de la base

Entonces para el fondo y=0 y un angulo de rotacion , se tendra las siguientes fuerzas

y = 00

Pwy = 18472.1 kg/m (Fuerza inercial lateral por Ww)Piy = 78075.44 kg/m (Fuerza impulsiva lateral por Wi)Pcy = 11140.63 kg/m (Fuerza convectiva lateral por Wc)

pwy = 587.98 kg/m2 (Fuerza inercial horizontal por Ww)piy = 4970.44 kg/m2 (Fuerza inercial horizontal por Wi)pcy = 1801.23 kg/m2 (Fuerza inercial horizontal por Wc)

Donde las fuerzas por m2 de area: pwy, piy y pcy seran las que se introduzcan en el modelo estructural para realizar el analisis sismico estatico del reservorio. La fuerza pwy es una constante inercial que se aplica en toda la pared cilindrica, quedandonoscomo variables a piy y pcy.

Se debe tomar en cuenta que estas fuerzas estaran en funcion de la altura del liquido contenido asi como del angulo de rotacion en planta.Como el actual modelo matematico esta dividido en 32 partes en planta y tiene unha altura de 2.6 m de agua, se calcularan las presionespara incrementos angulares de 11.25° (comenzando por 5.625) y variaciones en altura de 0.90 m ( comenzando por 0.4875 m, 1.4625 m y 2.4375 m). A continucaion detallamos en tabalas:

y (m) Pcy (kg/m) Piy (kg/m) pcy (kg/m2) piy (kg/m2)1 5.625 12525.61 66921.81 2015.40 4239.861 16.875 12525.61 66921.81 1937.95 4076.921 28.125 12525.61 66921.81 1786.03 3757.321 39.375 12525.61 66921.81 1565.47 3293.311 50.625 12525.61 66921.81 1284.75 2702.75

β(°)

F_x=(V∗w_x h_x)/(∑2_(i=1)^n▒〖w_i h_i 〗)

∑▒=

P_cy=(16P_cy)/9πR×cos β P_iy=(2P_iy)/πR×cos β

wy=P_w/(2×H_w ) P_cy=(Pc/2 (4H_L-6h_c-(6H_L-12h_c )×(y/H_L )))/〖H_L〗^2 P_iy=(P_i/2 (4H_L-6h_i-(6H_L-12h_i )×(y/H_L ))/〖H_L〗^2

pwy=Pwy/(π×R)

β=0β=

Page 22: Diseño_Calc Estruc Reser RAP V=20 m3-C.xls

1 61.875 12525.61 66921.81 954.65 2008.331 73.125 12525.61 66921.81 587.87 1236.721 84.375 12525.61 66921.81 198.50 417.593 5.625 15295.57 44614.54 2461.10 2826.573 16.875 15295.57 44614.54 2366.52 2717.953 28.125 15295.57 44614.54 2181.00 2504.883 39.375 15295.57 44614.54 1911.66 2195.543 50.625 15295.57 44614.54 1568.86 1801.843 61.875 15295.57 44614.54 1165.77 1338.883 73.125 15295.57 44614.54 717.88 824.483 84.375 15295.57 44614.54 242.40 278.395 5.625 18065.53 22307.27 2906.79 1413.295 16.875 18065.53 22307.27 2795.09 1358.975 28.125 18065.53 22307.27 2575.97 1252.445 39.375 18065.53 22307.27 2257.85 1097.775 50.625 18065.53 22307.27 1852.97 900.925 61.875 18065.53 22307.27 1376.88 669.445 73.125 18065.53 22307.27 847.88 412.245 84.375 18065.53 22307.27 286.29 139.20

Se calcula hasta 90° ya que lo demas sera simetrico y en la misma direccion x-x.Con los valores anteriores ya podremos ingresar las presiones en el modelo matematico para realizar un analisis estatico con presiones equivalentes.

Ahora asignamos la fuerza inercial producto del techo en el anillo

Sea: Pr(por punto) = Pr# de divisiones

# divisiones = 32

Pr(por punto) = 1074.52 kg/punto