curso verificador de gas

83
Curso Verificador de Gas Ing. Moisés Antonio Ponce Monjaráz

Upload: josafat

Post on 27-Jan-2016

508 views

Category:

Documents


29 download

DESCRIPTION

curso de verificador de gas área petrolera

TRANSCRIPT

Page 1: Curso Verificador de Gas

CursoVerificador de Gas

CursoVerificador de Gas

Ing. Moisés Antonio Ponce Monjaráz

Page 2: Curso Verificador de Gas

A mediados del siglo XIX, en algunos países surgió la necesidad de determinar gases tóxicos o asfixiantes en las minas de carbón. El gas metano generado por la descomposición de la materia orgánica y el azufre que origina el gas sulfhídrico; causaron serios daños a la salud de los trabajadores y en algunos casos la muerte.

Los trabajadores de entonces portaban pequeños animales aprisionados, tales como pájaros, roedores y perros, que se alteraban frente a la mínima señal de presencia de gases, lo que servía como indicador de una probable contaminación del lugar.

El rápido desarrollo industrial, el uso y manejo cada vez más frecuente de productos químicos tóxicos e inflamables en la industria, así como la creciente preocupación por la seguridad industrial y salud ocupacional por parte de los organismos gubernamentales, han conllevado a la creación de una serie de instrumentos para detectar gases y vapores, así como aparatos para el monitoreo que alertan inmediatamente cuando las concentraciones sobrepasan los límites permisibles para preservar la salud de los trabajadores.

Cuanto mayor es el riesgo en nuestra vida laboral diaria, más importante es contar con equipos de detección y análisis precisos y seguros, para poder controlar este tipo de situaciones peligrosas.

INTRODUCCION

Page 3: Curso Verificador de Gas

OBJETIVO

Al finalizar el curso el personal comprenderá la secuencia de pasos para realizar monitoreo de gases, reconocimiento de atmósferas peligrosas, manejo del detector múltiple y personal, censado de gases, limpieza, configuración y calibración de los aparatos en campo.

Page 4: Curso Verificador de Gas

UNIDAD 1

TEORÍA DE LA COMBUSTIÓN

Los incendios de cualquier tipo son originados por fuego no controlado. Este proceso natural tiene elementos comunes que es necesario tener presentes para prevenir y combatir los incendios y sus consecuencias. En este capítulo se explicarán el significado de los términos combustibles y comburentes, los efectos físicos de la combustión (calor y sus mecanismos de transferencia) y la clasificación de los distintos tipos de fuego de acuerdo a su origen y magnitud. Se espera que el participante adquiera la conciencia de que la prevención y el control efectivo del fuego, requiere conocimientos básicos de la naturaleza química y física del fuego y tenga los elementos mínimos de la teoría de la combustión.

La prevención y el control efectivo del fuego, requiere conocimientos básicos de la naturaleza química y física del fuego. Esto incluye la información que describe las fuentes de calor, las propiedades fisicoquímicas de los combustibles y las condiciones ambientales necesarias para mantener el proceso de la combustión. Se define al fuego como una reacción de oxidación rápida de materiales combustibles con fuerte desprendimiento de energía en forma de luz y calor, generalmente acompañada de humo y llamas.

Page 5: Curso Verificador de Gas

El proceso de la combustión se desarrolla en fase vapor; los sólidos y líquidos se someten primero a un proceso de vaporización, donde los gases generados se mezclan con el comburente y se someten a una fuente de calor para iniciar la reacción.

UNIDAD 1

De acuerdo a las características del material combustible que vaya a llevar a cabo la reacción, se han definido dos tipos de combustión, una llamada incandescente y otra con flama, como se puede observar a continuación:

COMBUSTIBLECOMBUSTIBLE OXIGENOOXIGENO

REACCION REACCION QUIMICA EN CADENAQUIMICA EN CADENA

CALORCALOR

TETRAEDRO DEL FUEGO

COMBUSTION CON FLAMA

OX

IGE

NO

CA

LOR

COMBUSTIBLE

FUEGO

TRIANGULO DEL FUEGO

COMBUSTION EN BRASA

Page 6: Curso Verificador de Gas

Los combustibles son materiales en estado sólido, líquido o gaseoso, que pueden llevar a cabo una reacción de oxidación rápida. Los sólidos y líquidos se convierten en vapores o gases antes de entrar en combustión.

UNIDAD 1

Page 7: Curso Verificador de Gas

UNIDAD 1

Las características fisicoquímicas más importantes que deben conocerse de loscombustibles son:

Punto o temperatura de inflamación: Es la temperatura a la cual los materiales o substancias inician su desprendimiento de vapores.

Tratándose de líquidos inflamables, es la temperatura más baja en la que se produce suficiente gas para formar mezclas inflamables al contacto con el aire y producir una flama cuando una fuente de ignición se acerque a su superficie.

El petróleo diáfano tiene un punto de inflamación de aproximadamente 46° C y a temperaturas ordinarias no produce cantidades peligrosas de gas. Por otro lado, la gasolina despide vapores suficientes para formar mezclas inflamables con el aire a temperaturas de 42° C.

Page 8: Curso Verificador de Gas

UNIDAD 1

Líquidos combustibles e inflamables: Para efectos de protección contraincendio se ha establecido una división basada en el punto de inflamabilidad de los materiales combustibles.

Líquidos inflamables: Los líquidos inflamables tienen puntos de inflamación inferiores a 38° C y presiones de vapor que no superan 40 psi a 38° C.

Líquidos combustibles: Son aquellos con punto de inflamación igual o superior a 38 ° C y se dividen como sigue:

a). Clase II: Líquidos con punto de inflamación igual o superior a 38° C e inferior a 60° C.b). Clase IIIA: Líquidos con punto de inflamación igual o superior a 60° C e inferior a 93° C.c). Clase IIIB: Líquidos con punto de inflamación igual o superior a 93° C.

Combustible

37.8° C

Inflamable

Page 9: Curso Verificador de Gas

Peso específico: Es la relación que existe entre el peso de una sustancia sólida o líquida con respecto al agua, considerando que al peso del agua se le asigna 1. Un líquido con un peso específico menor que 1, flotará en el agua (a menos que sea soluble en ella). Un peso específico superior a uno significa que el agua flotará sobre el líquido. Ejemplos:

Diesel 0.86Gasolina 0.75Alcohol 0.79Butano 0.58

Densidad específica: Es la relación que existe entre el peso del vapor de un combustible y el peso del aire, dándole al aire el valor de 1 con una presión y temperatura ambiente normal. Por lo que se entenderá que cuando el vapor de cualquier combustible tenga una densidad mayor a 1, es más pesado que el aire y se mantendrá siempre en la parte inferior. Se dan ejemplos a continuación:

Gasolina 3.40Diesel 3.75Acetileno 0.90Ácido Sulfhídrico 1.19Butano 2.01

UNIDAD 1

Page 10: Curso Verificador de Gas

Límites de explosividad: Los límites de explosividad o inflamabilidad, de un gas o vapor mezclados con el aire, están dentro de ciertas concentraciones en volumen en las cuales ocurre el flamazo o cuando puede propagarse éste si la mezcla es puesta en ignición. El menor porcentaje de concentración en que puede ocurrir la explosión se denomina límite inferior y el mayor porcentaje de la concentración se le llama límite superior. Si una mezcla dentro de esos límites se confina y se pone en ignición, la explosión se presenta. Muchos líquidos inflamables tienen un rango de explosividad corto. Las mezclas fuera de ese límite o son demasiado “pobres” o bien demasiado “ricas”.

La mezcla demasiado “pobre” está por debajo del límite inferior de explosividad, puesto que no cuenta con suficiente gas o vapor en proporción con la cantidad de aire. Por otra parte, la mezcla demasiado “rica” contiene una cantidad alta de vapores o gases inflamables en proporción con el aire disponible. Una mezcla de gasolina con menos de 1% de vapor es demasiado “pobre”, y la propagación de la llama no ocurrirá al contacto con la fuente de ignición. De la misma manera, si existe el 8% aproximadamente de vapor de gasolina, la mezcla será demasiado “rica”. Existen muchos gases tales como el hidrógeno, acetileno y etileno, los cuales tienen límites de inflamación amplios.

UNIDAD 1

Page 11: Curso Verificador de Gas

El familiarizarse con las propiedades y características de todos los gases y líquidos inflamables es importante para las personas relacionadas con el servicio contraincendio ya que contando con estos conocimientos, podrán luchar con mayor eficacia contra el fuego, ayudando a reducir los daños materiales y en otros casos, evitando pérdidas humanas.

Las cuatro clases principales de explosiones son:

Desprendimiento de energía calorífica mediante oxidación rápida. Desprendimiento de energía por descomposición (explosión de la dinamita). Desprendimiento de energía por desprendimiento de presión, por ejemplo, un fluido que está bajo presión a una temperatura arriba de su punto de ebullición. Desprendimiento de energía por fisión atómica.

UNIDAD 1

Page 12: Curso Verificador de Gas

Temperatura de ignición: Es la energía calorífica o temperatura mínima requerida para que una sustancia o material pueda encender y continúe quemándose.

Un factor importante a considerar que está relacionado con la ignición de un combustible es su tamaño o masa; por ejemplo, una página de un libro se puede poner en ignición fácilmente, pero no es lo mismo si se trata del libro completo, o una masa compacta de hojas de papel que arderán lentamente. Una aguja y una barra están hechas del mismo material (acero), pero la primera contiene tan poco material (tiene una masa pequeña), que se calienta cuando se coloca sobre una flama, Cuando la misma flama se aplica a la barra, ésta se calienta lentamente.

UNIDAD 1

De la misma manera, un leño que presenta poca masa arderá más rápidamente que otro leño mayor. Para que un sólido se encienda y se queme, es necesario elevar su temperatura suficientemente para que se produzcan gases combustibles y se forme la flama. Por lo tanto cualquier sustancia que se divida finamente puede ser peligrosa por la facilidad que presenta para encenderse.

Page 13: Curso Verificador de Gas

Oxígeno (comburente)

Es un gas incoloro, inodoro e insípido. Es aproximadamente 1.1 veces más pesado que el aire y ligeramente soluble en agua y alcohol. El Oxígeno solo no es flamable, pero alimenta la combustión. Es altamente oxidante, reacciona violentamente con materias combustibles y puede causar fuego o explosión.

Es el gas más importante para los seres vivos. Sin él, no sería posible la vida de los organismos mayores. Se encuentra en el aire que respiramos, en menor proporción que el Nitrógeno (actualmente existe en la Troposfera un 21 % de oxígeno, 78 % de nitrógeno y 1% de otros gases como Bióxido de carbono, Metano, Argón y Neón).

Cuando por ciertas condiciones la concentración de oxígeno en el aire se reduce por debajo de 19%, muchos individuos sufren mareos, zumbido en los oídos y se les acelera el corazón. Además de las pruebas de toxicidad, el contenido de oxígeno en la atmósfera de un espacio confinado, debe determinarse antes de entrar en él y pruebas subsecuentes pueden hacerse con instrumentos aprobados.

UNIDAD 1

Page 14: Curso Verificador de Gas

El calor (energía calorífica) y sus formas de transferencia

El calor se define como la transferencia de energía de un punto a otro en un cuerpo o entre diferentes cuerpos. El calor es energía en tránsito, siempre fluye de una zona de mayor temperatura a una zona de menor temperatura, con lo que eleva la temperatura de la segunda y reduce la de la primera, siempre que el volumen de los cuerpos se mantenga constante.

Temperatura es la propiedad de los sistemas que determina si están en equilibrio térmico. El concepto de temperatura se deriva de la idea de medir el calor o frialdad relativos y de la observación de que el suministro de calor a un cuerpo conlleva un aumento de su temperatura mientras no se produzca la fusión o ebullición. En el caso de dos cuerpos con temperaturas diferentes, el calor fluye del más caliente al más frío hasta que sus temperaturas sean idénticas y se alcance el equilibrio térmico.

Por tanto, los términos de temperatura y calor, aunque relacionados entre sí, se refieren a conceptos diferentes: la temperatura es una propiedad de un cuerpo y el calor es un flujo de energía entre dos cuerpos a diferentes temperaturas.

UNIDAD 1

Page 15: Curso Verificador de Gas

Formas de transferencia de calor:

Conducción. En mayor o menor escala todos los elementos son conductores del calor. La conductividad térmica del cobre por ejemplo, es de 0.85 cal/cm, más no por esto podemos dejar de pensar en un muro de tabique de barro o cemento ya que también son capaces de conducir el calor. Suponiendo que en uno de los lados de un muro se tenga un fuego considerablemente grande, el muro nos va a transmitir calor por conducción y de encontrarse elementos combustibles en el lado opuesto, éstos elevarán su temperatura hasta el grado de causar desprendimiento de vapores que estallarán en llamas.

Radiación. Aquí la principal fuente de energía la encontramos en el sol, un ejemplo clásico de fuego por radiación es cuando se encuentran materiales combustibles cerca de un radiador para elevar la temperatura de una habitación, dichos materiales pueden generar llamas después de cierto tiempo, ya que su grado de desprendimiento de vapores fue alcanzado por el incremento de temperatura sufrido. Los rayos de calor por radiación viajan en forma directa y en todas direcciones y no son alterados por el aire.

Convección. Los gases producto de una combustión por ser más ligeros que el aire tienden a elevarse y entre mayor y más caliente sea un incendio, más rápido ascenderán y más calientes se tornarán.

UNIDAD 1

Page 16: Curso Verificador de Gas

Fuentes de ignición y clasificación del fuego.

Se pueden encontrar un gran número de fuentes potenciales de energía calorífica denominadas fuentes de calor, las cuales al encontrarse con una mezcla idónea de un combustible y un comburente pueden terminar en un incendio; a continuación mencionamos las más comunes:

Flama abierta.- La tenemos en los quemadores, tanto de piso como elevados, en los hogares de calentadores, calderas, en sopletes, etc. y no debemos olvidar que entre este tipo de fuentes de ignición se encuentran los encendedores y cerillos.

Chispas eléctricas.- Ocasionadas por un tablero eléctrico, contacto o apagador eléctrico, por el arco de la soldadura eléctrica, cables o terminales flojos, pelados o rotos.

Combustión espontánea.- Es el resultado de una reacción química, rápida o lenta, que pueden sufrir los materiales independientemente de una fuente de calor externa. La combustión espontánea ocurre a través de una oxidación, misma que genera calor en su inicio. Esta condición se clasifica como calor espontáneo hasta que aumenta lo suficiente la temperatura y llega al punto de ignición. Este punto se convierte en ignición espontánea la cual es generalmente inevitable después de iniciada la reacción química.

UNIDAD 1

Page 17: Curso Verificador de Gas

Rayo eléctrico.- Provocado por las tormentas eléctricas.

Rayos solares.- Es una de las fuentes de calor más comunes en nuestro entorno, puede hacerse fuego usando una lente (lupa), un reflector curvo o el fondo de una botella para concentrar los rayos del sol sobre el material combustible.

Fricción o impacto.- Pueden generar chispas con la suficiente energía para iniciar la combustión. Este tipo de chispas se produce al golpear o friccionar metales, principalmente cuando utilizamos herramientas de golpe.

Corriente eléctrica.- Los circuitos eléctricos están expuestos al flujo de corriente, de acuerdo al calibre del cable al sobrecargarse y no tener considerado el calibre idóneo, tiende a calentarse y puede llegar a prender el forro protector del cable.

Electricidad estática.- Al fluir líquidos y gases por tuberías y equipos, generan energía estática que se va acumulando hasta llegar a cantidades tales que al momento de aterrizarse produzcan descargas eléctricas generando chispas que llegan alcanzar temperaturas de hasta 350°C, por lo que todos los equip os (bombas, tuberías, recipientes, etc.) deben estar conectados a tierra a fin de que se disipe la electricidad estática acumulada.

Compresión.- Al comprimir el aire dentro de un espacio vacío se incrementa la temperatura hasta alcanzar el punto de ignición (ejemplo: los motores diesel).

UNIDAD 1

Page 18: Curso Verificador de Gas

Clasificación del Fuego

El incendio, cuando empieza, generalmente es pequeño, pero se puede extender y quedar rápidamente fuera de control del equipo existente para apagarlo; la eficiencia radica en extinguir un incendio en su fase inicial o incipiente; esto puede hacerse rápida y adecuadamente con el conocimiento suficiente de las características de los fuegos.

Existe una clasificación de los fuegos, basada en las características de los materiales combustibles que los alimentan. Estas clases de fuego se identifican con las letras “A”, ”B”, ”C”, “D” y “K”.

El enfriamiento logrado por el agua o por soluciones que contienen grandes porcentajes de ella, como por ejemplo la espuma, es lo más adecuado para la extinción de estos incendios.

Incendios clase “A”.- Son los que ocurren en materiales que se encuentran en ese estado físico sólido como trapo, viruta, papel, basura, plásticos, cartón, etc.La característica principal cuando se produce un fuego al quemarse el material sólido es que se agrieta, produciendo cenizas y brazas.

UNIDAD 1

Page 19: Curso Verificador de Gas

Incendios clase “B”.- Los incendios clase “B” son aquellos que se producen de gases como el butano, propano, etc., o los vapores que se desprenden de la superficie de los líquidos inflamables, como la gasolina, aceites, grasas, solventes, etc. La reducción de la cantidad de aire (oxígeno) o la acción de inhibir o evitar la combustión es de vital importancia para apagar fuegos de esta clase.

Lo más indicado para el combate de estos incendios es el empleo del polvo químico seco, bióxido de carbono, espuma y líquidos vaporizantes; todo dependerá de las características específicas del fuego. El uso del agua en forma de chorro para extinguir directamente estos incendios, generalmente esparce el líquido y el fuego se extiende, por lo cual es peligroso este método para combatirlos. Sin embargo, bajo ciertas circunstancias, puede resultar efectivo utilizar el agua en forma de neblina.

UNIDAD 1

Page 20: Curso Verificador de Gas

Incendios clase “C”.- Se clasifican como incendios tipo “C” aquellos que ocurren en material eléctrico o cerca de equipo eléctrico “energizado”, en los que se deben usar agentes extinguidores no conductores, como bióxido de carbono y líquidos vaporizantes. La espuma o el agua no deben usarse, ya que ambos son buenos conductores de la electricidad y exponen al operador a una fuerte descarga eléctrica.

El polvo químico seco se usa con buenos resultados para abatir la flama rápidamente, formando una capa en la superficie de estos materiales, la cual tiende a impedir una combustión posterior, con la única desventaja de dejar residuos y dañar el equipo.

UNIDAD 1

Page 21: Curso Verificador de Gas

Incendios clase “D”.- Los incendios clase “D” son los que se presentan en metales combustibles, como el magnesio, titanio, sodio, potasio, uranio, aluminio pulverizado ó litio. Para el control de los fuegos en combustibles metálicos se han desarrollado técnicas especiales y equipos de extinción, normalmente a base de cloruro de sodio en polvo seco ó cobre. Los extintores comunes no deben usarse en este tipo de incendios, ya que en la mayoría de los casos existe el peligro de aumentar la intensidad del fuego, debido a una reacción química entre el agente y el metal ardiente.

Para el control de los fuegos en combustibles metálicos se han desarrollado técnicas especiales y equipos de extinción, normalmente a base de cloruro de sodio en polvo seco ó cobre. Los extintores comunes no deben usarse en este tipo de incendios, ya que en la mayoría de los casos existe el peligro de aumentar la intensidad del fuego, debido a una reacción química entre el agente y el metal ardiente.

Incendios clase “K”.- Los incendios clase “K” recientemente registrados por la NFPA son generados con aceites vegetales, grasas, cochambre etc. encontrándose comúnmente en aparatos o equipos utilizados en cocinas. La extinción de este tipo de fuegos se realiza con un químico húmedo, una base especial de acetato de potasio (agente de bajo pH).

UNIDAD 1

Page 22: Curso Verificador de Gas

UNIDAD 2

MONITOREO DE GASES EN EL AREA DE TRABAJO

Las condiciones para que los incendios y las explosiones ocurran, pueden ser identificadas con anticipación y prevenir así sus consecuencias. Un factor fundamental en la identificación de las condiciones para que se den las explosiones, es el contenido de gas en el área de trabajo y su condición de acuerdo a si es una área abierta o confinada.

En esta unidad se explicará el término “contenido de gas combustible en el aire”, las condiciones propicias para su medición, la clasificación y características de los distintos tipos de instrumentos para la detección de gases, así como algunas recomendaciones para la calibración de dichos aparatos.

UNIDAD 2

Page 23: Curso Verificador de Gas

Gases Combustibles

Como se explicó anteriormente para que una combustión pueda ocurrir, tienen que estar presentes tres elementos: CombustibleOxígeno para alimentar la combustiónCalor o una fuente de ignición

La determinación del porcentaje de gas combustible en el aire es de vital importancia. Pongamos el ejemplo, de un recipiente conteniendo vapores de gas combustible por cuya boca de acceso entra aire fresco y se llena gradualmente, mezclándose el vapor del combustible con el aire fresco. Al igual que la proporción gas/aire cambia, la mezcla pasa a través de tres diferentes rangos hablando en términos de porcentaje de composición: pobre, explosivo y rico. En el rango pobre, no hay suficiente gas en el aire para quemarse. Por otro extremo, el rango rico tiene demasiado gas y no suficiente aire. Sin embargo, el rango explosivo tiene la correcta combinación de gas y aire para formar una mezcla explosiva. No obstante, se debe tener cuidado cuando una mezcla es demasiado rica, porque la dilución con aire fresco puede llevar la mezcla al rango inflamable o explosivo.

UNIDAD 2

Page 24: Curso Verificador de Gas

UNIDAD 2

Page 25: Curso Verificador de Gas

Recomendaciones para la medición del contenido de gases en el aire

Para determinar la composición de una atmósfera, deben utilizarse instrumentos confiables para la obtención de muestras de aire. De ser posible, no abra la entrada si es que tiene un espacio cerrado antes de que este paso se haya llevado a cabo. Cambios bruscos en la composición atmosférica dentro del espacio confinado pueden causar reacciones violentas, o diluir los contaminantes en el sitio, dando una falsa lectura baja de la concentración inicial del gas.

Cuando el muestreo permita condiciones de entrada aceptables, siempre tome lasmuestras de la siguiente manera:

1. Contenido de oxígeno.2. Gases o vapores inflamables.3. Contaminantes de aire tóxicos potenciales.

Un muestreo completo debe llevarse a cabo en varios puntos dentro del área de trabajo. Algunos gases son más densos que el aire y tienden a acumularse en la parte inferior de un área encerrada. Existen otros que poseen el mismo peso molecular que el aire, así que se les puede encontrar en varias concentraciones a lo largo del espacio. Esta es la razón por la cual se deben obtener muestras en la parte superior, en medio, y en la parte inferior del espacio para fijar exactamente la concentración de diversos gases y vapores

UNIDAD 2

Page 26: Curso Verificador de Gas

Los resultados del muestreo atmosférico tendrán un impacto directo en la selección del equipo de protección personal necesario para realizar una labor en esta área y puede ser que también determine la duración de la exposición del trabajador o si puede entrar o no a dicha área. Los detectores de substancias específicas deben utilizarse siempre que los contaminantes actuales se hayan identificado.

UNIDAD 2

Page 27: Curso Verificador de Gas

CLASIFICACION DE GASES PELIGROSOS

> Presencia de Gases Combustibles> Presencia de Gases Tóxicos> Carencia de oxígeno> Presencia de neblinas de aceites, humos, polvos, etc

El monitoreo del aire esta determinado en la medición de algunos parámetros que nos definan su calidad de respirable o inflamable, como son:

Los instrumentos fabricados por MSA solo miden o detectan la presencia de gases y no así humos, polvos, neblinas, etc. .

Organizaciones como la Conferencia Americana de Higienistas Industriales Gubernamentales, OSHA (Organización de Seguridad e Higiene Ambiental), Organismos Ambientales Nacionales, Secretaría de Trabajo y Previsión Social, han editado valores permisibles de exposición del ser humano a un gas tóxico

UNIDAD 2

Page 28: Curso Verificador de Gas

La siguiente tabla muestra algunos gases con sus límites.

Substancia * Valor límite al umbral en ppm.

* Límite de Exposición de Tiempo Corto

Límite Exposición Permisible OSHA, ppm.

Monóxido de carbono 25 -- 50 Acido sulfhídrico 10 15 10 Dióxido de azufre 2 5 5 Amoníaco 25 35 50 Acido cianhídrico 10 -- 10 Benceno 10 ** -- 1(5 +) Tolueno 50 -- 200 Xileno 100 150 100

* Publicados por la Conferencia Americana de Higienistas Industriales Gubernamentales.** Sospecha de ser cancerígeno en humanos.+ Límite de exposición tiempo corto.

Se muestran a continuación cuadros de los efectos de grados exposición a gases tóxicos en el ser humano.

UNIDAD 2

Page 29: Curso Verificador de Gas

EFECTOS POTENCIALES EN ATMOSFERAS CON DEFICIENCIA DE OXIGENO

Porcentaje de Contenido de Oxígeno en Volumen

Efectos y Síntomas (A Presión Atmosférica)

19.5% Nivel mínimo permisible de oxígeno 15 a 19% Disminuye la habilidad para trabajar con energía. Puede

disminuir la coordinación e inducir síntomas iniciales en personas con problemas coronarios pulmonares o circulatorios.

12 a 14% La respiración se incrementa con el esfuerzo así como el pulso, disminución de la coordinación, percepción y el juicio.

10 a 12% La cantidad y profundidad de cada respiración se incrementa, diminuye el juicio considerablemente y los labios empiezan a ponerse azulados

8 a 10% Colapso mental, desmayo, inconciencia, cara ceniza, pérdida de color azul en labios, nauseas y vómito.

6 a 8% 8 minutos-100% fatal, 6 minutos-50% fatal, 4-5 minutes-recuperación con tratamiento.

4 a 6% Coma en 40 segundos, convulsiones cese de respiración seguido de muerte.

Nota: Estos valores son aproximados y varían de acuerdo al estado de salud y actividad física de cada individuo.

UNIDAD 2

Page 30: Curso Verificador de Gas

GRADOS DE EXPOSICION AL ACIDO SULFHIDRICO EN PPM (H2S)

Medición de Concentración del

Volumen de Gas en Partes por Millon

(PPM)

Signos de Advertencia Tiempo de Exposición

10 Sin efecto 8 horas

25 Olor fuerte y desagradable _ _ _ _

50 a 100 Irritación de ojos moderado, tos y pérdida del olfato.

2 a 5 horas

200 a 300 Irritación marcada de los ojos e irritación del tracto respiratorio

1 hora

500 a 700 Pérdida de conciencia y posible muerte

30 a 60 minutos

1000 o más Inconciencia o desmayo casi instantáneo y muerte en pocos minutos

Instantáneo

Nota: Estos valores son aproximados y varían de acuerdo al estado de salud y actividad física de cada individuo.

UNIDAD 2

Page 31: Curso Verificador de Gas

ETAPAS DE ENVENENAMIENTO DEL MONOXIDO DE CARBONO (CO)

Medición de Concentración del

Volumen de Gas en Partes por Millon

(PPM)

Signos de Advertencia Tiempo de Exposición

50 Sin efecto 8 horas

200 Posible dolor de cabeza frontal medio

2 a 3 horas

400 Dolor de cabeza frontal y nausea. 1 a 2 horas

400 Dolor de cabeza occipital y nausea 2.5 a 3.5 horas

800 Dolor de cabeza, vértigo y nauseas 20 minutos

1600 Colapso y posible muerte 2 horas

3200 Dolor de cabeza y vértigo 5 a 10 minutos

3200 Inconciencia o desmayo y peligroso a la vida

10 a 15 minutos

Mayor a 4000 hasta 128,000

Inconciencia casi instantanea y muerte inmediata

1 a 3 minutos

Nota: Estos valores son aproximados y varían de acuerdo al estado de salud y actividad física de cada individuo.

UNIDAD 2

Page 32: Curso Verificador de Gas

Gas sulfhídrico.

Las sustancias químicas pueden llegar a ser peligrosas, sin embargo cuando se manejan con conocimiento de sus propiedades fisicoquímicas, tomando en cuenta lanormatividad aplicable y la experiencia, pueden mantenerse controlados los riesgos.Al gas sulfhídrico también se le conoce con los siguientes nombres: Sulfuro de Hidrógeno, Gas Amargo, Hidrógeno Sulfurado y Gas de los Pantanos.

En la industria petrolera el Gas Sulfhídrico se encuentra en los crudos amargos y en sus subproductos ligeros (gas amargo, gasolinas amargas, etc.); se encuentra en formaciones porosas y lo podemos descubrir durante el montaje de equipo para las operaciones de registro de producción y perforación en los pozos de petróleo o gas. Se manifiesta especialmente durante las operaciones de muestreo y en los equipos de perforación.

El peligro.

Es el más venenoso de los gases naturales; se produce durante la descomposición de materia orgánica e industrial; es 6 veces más letal que el monóxido de carbono y la mitad de veces tan letal como el cianuro de hidrógeno. Cuando aparece como gas libre es cuando resulta más peligroso. Para dar una idea de cual es una concentración fatal en potencia, imagine un local de 3 metros de alto por 5 metros de largo y 4 metros de ancho. Su volumen sería de

UNIDAD 2

Page 33: Curso Verificador de Gas

60 metros cúbicos. Si se colocaran dos latas de 20 litros de capacidad cada una conteniendo 100% de H2S, y este gas fuese liberado y mezclado totalmente, con una sola respiración, su respiración quedaría paralizada. La concentración máxima tolerable ha sido fijado en 10 partes por un millón (10 ppm) para una jornada de 8 horas.

Propiedades físicas y químicas del ácido sulfhídrico.

1. Es extremadamente tóxico, actúa como irritante de los ojos aún en bajas concentraciones y tiene un efecto asfixiante. Al aumentar su concentración en la atmósfera, aumenta su peligrosidad a tal grado que una sola inhalación de gas bastará para provocar un cuadro de intoxicación aguda, caracterizado por salivación excesiva, pérdida del conocimiento, paro respiratorio y posteriormente, la muerte.

2. Es incoloro.

3. De olor repulsivo en bajas concentraciones, muchas veces descrito como el olor de huevos podridos.

4. Forma una mezcla explosiva con el aire a una concentración de entre 4.3 y 46 % en volumen. Esto constituye un rango extremadamente amplio. La combustión espontánea se produce a los 260 0 C. Esta es una temperatura de encendido muy baja, ya que una colilla de cigarrillo no fumada está a 200 0 C y aumenta su temperatura sobre los 230 0 C cuando se le fuma. El gas puede viajar una distancia considerable hasta una fuente de encendido y luego retroceder con rapidez.

UNIDAD 2

Page 34: Curso Verificador de Gas

5. Arde con una flama azul y produce Anhídrido Sulfuroso (SO2), el cual es menos tóxico que el Ácido Sulfhídrico pero es muy irritante en los ojos y pulmones y puede provocar daños serios.

6. Es más pesado que el aire. Su gravedad específica es de 1.189 (aire = 1.000) a 15.6 0 C y 14.7 psi, por lo tanto, el H2S se acumula en puntos bajos.

7. Es soluble en agua y en hidrocarburos líquidos.

8. El Límite Máximo Permisible (TLV) es de 10 ppm con un máximo de 8 horas deexposición sin equipo de protección respiratoria.

9. Es altamente corrosivo en los metales.

10. Su punto de ebullición es de -26 0 C.

11. Su punto de fusión es de -116 0 C.

UNIDAD 2

Page 35: Curso Verificador de Gas

Efectos físicos del envenenamiento por ácido sulfhídrico

Cuando las altas concentraciones causan parálisis respiratoria, la respiración espontánea no se recupera a no ser que se suministre respiración artificial. A pesar de que se encuentra paralizada la respiración, el corazón puede seguir latiendo por unos minutos después del ataque. Por lo tanto, es sumamente importante que se suministre respiración artificial de inmediato y se continúe haciéndolo hasta que llegue el equipo médico o hasta que la víctima recupere la respiración natural.

Otros efectos: No hay forma de saber que va a pasar cuando una persona ha sido afectada por el H2S. Es común que se manifieste histeria, pueden presentarse convulsiones violentas, poniéndose la víctima muy rígida antes de caer; algunas víctimas sufren lesiones a causa de las caídas. Es difícil manejar a la víctima e invariablemente necesitará de respiración artificial que lo ayude a recuperar la respiración. Aparentemente, no se presentan efectos acumulativos en el organismo a causa de exposiciones reiteradas, pero se han reportado casos en que la víctima parece presentar menor resistencia a exposiciones subsecuentes.

La rapidez de acción es esencial en el rescate y la administración de primeros auxilios; es necesario el entrenamiento en respiración artificial que deben recibir los trabajadores que tengan probabilidades de estar expuestos al H2S.

UNIDAD 2

Page 36: Curso Verificador de Gas

Instrumentos para detección de contaminantes en el ambiente

Los instrumentos para monitoreo y detección de contaminantes en el ambiente de lectura directa, están clasificados en dos grupos: instrumentos de gas simple e instrumentos de gases múltiples, típicamente detectando alguna de las siguientes condiciones atmosféricas:

1. Deficiencia o enriquecimiento de oxígeno2. La presencia de un gas combustible3. La presencia de ciertos gases tóxicos

No importa qué tipo de instrumento se usa para verificar las concentraciones de gas en el ambiente, la detección regularmente debe llevarse a cabo debido a que los niveles de combustibilidad o toxicidad de los contaminantes pueden incrementar a pesar de que inicialmente aparezca ser bajo o no-existente. Además, la deficiencia de oxígeno puede ocurrir inesperadamente.

Existen cientos de gases diferentes y a menudo se encuentran en diferentes porcentajes por lo que cada detección tiene requerimientos únicos.

Por ejemplo, algunos monitoreos requieren la detección de un gas específico sin tener en cuenta las lecturas de otros gases de fondo. Otras situaciones pueden requerir las concentraciones de cada gas en una determinada área.

UNIDAD 2

Page 37: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES

◊ Detectores de gases tipo colorimétrico, llamados tubos detectores

◊ Cubren amplia gama de compuestos.

◊ Cajas con 10 tubos o cajas combinadas de 12 tubos para cubrir 3 o 4 compuestos por tipo de industria.

◊ Bombas manuales tipo fuelle operadas con una mano o automáticas.

UNIDAD 2

Page 38: Curso Verificador de Gas

◊ Manejan gases comunes como son combustibles % LEL, H2S, CO, O2, CL2, CLO2, NH3, HCN, SO2, NO2, PH3 Y O3

◊ Dan información de concentración, alertan de gases con avisos luminosos, audibles y vibrante.

◊ Detección ambiental por olfateo del gas.

DETECTORES PERSONALES PARA UN SOLO GAS Ó 2 A 4 GASES

◊ Disponibles con operación continua, operan por 2 años al activarse y no requieren mantenimiento.

◊ Operan con baterías alcalinas o recargables.

UNIDAD 2

Page 39: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES - Personales

◊ Con sensores de tipo filamento catalítico para gases combustibles y celda electroquímica para oxígeno y gases tóxicos.

◊ Fáciles de portar en la camisola de trabajo, en el cinturón y correa al hombro.

◊ Opcional bombas manuales tipo perilla o automáticas de succión de muestra para accesar a muestreos no accesibles

◊ 2 años de Garantía.

UNIDAD 2

Page 40: Curso Verificador de Gas

Detectores de Alarma Multigases

◊ Pueden detectar de 1 a 5 gases en forma simultanea.

Visualizan varios gases a la vez, midiendo gases combustibles, oxígeno y tóxicos como H2S, CO, NH3, SO2, NO2, NO, PH3, CL2 y CLO2.

UNIDAD 2

Page 41: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES - Multigases

Sensores de tipo infrarrojo para medir CO2.

Con sensores de tipo filamento catalítico para gases combustibles y celda electroquímica para oxígeno y gases tóxicos.

Modelo ORION PLUS mide de 1 a 5 gases, % LEL, O2, CO, H2S, HCN, CL2, NH3, SO2, NO2, CLO2, PH3, O3, COCL2 y CO2.

UNIDAD 2

Page 42: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES - Multigases

◊ Sensor de tipo fotoionización para medir vapores orgánicos.

Modelo SIRIUS mide de 1 a 5 gases, % LEL, O2, CO, H2S y Vapores Orgánicos.

UNIDAD 2

Page 43: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES - Multigases

Sensores de tipo estado sólido y filamento catalítico para detectar gas natural o metano en fugas incipientes, % LEL y 5-100% volumen de gas

Modelo ORION “G”mide de 1 a 4 gases, engases combustibles, 3 escalas: rastreo fugas, % LEL, % volumen gas. Así como O2, CO y H2S.

UNIDAD 2

Page 44: Curso Verificador de Gas

TIPOS DE INSTRUMENTOS DETECTORES DE GASES - Multigases

Características adicionales:

- Alarmas visual y audible - Baterías alcalinas, recargables (NICad, NiMH, Ion Litio) o ambas. - Muestreo bomba automática con líneas diferentes longitudes y sondas. - Configurables por usuario. - Calibración automática. - Memorización de valores medidos y eventos con des- carga datos a PC. - Se llevan en la mano, cinturón o al correa hombro. - Garantía de 2 años.

UNIDAD 2

Page 45: Curso Verificador de Gas

Detectores de Gas Simple para Deficiencias de Oxígeno

Los indicadores de oxígeno miden las concentraciones atmosféricas de oxígeno. Generalmente, las concentraciones se miden de un rango del 0 al 25 por ciento de oxígeno en el aire, mostrando lecturas en forma digital o en un medidor análogo. Los indicadores de oxígeno se calibran con aire fresco, sin contaminantes, conteniendo un mínimo de 20.8 por ciento de oxígeno. Con algunos modelos, una alarma se activa cuando los niveles de oxígeno caen por debajo del 19.5 por ciento.

Detectores de Gas Simple para Gases Combustibles

Los instrumentos para la detección de gases y vapores combustibles se calibran generalmente con pentano y están diseñados con el propósito de detección general de vapores de hidrocarburo. Dichos instrumentos operan por acción catalítica de un filamento de platino calentado en contacto con gases combustibles (ver figura 5). El filamento se calienta a su temperatura de funcionamiento mediante una corriente eléctrica. Cuando la muestra de gas hace contacto con el filamento calentado, la combustión en su superficie eleva la temperatura en proporción a la cantidad de combustibles en la muestra. Un circuito en paralelo Wheatstone, utilizado en el filamento como un brazo, mide el cambio en la resistencia eléctrica debido a las elevaciones de la temperatura. Este cambio indica el porcentaje de gas combustible presente en la muestra.

UNIDAD 2

Page 46: Curso Verificador de Gas

Detectores de Gas Simple para Gases Tóxicos

Se pueden usar dispositivos compactos, potenciados por medio de una batería para medir los niveles de gases como Monóxido de Carbono (CO) o Sulfuro de Hidrógeno (H2S) dependiendo del modelo seleccionado. Los detectores de gases tóxicos usan células electroquímicas. Si el gas de interés entra a la célula, la reacción produce una corriente proporcional a la cantidad de gas en la muestra. Con estos instrumentos, suenan alarmas visibles y audibles si la concentración del gas excede un nivel predeterminado. Estos dispositivos son aptos para usarse en espacios confinados conteniendo motores o máquinas, los cuales pueden generar grandes cantidades de CO, al igual que en cloacas, plantas de tratamiento de desperdicios y estaciones procesadoras de “ácido crudo”, las cuales tienden a acumular volúmenes peligrosos de H2S.

Detectores de Gases Múltiples para Oxígeno y Gas Combustible

En aplicaciones en donde es necesario determinar los niveles de oxígeno y gas combustible simultáneamente, se pueden usar los dispositivos de tipo por difusión 2 en 1. Los sensores miden del 0 al 100 por ciento del LEL y el oxígeno del 0 al 25 por ciento. El muestreo remoto requiere un módulo de bomba o un adaptador de bulbo aspirador.

UNIDAD 2

Page 47: Curso Verificador de Gas

Detectores de Gases Múltiples para Oxígeno, Gases Combustibles y Tóxicos

Los vapores y gases tóxicos, que pueden ser inhalados o absorbidos a través de la piel, se encuentran con frecuencia en espacios confinados. Algunas veces, estos peligros atmosféricos pueden desplazar el oxígeno e incapacitar la habilidad del cuerpo de mantener la respiración. Algunos gases y vapores tóxicos pueden también causar al cuerpo un daño físico a largo plazo en casos de exposición repetida.

Existe un número de instrumentos disponibles para ayudar a la detección de gas tóxico. Considerando que los detectores de tamaño de bolsillo operan por difusión o por un bulbo aspirador, se han desarrollado instrumentos más grandes (pero aún de tamaño de una mano) 2 en 1 y 3 en 1, con bombas integradas para succionar muestras desde el área inmediata o desde el exterior del área de trabajo, en espacio encerrado cuando se usan con líneas de muestreo. Para los dispositivos 2 en 1, las presentaciones análogas codo a codo muestran los porcentajes para el oxígeno y el LEL. Con dispositivos 3 en 1, 4 en 1 y 5 en 1, el usuario selecciona la lectura de un sensor en una presentación digital o el escudriñamiento secuencial automático de sensores contenidos en el instrumento. Sin importar el número de sensores seleccionados o la lectura mostrada, todos los sensores deben estar diseñados para detectar de manera continua el gas en cuestión. Los instrumentos de tipo difusión están disponibles para medir simultáneamente el LEL de los gases combustibles, los niveles de oxígeno y los niveles tóxicos (en partes por millón) de H2S, CO y otros. Las alarmas también alertarán al usuario de niveles de oxígeno altos y bajos. Los adaptadores de bomba para el muestreo remoto están disponibles para convertir estos instrumentos de tipo difusión en instrumentos de tipo de bomba.

UNIDAD 2

Page 48: Curso Verificador de Gas

Dispositivos de Fotoionización para Gases y Vapores Tóxicos

Un detector de fotoionización que presenta la tecnología de microprocesador; usa luz ultravioleta para ionizar las moléculas de substancias químicas en estado gaseoso o de vapor. Una lectura digital en tiempo real le permite al usuario hacer una determinación inmediata ante las concentraciones de gas y vapor. Dependiendo de los datos dados durante la calibración, el gas y los vapores se miden sobre una escala del 0.1 a 200 partespor millón (ppm).

UNIDAD 2

Page 49: Curso Verificador de Gas

UNIDAD 3

APARATOS DE LECTURA DIRECTA DE GASES Y VAPORES

La lectura directa de los instrumentos permite determinar rápidamente la concentración de gases y vapores en el aire. Esta lectura se puede tomar en aparatos en los que el instrumento toma las muestras y efectúa el análisis directamente; mientras que la información necesaria se puede leer en una pantalla o indicador.

Page 50: Curso Verificador de Gas

Equipos Colorimétricos

Los aparatos colorimétricos de lectura directa se valen de las propiedades químicas de un contaminante que produce coloración al entrar en contacto con un agente químico. El indicador colorimétrico o tubo detector, cuya principal aplicación es indicar la concentración de gases o vapores a través del cambio de coloración; es una técnica de detección ampliamente usada en las industrias. Este instrumento se ha hecho muy popular debido a la simplicidad de su operación y la versatilidad para la detección de innumerables contaminantes. Sin embargo, como todos los instrumentos, también tiene limitaciones de aplicación, especificidad y precisión que el usuario debe conocer para evitar eventuales errores de interpretación.

El sistema de tubo detector colorimétrico está compuesto por dos elementos básicos: la bomba detectora de gases y los tubos colorimétricos indicadores (tubos reactivos). Las bombas pueden succionar un volumen fijo de aire (generalmente 100 cm3) con sólo una bombeada.

El tubo detector es de vidrio herméticamente sellado y contiene materiales sólidos granulados como sílica-gel, alúmina o piedra pómez, impregnados con una sustancia química que reacciona cuando el aire que atraviesa el tubo contiene un contaminante específico o un grupo de contaminantes.

UNIDAD 3

Page 51: Curso Verificador de Gas

Principio de operación.

Antes de iniciar la medición, se debe probar la hermeticidad de la bomba detectora de gases.

· Comprimir toda la bomba detectora de gases o bomba de fuelle (pliegues).· Tapar con el dedo el lugar donde se insertará el tubo reactivo (cabeza de la bomba).· Sin quitar el dedo de la cabeza de la bomba, abrir la mano.· Si el pliegue regresa, entonces hay fuga de aire en la bomba de fuelle.

Interpretación de resultados.

La lectura en los tubos reactivos es relativamente simple y se puede observar directamente a través del cambio de coloración indicado en la escala graduada impresa en el cuerpo del tubo. Por lo general, la unidad de medida está indicada en ppm (partes por millón).

Para algunos tubos reactivos que no poseen escala, se debe aspirar un volumen suficiente de muestra (indicado en las instrucciones de uso) que permita que el color de la capa reactiva logre la coloración patrón indicada en el tubo. En ese caso, el valor de la concentración será inversamente proporcional al número de aspiraciones. Cuando el cambio de color no es homogéneo, se considera el valor de lectura de mayor extensión obtenida en el tubo.

UNIDAD 3

Page 52: Curso Verificador de Gas

Limitaciones y consideraciones.

Antes de realizar la medición, es muy importante leer las instrucciones de uso del tubo reactivo que se usará para poder conocer la coloración final obtenida en el tubo después de la lectura, así como las posibles interferencias con otras sustancias, temperatura y humedad.La desventaja de los tubos detectores es su bajo nivel de exactitud y precisión. El Nacional Institute for Occupational Safety and Health (NIOSH) ha probado y certificado tubos detectores sometidos a sus normas de ensayos. Los valores relativos de precisión fueron de 35% a 50% del límite de exposición.

Las bajas o altas temperaturas retardan o aceleran la reacción química que se produce en el interior del tubo y, en consecuencia, el tiempo de respuesta; lo que influye directamente en la veracidad de los resultados. Para reducir este problema, se recomienda mantener los tubos en lugares ventilados. Las altas temperaturas aceleran la reacción y pueden causar un problema de decoloración de la capa reactiva sin que el contaminante esté presente. Esto también puede ocurrir en los tubos aún no usados. Por ello, los tubos se deben almacenar a temperaturas moderadas o inclusive refrigerar para prolongar su vida útil.

UNIDAD 3

Page 53: Curso Verificador de Gas

Existe un tubo reactivo, denominado POLYTEST, que indica la presencia de ciertos gases en la atmósfera pero no los cuantifica.

El POLYTEST puede indicar la presencia de cualquiera de los siguientes gases:

- Acetileno- Acetona- Arsina- Benceno- Bisulfuro de carbono- Gas sulfhídrico- Gases nitrosos

- Gasolina- Gas licuado de petróleo- Monoestireno- Monóxido de carbono- Percloroetileno- Tolueno- Tricloroetileno- Xileno

En las operaciones de emergencia donde se desconoce el gas disperso se puede programar un plan de muestreo a partir del tubo POLYTEST, que ayudará a identificar el producto.

UNIDAD 3

Page 54: Curso Verificador de Gas

Indicador de Oxígeno

Los indicadores de oxígeno (O2), también conocidos como Oxímetros, son equipos que sirven para medir la concentración de oxígeno en la atmósfera, normalmente en el intervalo de 0 a 25%.

Estos equipos se usan para monitorear atmósferas donde:Se necesite protección respiratoria: el aire generalmente posee 21% de oxígeno; de esta manera, si el oxígeno es inferior a 19,5% en el aire, el lugar se considera con deficiencia de oxígeno, lo que exige el uso de protección respiratoria especial (equipo autónomo de respiración).

Un aumento de la concentración de oxígeno puede causar riesgo de combustión: generalmente las concentraciones de O2 superiores a 25% se consideran ricas en oxígeno, lo que aumenta el riesgo de combustión.

UNIDAD 3

Page 55: Curso Verificador de Gas

Principio de operación.

El indicador de oxígeno posee dos componentes principales para su operación: el sensor de oxígeno y el mostrador de la medición.

En algunas unidades, el aire se aspira hacia el detector de oxígeno a través de una bomba aspiradora; en otras, el aire se aspira por difusión hasta el sensor. El detector de oxígeno se vale de un sensor electroquímico para determinar la concentración de oxígeno en el aire. El sensor es una célula galvánica compuesta de dos electrodos, un cátodo de oro y un ánodo de plomo, ambos insertados en una solución electrolítica básica. Las moléculas de oxígeno atraviesan la membrana hasta llegar a la solución. Las reacciones entre el oxígeno, las soluciones y los electrodos producen una corriente eléctrica proporcional a la concentración de oxígeno. La corriente atraviesa el circuito eléctrico e indica una señal resultante amplificada como una deflexión del puntero medidor en la lectura digital; el resultado se expresa en porcentaje del volumen de oxígeno.

Interpretación de resultados.

Este equipo es de lectura directa y se debe calibrar sólo en la altitud donde será utilizado. El resultado aparecerá directamente en el mostrador del instrumento.

UNIDAD 3

Page 56: Curso Verificador de Gas

Limitaciones y consideraciones.

Las altas concentraciones de dióxido de carbono (CO2) disminuyen la vida útil del sensor de oxígeno. Por lo general, el equipo se puede usar en atmósferas con más de 0,5% de CO2 sólo con el reemplazo frecuente del sensor.

La vida útil en una atmósfera normal (0,04% de CO2) puede variar desde una semana hasta un año, según el diseño del fabricante.

Las altas temperaturas pueden influir en la respuesta del indicador de oxígeno. El intervalo normal para la operación del equipo varía entre 0 º C y 49 º C. En intervalos que oscilan entre –32 º C y 0 º C, la respuesta del equipo es lenta. En intervalos inferiores a –32 º C, el sensor se puede dañar debido al congelamiento de la solución. El equipo se deberá calibrar a la misma temperatura a la que será utilizado.

La operación de los medidores de oxígeno depende de la presión atmosférica absoluta. La concentración natural del oxígeno es una función de la presión atmosférica en una determinada altitud. Dado que el porcentaje de oxígeno no varía con la altitud, el peso de la atmósfera en el nivel del mar es mayor y, por lo tanto si se compara con altitudes mayores, hay una compresión mayor de moléculas de oxígeno y de otros componentes del aire dentro de un determinado volumen.

UNIDAD 3

Page 57: Curso Verificador de Gas

A medida que la altitud aumenta, esta compresión disminuye y también disminuye el número de moléculas de aire comprimidas en un determinado volumen. De esta forma, un indicador de oxígeno calibrado en el nivel del mar y operado en una altitud de algunos millares de pies, proporcionará medidas incorrectas. Esto indica una deficiencia de oxígeno en la atmósfera debido a una menor cantidad de esas moléculas que son "empujadas" hacia el sensor. Por consiguiente, es necesario calibrar el equipo en la misma altitud donde se utilizará.

Calibración.

Por lo general, la célula sensora se acondiciona en un embalaje especial que contiene una atmósfera inerte. El sensor se deberá retirar de ese embalaje antes de calibrar y usar el instrumento.

La calibración se debe realizar en un lugar ventilado, sin contaminación, con 21% de oxígeno, cuando está en el nivel del mar. Por lo tanto, para la calibración del equipo indicador de oxígeno marca MSA, modelo 245 se deberán seguir las siguientes etapas:

a) Retirar el sensor del embalaje con atmósfera inerte.b) Conectar el enchufe del sensor en el receptáculo lateral del instrumento.c) Oprimir el botón lateral del instrumento.d) Verificar el valor registrado en el visor

UNIDAD 3

Page 58: Curso Verificador de Gas

Observación:

1) Si la lectura indica "cero", se debe verificar:•· La vida útil del sensor ya que puede ser necesario cambiarlo.•· La carga de la batería alcalina de 9 voltios, ya que puede ser necesario cambiarla.

2) Si el valor indicado es diferente de cero, para la calibración se deberá usar un destornillador incluido en el equipo, que se deberá colocar en la ranura del tornillo localizado en la parte superior del equipo. Girar el tornillo hasta alcanzar el valor de 20,8% de oxígeno, indicado en el mostrador. Realizar las mediciones necesarias.

UNIDAD 3

Page 59: Curso Verificador de Gas

Indicador de Gas Combustible (explosímetro)

Los explosímetros son aparatos para medir las concentraciones de gases y vapores inflamables. Cuando ciertas proporciones de vapores combustibles se mezclan con el aire y existe una fuente de ignición, se puede producir una explosión. Los límites de concentraciones sobre los que ocurre esto, se denominan límites de explosión e incluyen todas las concentraciones en que se produce una chispa o fuego cuando la mezcla entra en ignición. La menor concentración se conoce como límite inferior de explosividad (LIE) y la mayor, como límite superior de explosividad (LSE).

Las mezclas inferiores al LIE son muy pobres para inflamarse y las mezclas por encima del LSE, son muy ricas y no pueden inflamarse. En los explosímetros instrumentos más simples, sólo se proporciona una escala generalmente con lecturas de 0 a 100% de volumen del LIE. Para representar los gases combustibles o grandes concentraciones de gases, se usa el porcentaje en volumen, en donde 1% de volumen corresponde a 10.000 ppm.

UNIDAD 3

Page 60: Curso Verificador de Gas

Los explosímetros permiten obtener resultados cuantitativos pero no cualitativos, es decir, es posible detectar la presencia y concentración de un gas o vapor combustible en una composición de gases, pero no se pueden distinguir las diferentes sustancias presentes.

Circuito del Puente de Wheatstone.- En uno de los lados del puente, el aire que se va a muestrear pasa sobre un filamento calentado a una temperatura alta. Si el aire contiene un gas o vapor combustible, el filamento calentado produce combustión y libera un calor adicional que aumenta la resistencia eléctrica del filamento. El otro lado del puente contiene un filamento sellado semejante y calentado de forma idéntica, pero sin corriente eléctrica. Este filamento sellado anula todos los cambios en la corriente eléctrica y la resistencia debido a las variaciones de la temperatura ambiente. El cambio que se produce en la variación de la resistencia de la corriente eléctrica en los filamentos, durante el paso del flujo de muestra, se debe a la presencia de gases combustibles. Estos cambios en la corriente eléctrica están registrados como porcentajes del LIE (límite inferior de explosión) en el mostrador del instrumento.

UNIDAD 3

Page 61: Curso Verificador de Gas

Limitaciones y consideraciones.

La sensibilidad y precisión de los indicadores de gas combustible pueden estar influidas por varios factores. Éstos incluyen la presencia de polvo, alta humedad y temperaturas extremas. Por estas razones, la sonda de muestreo de muchos modelos debe disponer de un filtro de polvo y un agente secante. El equipo no se debe usar en ambientes extremadamente fríos ni calientes porque tales temperaturas interfieren en la respuesta del instrumento.La presencia de siliconas, silicatos y otros compuestos que contienen silicona, pueden perjudicar seriamente la respuesta del instrumento. Algunos de estos materiales contaminan rápidamente el filamento, lo que impide que funcione correctamente.

UNIDAD 3

Page 62: Curso Verificador de Gas

Calibración del equipo.

Por lo general, los fabricantes aconsejan efectuar la calibración periódicamente. Este período no debe exceder de un mes. El procedimiento consiste en someter el instrumento a una concentración de gas conocida, suministrada en el equipo de calibración del fabricante.

Para realizar la calibración, se deben observar el siguiente procedimiento:

1. Conectar el instrumento y esperar el tiempo necesario para calentar el filamento.2. Poner el instrumento en cero en una atmósfera libre de gases o vaporescombustibles.3. Presionar el botón de prueba a fin de verificar el estado de las baterías.4. Retirar el asa metálica del instrumento.5. Retirar la tapa lateral izquierda que está sujeta por cuatro tornillos y empujar elcircuito electrónico hacia fuera, lo suficiente para permitir el ajuste de los potenciómetros.6. Ajustar el botón de cero en el panel del instrumento hasta que la indicación del puntero del mostrador sea 50% del LIE.7. Ajustar el potenciómetro de control de cero en el circuito hasta que el puntero del medidor indique 0% del LIE.8. Aplicar el gas de calibración en el sensor hasta que el puntero del medidor logre la lectura correcta. Si esto no sucede, ajuste el potenciómetro de Span hasta corregir la indicación deseada.

UNIDAD 3

Page 63: Curso Verificador de Gas

Monitores químicos específicos

Además de la indicación continua y monitoreo personal, este tipo de instrumentos fue creado para el control e higiene del trabajo, así como para usarse durante accidentes que implican la liberación de gases y vapores tóxicos.Algunos modelos poseen una interfase y un software apropiado que facilitan el almacenamiento de datos de largos periodos y la representación gráfica de los resultados en la computadora. Los monitores más comunes se usan para detectar el Monóxido de Carbono y Gas Sulfhídrico, pero también se dispone de monitores para el Cianuro de Hidrógeno, Amoníaco y Cloro.

Estos equipos son de alta precisión durante el monitoreo, gracias a compensaciones controladas por un microprocesador interno. También disponen de una alarma sonora y visual que funciona con baterías. Las alarmas se activan cuando la concentración del gas monitoreado en la atmósfera excede el nivel preestablecido.

UNIDAD 3

Page 64: Curso Verificador de Gas

Principio de operación.- Las moléculas de la muestra se absorben en una célula electroquímica que contiene una solución química y dos o más electrodos. La sustancia en análisis reacciona con la solución o los electrodos. La reacción que se produce en el interior de la célula puede generar una corriente eléctrica o un cambio en la conductividad de la solución.Esas alteraciones serán directamente proporcionales a la concentración del gas. El cambio en la señal se expresa a través de un movimiento de la aguja o una respuesta digital en el medidor. La selectividad del sensor depende de la elección de la solución química y de los electrodos.

Interpretación de los resultados.- Estos equipos ofrecen lecturas directas que se observan en medidores digitales o analógicos. Los resultados de las lecturas de estos instrumentos se expresan en partes por millón (ppm) o porcentaje en volumen (% en volumen).

Limitaciones y consideraciones.- Al igual que los sensores de oxígeno, estos sensores electroquímicos se desgastan con el tiempo, principalmente cuando están expuestos a alta humedad y a temperaturas extremas. Actualmente, estos monitores específicos están limitados solo a algunos gases. Las células electroquímicas sufren algunas interferencias.Por ejemplo, los sensores de Monóxido de Carbono también responden al Gas Sulfhídrico.

UNIDAD 3

Page 65: Curso Verificador de Gas

Calibración.- Antes de usar estos instrumentos, se deben hacer dos verificaciones: la verificación del cero y la calibración del Span (valor de referencia).

Cabe resaltar que estas verificaciones se deben realizar a la misma altitud en que se usará el instrumento. Si no se hace de esta manera, puede haber un error en la lectura. También se debe recordar que los instrumentos se deben calibrar con los implementos de calibración proporcionados por los fabricantes.

UNIDAD 3

Page 66: Curso Verificador de Gas

UNIDAD 4

CARACTERISTICAS DE LOS EQUIPOS MAS UTILIZADOS

Alarmas personales

Alarmas personales marca Cricket.- Se utilizan paradetectar CO, H2S y nivel de oxígeno. Es compacto,liviano y de bajo costo, sin mantenimiento y con bateríade Litio para dos años de uso continuo.Las alarmas personales Cricket son instrumentosminiatura, prácticamente libres de mantenimientodiseñados para proporcionar una manera confiable yeconómica de verificar el Oxígeno (O2), Monóxido deCarbono (CO) y el Ácido Sulfhídrico (H2S). Utiliza una batería de Litio de 3 voltios y un sensor de alto rendimiento dando un año de funcionamiento continuo con tres minutos de alarma continua al día y no incluye indicador para eliminar confusiones y facilitar su uso.

Page 67: Curso Verificador de Gas

Explosímetros

Explosímetro (Indicador de gases combustibles Modelo 2)Es un Instrumento robusto, simple y con bomba manual para la detección de gases o vapores combustibles, de alta confiabilidad y sencillez. Usa batería tamaño C y la succión de muestra se hace de forma manual, con una perilla de hule y sondas de diferentes longitudes. La calibración de cero es con el botón de encendido y posee una escala análoga de 0-100% LEI, donde el puntero indica el valor de concentración o peligrosidad. Este tipo de aparatosson los de mayor uso en todo tipo de aplicaciones donde se requiera detectar gases o vapores inflamables o explosivos en espacios confinados tales como interiores de tanques, bocas de inspección y buques tanque. También son efectivos para probar áreas confinadas, drenajes, plantas de desecho, refinerías y fábricas de pintura.

UNIDAD 4

Page 68: Curso Verificador de Gas

Detectores multi-gases

Detector múltiple de gases ProGard.- Permite la detección y medición simultánea de gas combustible, Oxígeno, CO y H2S. Cuenta con capacidad de memoria y opción de interfase para traspaso de datos al computador. Se encuentra disponible en versiones para dos, tres o cuatro gases:

Para Oxígeno y gas combustible.Para Oxígeno, gas combustible y H2S.Para Oxígeno, gas combustible y CO.Para Oxígeno, gas combustible, CO y H2S.

Tiene las siguientes características:Pantalla de cristal líquido. Lecturas en español.Medición de gases en forma simultánea.Baterías recargables de Ni-Cd con cargador de 220 V.Permite una autonomía 10 horas sin bomba y 8 horas con bomba.Posee alarmas sonoras y luminosas.Los rangos de medición son:Gas combustible 0-100 % LELOxígeno 0 - 25 % VOL.Monóxido de Carbono 0 -1000 PPMAcido Sulfhídrico 0 - 50 PPM

UNIDAD 4

Page 69: Curso Verificador de Gas

Monitor multi-gas TMX.- El TMX 412 detecta simultáneamentehasta cuatro gases: gases combustibles LEL (límite inferior de explosividad) o Metano, Oxígeno y uno o dos de cinco gases tóxicos (Monóxido de Carbono, Cloro, Sulfuro de Hidrógeno, Dióxido de Nitrógeno y Dióxido de Azufre).

Este instrumento reconoce automáticamente los sensores instalados y brinda lecturas instantáneas y fáciles de leer en la pantalla LCD. El TMX 412 dispone de un registro de datos operativos (data logging) con reloj de tiempo real, que calcula y registra lecturas STEL y TWA (y almacena hasta 110 horas de información). Posee algunas características adicionales como son: sensores de conexión rápida (plug-in sensors), protección RFI, alarmas visuales y auditivas, calibración de una tecla (one-push button calibration) y lector de memoria pico.

UNIDAD 4

Page 70: Curso Verificador de Gas

Detectores individuales

Detector Individual Pac III.- El Pac III es un detector individual de gases portátil alimentado por baterías, variable en su configuración, que puede medir continua y simultáneamente gases tóxicos u Oxígeno.

Características:•De diseño robusto y ergonómico es ideal para ambientes industriales.• Es fácil de utilizar, estando el menú disponible en varios idiomas, con indicaciones extendidas también a símbolos gráficos.• Su funcionamiento puede ser por difusión o por bomba externa de aspiración, pudiendo opcionalmente guardar hasta 8000 datos.• Puede configurarse para medir hasta 36 gases tóxicos u Oxígeno con uno de los 13 sensores electroquímicos disponibles. • Equipos prácticamente carentes de mantenimiento.• Dos niveles de alarma de libre selección.• STEL/TWA (versión Pac III E).• Memoria de datos integrada y posibilidad de conexión a PC (versión Pac III E). • Iluminación del display activada por la pulsación de una tecla.• Alarma de gran potencia extraordinariamente audible (85 dB A a 30cm). • Indicación de alarma de color rojo, visible a gran distancia mediante 2 pilotos LEDs.

UNIDAD 4

Page 71: Curso Verificador de Gas

• Opcional: versiones con posibilidad de utilización de baterías recargables de Ni-Cd (hasta 200 horas por carga) o de pilas alcalinas (hasta 600 horas), o hasta 1100 h con batería de Litio.• Disponibilidad de accesorios para cada función específica de medición.• La gran versatilidad del sistema Pac, asegura su utilización en el futuro, en combinación con los nuevos tipos de sensores y accesorios que se vayan incorporando a la gama.• La carcasa está concebida para resistir las más duras condiciones de utilización del aparato, es resistente al agua, a las caídas y golpes y puede mantenerse bajo la lluvia.• Indicaciones gráficas sin limitaciones mediante pantalla matricial.

UNIDAD 4

Page 72: Curso Verificador de Gas

Estos equipos cumplen las normas de homologación más estrictas.

Áreas de utilización del equipo Pac III: Industria Química y Petroquímica Empresas de Gas Minería Laboratorios Empresas de Inspección Industrias Farmacéuticas Empresas con riesgo de gases tóxicos

Pac III se ofrece en 3 versiones:

· Pac III B: Modelo básico para medición de O2, CO ó H2S, se pueden alimentar con batería alcalina de Ni-Cd.

Pac III: Modelo estándar que permite el intercambio de sensores.

Pac III E: Versión ampliada, que además, gracias al empleo de una memoria de datos para el almacenamiento de valores o resultados de medida, tiene una capacidad de almacenamiento de datos de hasta 8000 resultados de medición, identificación de usuario y lugar de medición.

UNIDAD 4

Page 73: Curso Verificador de Gas

UNIDAD 5

TECNICAS DE MUESTREO

◊ Un factor a considerar es que el instrumento realiza el muestreo de gases en forma puntual, debiéndose monitorear en varios lugares dentro de un espacio confinado o próximo a la fuga en lugares abiertos.

◊ Otro factor a considerar es la densidad de los gases respecto al aire, rastreando los gases próximos al piso o hacia el techo.

◊ Una forma de detección de los gases se hará por difusión, esto es, permitiendo que el gas penetre al sensor para hacer la medición.

Page 74: Curso Verificador de Gas

◊ El otro método de detección de los gases se hará por una succión de la muestra con una bomba que genere vació para aspirarla de lugares inaccesibles como espacios cerrados, drenajes, tuneles, alcantarillas, zanjas,trincheras, pozos, bóvedas de comunicaciones, etc

◊ Instrumentos de detección personal son portados por trabajadores, instaladores, supervisores durante todo el turno de trabajo para prevención contra fugas inesperadas, alejándose o protegiéndose para evitar riesgos.

◊ En reparaciones o mantenimientos de carros tanque, ductos, equipo de proceso, se hará inspección previo al trabajo y durante el mismo.

TECNICAS DE MUESTREO

UNIDAD 5

Page 75: Curso Verificador de Gas

◊ Si un sensor se somete a una concentración superior a su rango,puede suceder que la vida del sensor disminuya o se dañe.

◊ Pruebe sus sensores con gases certificados, no los exponga a escapes de automóviles, gas de encendedor, fuentes donde se sabe que las concentraciones de gas exceden los límites de rango.

◊ Si en condición normal se expone a una alta concentración de un gas, esta será momentánea, usted tendrá que abandonar el área y los sensores no se verán afectados

TECNICAS DE MUESTREO

UNIDAD 5

Page 76: Curso Verificador de Gas

USO Y MANTENIMIENTO DE LOS EQUIPOS

◊ Pruebas de verificación de funcionamiento, cuales y cuando requieren de calibración

Medición de prueba instantánea:Para saber si el instrumento detecta dentro de sus parámetros de medición solo se aplica gas y se ve lectura.

Generalmente los cilindros con gases certificados para calibración muestran: Valores óptimos (optimum) y valores tolerables (allowable), ejemplo:

Gas Optimo TolerableCombustible -Pentano

58 % LEL 52-64 % LEL

Combustible –CH4

1.5% CH4 1.3 a 1.6%CH4

Oxígeno 15% O2 13 a 17% O2Monóxido deCarbono

60 ppm CO 54-66 ppm CO

Acido sulfhídrico 20 ppm H2S 18-23 ppmH2S

UNIDAD 5

Page 77: Curso Verificador de Gas

USO Y MANTENIMIENTO DE LOS EQUIPOS

Medición de prueba instantánea:Los pasos son:1. Coloque un regulador de flujo P/N 467895 al cilindro con mezcla de gases o de un solo gas.2. Coloque la tapa de calibración, la conexión a la entrada de la bomba con su manguera o la manguera al instrumento. 3. Coloque el otro extremo de la manguera a la conexión de salida del regulador.4. Abra la perilla del regulador y deje que el gas del cilindro llegue al instrumento, permita que las lecturas de medición se estabilicen.5. Si las lecturas están dentro de los valores tolerables, el instrumento esta midiendo en sus rangos establecidos y esta listo para usarse.

UNIDAD 5

Page 78: Curso Verificador de Gas

Si las lecturas están fuera de los valores tolerables, el instrumentorequiere de calibración.

Procedimiento de Calibración:

1. Estando el instrumento encendido, en pantalla de medición y batería con suficiente carga, oprima el botón de RESET y mantengalo oprimi- do hasta que CAL CERO? Destelle en la pantalla.2. Presione el botón ON/OFF para hacer ajuste de ceros y llevar el O2 a 20.8%, este paso debe hacerse en donde haya aire limpio.

3. Una vez que se han fijado los ceros CAL SPAN? Destella (lo hace por 90 segundos aproximadamente).4. Aplique el gas siguiendo los pasos explicados en medición de prueba instantánea.

UNIDAD 5

Page 79: Curso Verificador de Gas

Procedimiento de Calibración:

5. Abra el regulador para dejar pasar el gas y oprima el botón ON/OFF, esto inicia la secuencia de autocalibración.6. Una vez terminada la secuencia de autocalibración el instrumento pita 3 veces y regresa a pantalla de medición.7. Calibración terminada, cierre su regulador y retire sus accesorios, instrumento listo para usarse.

Con que frecuencia se recomienda hacer ambas pruebas:

Medición de Prueba Instantánea: Una vez por semana.

Proceso de Calibración: Una vez por mes, se use o no se use el instrumento.

IMPORTANTE: Para ambas pruebas use solo cilindros envasados por fabricante de gases especiales que proporcionen Certificado de Traceabilidad de Gases y fecha de caducidad.

UNIDAD 5

Page 80: Curso Verificador de Gas

Tipo de Mantenimiento que se puede hacer en Campo

1. Limpieza del instrumento con una franela humedecida con agua.

2. Cambio de sensores, al hacerlo requiere que se calibre después de instalarlos, deje los nuevos sensores con el instrumento apagado un mínimo de 20 minutos, luego encienda el instrumento y déjelo ope- rando otros 10 minutos; luego calibre.

3. Si cambió el sensor de O2 haga lo anterior, proceda a calibración y terminado el paso de ajuste de cero oprima el botón RESET para abortar los siguientes pasos.

4. Cambio fieltro de protección de sensores, cambio de 2 veces por año. Cambio de filtro contra agua en la bomba, cuando se obstruya o lo observe con mucha suciedad.

UNIDAD 5

Page 81: Curso Verificador de Gas

Que Mantenimiento lo tiene que hacer el Fabricante, a donde enviarlo, a través de quien.

Cuando el instrumento presente una falla o deje de funcionar envíeloal Fabricante, no intente reparalo, perderá la garantía.

A donde enviarlo: A la oficina más próxima del Distribuidor Autorizado, entregando una relación de piezas enviadas a revisión o reparación e indicando la falla y fecha de cuando se presentó

Una vez recibido en planta de MSA Naucalpan, se hará un diagnósticode la falla, viendo si procede Reparación en Garantía, en caso de que este solicitándose ésta o un presupuesto de reparación.

Favor proporcionar nombres de la persona responsable, dirección, teléfono, fax, Email para aclaraciones.

UNIDAD 5

Page 82: Curso Verificador de Gas
Page 83: Curso Verificador de Gas

REACCIÓN QUÍMICA EN CADENA.

LA REACCIÓN EN CADENA DA INICIO EN EL MOMENTO QUE EL OXÍGENO Y EL COMBUSTIBLE FRENTE AL CALOR ENCIENDEN LA PRIMERA MOLÉCULA QUE RODEA AL COMBUSTIBLE, ES MÁS FÁCIL INICIARSE CUANDO MAYOR CANTIDAD DE GASES O VAPORES DESPRENDE DICHO COMBUSTIBLE, YA QUE LA PRIMERA MOLÉCULA ENCENDERÁ A LA SEGUNDA Y ÉSTA A LA TERCERA Y ASÍ SUCESIVAMENTE; A LA TEMPERATURA INICIAL SE LE CONOCE COMO "TEMPERATURA DE IGNICIÓN" DEL COMBUSTIBLE Y ES LA QUE INICIA LA REACCIÓN QUÍMICA EN CADENA.