curso microbiología

406
CURSO DE MICROBIOLOGÍA UNIVERSIDAD TÉCNICA DEL NORTE UTN

Upload: miguel-gualoto

Post on 18-Jun-2015

2.947 views

Category:

Education


7 download

DESCRIPTION

Engineering Course in Natural Resources

TRANSCRIPT

Page 1: Curso microbiología

CURSO DE MICROBIOLOGÍA

UNIVERSIDAD TÉCNICA DEL NORTE UTN

Page 2: Curso microbiología

DESARROLLO HISTORICO

Page 3: Curso microbiología

DESARROLLO HISTÓRICO El hombre utiliza a los microorganismos

desde los inicios de la civilización, en actividades cotidianas como:

1. Preparación del pan

2. Preparación del vino y vinagre

3. Preparación de cerveza.

4. Obtención de etanol.

No conoce sobre la existencia de microorganismos

Page 4: Curso microbiología

DESARROLLO HISTÓRICO

Construcción de lentes en la antigua Babilonia.

Varrón Reatino, afirma que en los lugares pantanosos, se originan pequeños animalitos que no se ven a simple vista, se difunden por el aire y se infiltran en el organismo humano a través de la boca y fosas nasales provocando graves enfermedades.

Page 5: Curso microbiología

DESARROLLO HISTÓRICO

Siglo XI (Persia), existía la práctica de frotarse la piel con polvos de costras variólicas.

Girolano Francostoro (siglo XVI), explica la aparición de enfermedades como resultado de la acción de diminutos embriones invisibles de orígen animal.

Eusebio Valli de Lucca, se inoculó pus de bubón de peste y de la pústula de la viruela

Page 6: Curso microbiología

DESARROLLO HISTÓRICO

(Antony van Leeuwenhoek, 1632—1723), descubrió bajo la lente de su microscopio rudimentario, seres diminutos. Solo en 1776 pudo observar por primera ves a las bacterias.

1635—1703 Robert Hooke, descubre las primeras células en cortes de corcho.

Page 7: Curso microbiología

DESARROLLO HISTÓRICO

Carlos Linneo (XVIII), no se atrevió a clasificar a los microorganismos en su sistema del mundo vegetal y los apartó en un grupo llamado “caos”.

Lázaro Spalanzani y Martín Terejovski, confirmaron el hecho de que los microorganismos no se desarrollan en medios estériles, sino, en medio propicios.

Page 8: Curso microbiología

DESARROLLO HISTÓRICO

En el Cáucaso a las niñas se les pinchaba con agujas humedecidas en líquido de úlceras variólicas.

En el siglo XIX, se realizan una serie de experimentros con los microorganismos.

Pasteur, ayuda a solucionar el problema de los vinicultores. Desarrolla el método de pasteurización.

Page 9: Curso microbiología

Aportes de Pasteur

Inicio real de la Microbiología. 1857, Describe el proceso de la

fermentación. 1860, Desecha la teoría de la Generación

espontánea. 1865, Resuelbe el problema de la acilación

del vino y cerveza. 1868, Estudio de las enfermedades del

gusano de seda. Fin de las Epizootias

Page 10: Curso microbiología

DESARROLLO HISTÓRICO

1881, Desarrollo de las vacunas preventivas, contra el ántrax, rabia, el cólera y viruela.

Estableció las bases de la Inmunología. (J. В. Demazier, 1783—1862), Describe la

estructura de levaduras que proliferan sonre la cerveza.

Page 11: Curso microbiología

DESARROLLO HISTÓRICO

R. Koch, 1843—1910, descubre el agente causante de la tuberculosis y de el cólera.

1845—1916 , Mechnikov, establece las bases de la Microbiología médica.Teoría fagocitaria de la inmunidad

1856—1953 Vinogradski, introdujo el principio microecológico en la investigación de microorganismos. Aisló Clostridium pasteurianum bacteria fijadora de N2

Page 12: Curso microbiología

DESARROLLO HISTÓRICO

М. Beijerinck, 1851—1931, aisló Azotobacter chroococcum .Estudió el proceso de la denitrificación, reducción de sulfatos

1892 . Ivanovskiy, descubre los virus (VMT)

Page 13: Curso microbiología

Microbiología del siglo XX

А. Kluyver 1888—1956 , С. van Niel, 1897–1985 desarrollo de la Teoría de la unidad bioquímica de la vida.

Page 14: Curso microbiología

Ubicación de los microroganismos en el sistema del mundo vivo

Е. Haeckel, 1834—1919, propone ubicar a los microroganismos en un nuevo reino llamado Protista.

R. Stanier, 1916—1982 y С. van Niel, establecieron las diferrencias entre células eucariotas y procariotas.

Page 15: Curso microbiología

Los microorganismos como células

PROCARIOTAS

Page 16: Curso microbiología

Diferencias entre procariotas y ecuariotas

Característica

Célula procariota Célula eucariota

Organización del material genético

Nucleoideo (ADN no separado del citoplasma por una membrana), compuesto de un solo cromosoma. La mistosis está asudente

Núcleo (ADN seprado del citoplasma por una membrana), que continen más de un cromosoma, división del núcleo mediante mitosis.

Localización del ADN

En nucleoides, plásmidos, no seprados por una membrana elemental

En el núcleo y en algunos organelos

Page 17: Curso microbiología

Diferencias entre procariotas y ecuariotas

Característica Procariota Eucariota

Organelos citoplasmáticos

Ausentes Poseen

Ribosomas en el citoplasma

Tipo 70S Tipo 80S

Movimiento citoplasmático

Ausente Se observa con frecuencia

Page 18: Curso microbiología

Diferencias entre procariotas y ecuariotas

Característica Procariota EucariotaPared celular En la mayoría

poseen peptidoglicanos

No hay peptidoglicanos.

Flagelos Formado por unidades proteicas dispuestas en espiral

Tipo 80SCada una dispone de microtúbulos dispuestos en 9-9-2 grupos.

Page 19: Curso microbiología

Sistemática

R. Whittaker , propuso un sistema donde todos los seres vivos que poseen estructura celular están distribuidos en cinco reinos.

Los procariotas organizados en dos reinos, Monera y Protista.

Los eucariotas en tres: Plantae, Fungi y Animalia.

Page 20: Curso microbiología

RASGOS DE LOS PROCARIOTAS

Sus membrana plasmáticas carecen de esteroles, salvo los micoplasmas (pero en este caso los esteroles proceden del hospedador eucariótico al que parasitan), algunas especies de cianobacterias y de bacterias melitotrofas.

La movilidad no es universal, pero muchas bacterias se mueven en medios acuáticos debido a unas estructuras llamadas flagelos, que nada tienen que ver con los flagelos eucarióticos.

Page 21: Curso microbiología

RASGOS DE LOS PROCARIOTAS

Las eubacterias (dominio Bacteria) poseen, salvo los micoplasmas, una pared celular a base de una peptidoglucano (una macromolécula que no existe en eucariotas).

Muchas arqueas (dominio Archaea) poseen pared celular, diferente a las del dominio Bacteria.

Page 22: Curso microbiología

TamañoEucariotas unicelulares

Tamaño lineal en μm

Diatomeas

Protistas superiores

100

Algas verdes Chlorella

2-10

Levaduras Saccharomyces

6-10

Page 23: Curso microbiología

TamañoOrganismos procariotas

Tamaño lineal en μm

Achromatium oxaliferum

5-33х15-100

Beggiatoa alba 2-10х1-50

Cristispira pectinis 1,5х36-72

Macromonas mobilis 6-14х10-30

Thiovulum majus 5-25

Spirochaeta plicatilis 0,2-0,7х80-250

Page 24: Curso microbiología

TamañoOrganismos procariotas

Tamaño lineal en μm

Bacillus subtilis 0,7-0,8x2-3

Escherichia coli 0,3-1х1-6

Staphylococcus aureus

0,5-1,0

Thiobacillus thioparus

0,5х1-3

Rickettsia prowazeki 0,3-0,6x0,8-2

Mycoplasma mycoides

0,1х0,25

Page 25: Curso microbiología

TamañoVirus Tamaño lineal en

μm

Mosaico del tabaco 0,02x0,3

Antrax bobino 0,26

Gripe 0,1

Fago T2 0,06x0,2

OX174 0,025

Satélite viral 0,018

Page 26: Curso microbiología

Tamaño

Los más pequeños de los organismos procariotas estudiados son los micoplasmas 0,1–0,15 μm, que contienen cerca de 1200 moléculas de proteínas que realizan más de 100 reacciones fermentativas que garantizan la capacidad vital del microorganismo.

Page 27: Curso microbiología

Tamaño

El tamaño de la mayoría de los virus se encuentra entre 16-200 nm, son visibles solo con el microscopio electrónico.

El tamaño de los organismos está estrechamente ligado con su estructura, el límite inferior está ligado al espacio necesario para el empaquetamiento del sistema que garantiza la existencia independiente del organisnos.

Page 28: Curso microbiología

Tamaño

El límite superior está determinado por la relación entre la superficie corporal y el volúmen. Al incrementarse el tamaño celular la superficie incrementa al cuadrado, mientras que el volumen al cubo.

En los microorganismos la relación superficie volúmen es grande, razón por la que su metabolismo en relación a la unidad de masa, es considerablemente mayor al de los macroorganismos.

Page 29: Curso microbiología

COMPOSICIÓN QUÍMICA tipo de componente Porcentaje sobre

peso seco

proteína 55.0

ARN 20.5

ADN 3.1

Lípidos 9.1

Lipopolisacárido 3.4

Peptidoglucano 2.5

Glucógeno 2.5

total macromoléculas: 96.1

Pequeñas moléculas orgánicas:

2.9

Iones inorgánicos: 1.0

Page 30: Curso microbiología

Particularidades Las macromoléculas constituyen la porción

mayoritaria de la masa celular (96%); Las proteínas representan más de la mitad de esta

cantidad; Las bacterias poseen una proporción de ARN

superior a la de los eucariotas; La mayor parte de los compuestos son semejantes a

los de eucariotas, pero encontramos dos que son exclusivas de los procariotas: lipopolisacárido (exclusivo de Gram-negativas); peptidoglucano (presente en eubacterias Gram-positivas y Gram-negativas.

Page 31: Curso microbiología

MICROORGANISMOS Y ORIGEN DE LA VIDA

Page 32: Curso microbiología

CAP. IINOMENCLATURA Y

CALSIFICACIÓN

Page 33: Curso microbiología

Estructura de la célula Procariota

Variedades morfológicas: Basado en, forma y tamaño celular, división celular, inclusiones citoplasmáticas, estructura de la pared celular. Tipo de formas diferenciadas que aparecen en el ciclo vital

Page 34: Curso microbiología

VARIEDADES MORFOLÓGICAS

Morfología bacteriana

Esféricas Bastonadas Curvas Filiformes

Micrococos

Diplococos

Sarcinas

Estreptococos

Tetracocoss

Estafilococos

Bacterias

Bacilos

Clostridioss

Vibriones

Espirilos

Espiroquetas

Sulfobacterias

Ferrobacterias

Rikettsias

Page 35: Curso microbiología

VARIEDADES

Variedades fisiológicas: Modos de obtener energía, fuentes de nutrientes, relación frente al oxígeno molecular y factores del medio ambiente como: luz, pH, temperatura, humedad. También los mecanismos genéticos de su evolución

Page 36: Curso microbiología

Micrococos

Son bacterias saprofitas aeróbicas, gram positivas, que habitan en el agua, el aire y el suelo. Soportan elevadas concentraciones salinas y son pigmentadas. Son células aisladas pertenecientes a:

1. Micrococus luteus.2. M. roseus.3. M. varians

Page 37: Curso microbiología

Sarcinas

Sus células se dividen en tres planos perpendiculares, formando paquetes de 8 células. Son anaerobios estrictos, con alta resistencia a la acidez.

Están presentes en el barro, heces y contenidos estomacales

Page 38: Curso microbiología

Estreptococos

Contiene especies homofermentativas, con hábitats muy diversos.

Algunas especies son patógenas (caries). Otras son de utilidad en la industria de los lácteos.

Son bacterias gram positivas

Page 39: Curso microbiología

Formas de organismos procariotas

Las formas bacterianas pueden ser: Esféricas, cilindricas o espirales. Existen formas individuales, filamentosas o colonias.

Las formas esféricas se llaman cocos, despues de la división pueden permanecer unidos, si la división ocurre en un solo plano forman Diplococos, Estreptococos; si lo hacen en varios planos forman Sarcinas

Page 40: Curso microbiología

Colonias bacterianas

Page 41: Curso microbiología

Formas de organismos procariotas

Bacterias de forma cilindrica, se llaman bacilos, si forman cadenas, se denominan estreptobacilos ( 1-5).

Bacterias espirales se llaman espirilos (varias vueltas de espiral) y Vibriones si tienen forma de bacilos curvos ( 6-8).

Procariotas de forma anular, cerrada o abierta en dependencia de la estapa de desarrollo (9).

Page 42: Curso microbiología

Formas de organismos procariotas

Page 43: Curso microbiología

Bacillus turingiensis

Page 44: Curso microbiología

Bacterias

No forman esporas, este es el caso de:

1. La Tifoidea, 2. Paratifoidea.3. Disentría.4. Tuberculosis.Pueden ser: diplobacterias y

estreptobacterias.

Page 45: Curso microbiología

Bacilos

Son microorganismos que poseen un amplio metabolismo que forman esporas, tales como:

1. Bacilos del Heno.2. Carbunco.3. Tétanos.4. B. thuringiensisPueden ser diplobacilos y estreptobacilos

Page 46: Curso microbiología

Clostridios

Bacterias Gram negativas, esporuladas, con bajo contenido de CG. Carecen de sistema citocrómicos. La energía la obtienen de la fosforilación del sustrato.

Son anaerobios de suelos. Ejemplo el Clostridium botulinum

Page 47: Curso microbiología

Rickettsias

Organismos que por su tamaño se hallan entre los virus y bacterias. Son parásitos obligados, poco peligrosos.

Existen 50 especies, que habitan en el tubo digestivo, glándulas salivales, de piojos chinches y garrapatas.

Son causantes del tifus y de la fiebre manchada.

Page 48: Curso microbiología

Medio de cultivo

Sistema dinámico donde la materia viva interactúa con un componente abiótico que presenta alta actividad biológica (nutrientes: C-N-P, en forma de proteínas, hidratos de carbono, lípidos y un componente mineral integrado por Na, K, y microelementos), bajo condiciones controladas, que garantizan un equilibrio en la interacción.

Page 49: Curso microbiología

MEDIOS DE CULTIVO Los nutrientes que requieren los

microorganismos son: agua, carbohidratos, nitrógeno, fósforo, azufre, calcio, cobre, etc.

También es necesario brindarle las condiciones ambientales adecuadas de luz, temperatura, oxigenación, humedad, etc. Las bacterias crecen a 37ºC y un pH de 6.5-7.5 y los hongos a 27°C y un pH de 4.5-6.

Para cultivar a los microorganismos es necesario el uso de medios de cultivo.

Page 50: Curso microbiología

Clasificación

1.Por su consistencia:

a. Líquidos: también se llaman caldos de cultivo, no contienen agar y se preparan en matraces pequeños.

b. Semisólidos: contienen 0.5% de agar y se preparan en matraces pequeños.

c. Sólidos: contienen de 1.5 a 2% de agar y se preparan en cajas petri (placa)o en tubos de ensayo.

Page 51: Curso microbiología

Medios de cultivo Recipientes con medios de cultivo

Page 52: Curso microbiología

Clasificación

2.Porsucomposición:a. Definido: se conoce su composición

exacta, se utiliza cuando ya se conocen los microorganismos que se van a cultivar.

b. Complejo: no se conoce su composición, pueden tener sangre, leche, extracto de levadura o carne; se utiliza cuando no se conocen a los microorganismos o no se conocen sus requerimientos nutricionales.

c. Mínimo: es un medio definido que proporciona solo los nutrientes necesarios.

Page 53: Curso microbiología

Clasificación

3.Por su función:a. Selectivos: promueve o inhibe el

crecimiento de los microorganismos.b. Diferenciales: permiten distinguir

entre diferentes tipos de microorganismos.

c. De enriquecimiento: contiene factores de crecimiento, un nutriente esencial que el microorganismo no puede sintetizar.

Page 54: Curso microbiología

Clasificación

Page 55: Curso microbiología

Tipos de medios de cultivo Los medios de cultivo pueden ser: Generales y

selectivos. Los medios de cultivo generales, se emplean

para garantizar el crecimiento masivo de la gran mayoría de microorganismos presentes en una muestra, indistintamente de su morfología y fisiología. Estos cultivos se emplean para conocer la diversidad microbiana existente en una muestra objeto de estudio.

Medios de cultivo selectivos, son medios especializados cuya composición garantiza el crecimiento de una sola especie de microorganismos, por disponibilidad o ausencia de un cierto componente específico que determina su capacidad metabólica característica.

Page 56: Curso microbiología

Características Alta asimilación de sus componentes (nutrientes

semi digeridos, procesados). Relación de macro y micronutrientes balanceada. Propiedades físico- químicas ideales para

garantizar el crecimiento microbiano.(conductividad eléctrica, pH, salinidad, temperatura, consistencia, humedad)

Disponibilidad de estimulantes de crecimiento. Pureza y asepsia. Elevado costo Limitada disponibilidad.

Page 57: Curso microbiología

Preparación de medios

La base para su elaboración es un medio deshidratado, un medio que está en polvo al cual hay que disolver en agua y esterilizar.

Page 58: Curso microbiología

Preparación1. Pesar los medios de cultivo Bacterias: 23

g de agar nutritivo para un litro de agua destilada Hongos: agar, dextrosa y papa y extracto de levadura para un litro de agua destilada.

2. Colocar el medio de cultivo en polvo en un matraz erlenmeyer y agregar agua destilada.

3. Calentar en la parrilla de agitación hasta que el medio este totalmente cristalino.

Page 59: Curso microbiología

Preparación4. Retirar de la parrilla y colocar un tapón

hecho con algodón en vuelto en gasas. El tapón debe quedar fijo pero no apretado.

5. Colocar el medio en la autoclave y esterilizar a 121°C durante 20 minutos.

Page 60: Curso microbiología

Preparación6. Pasados los 20 minutos sacar el

medio de cultivo y dejar enfriar solo un poco. OJO: en el caso del medio de cultivo para hongos dejar enfriar hasta los 45°C y agregar el antibiótico, es decir la gentamicina (ampolleta). De la gentamicina necesitamos 1ml para un litro de medio.

Page 61: Curso microbiología

Preparación A manera de ejemplo citamos el medio de

cultivo para bacterias reductoras de Fe y Mn: (NH4)2SO4----------1,5g K2HPO4--------------0,05g KCl---------------------0,05g MgSO4.7H2O-------0,05g Ca(NO3)2.4H2O--- 0,01g H20 destilada------- 1000ml. Después de la esterilización el medio se deja

enfriar 2-3 días, para la saturación con CO2 y oxígeno.

Page 62: Curso microbiología

Preparación

7. Vaciar el medio de cultivo en cajas petri dentro de un campo estéril. En cada caja vaciar aproximadamente 30ml.

Page 63: Curso microbiología

Distribución del medio

Page 64: Curso microbiología

Esterilización

Otra de las técnicas empleadas en microbiología es la esterilización. Esterilizar es eliminar todos los microorganismos presentes en nuestro material. Todos los aparatos, superficies y materiales utilizados para cultivar deben ser esterilizados.

Para la esterilización se pueden emplear los siguientes métodos y/o agentes:

1.Métodosfísicos:a. Calor húmedo: autoclave

Page 65: Curso microbiología

Esterilización

Equipos empleados

Page 66: Curso microbiología

Esterilización Para la esterilización se pueden emplear

los siguientes métodos y /o agentes:

1. Métodos físicos:

b. Calor seco: estufa y flameado a la llama

Page 67: Curso microbiología

Esterilización Para la esterilización se pueden emplear

los siguientes métodos y /o agentes:1. Métodos físicos: c. Rayos ultravioleta d. Filtración

Page 68: Curso microbiología

Esterilización 2. Métodos químicos:a. Hipoclorito de sodio, cloro comercial

al 10%b. Alcohol etílico al 70%c. Cloruro de benzalconio

Page 69: Curso microbiología

Siembra mediante diluciones

Para la siembra mediante diluciones, se toman 100g del sustrato contaminado y se disuelven en 1000 ml de agua destilada. Se agita profusamente y de la solución materna, se toma con ayuda de una pipeta estéril un ml, que se transfiere a un tubo de ensayo que contiene 9 ml de agua tridestilada.

  Luego de mezclar por inversiones sucesivas

el tubo de ensayo tapado, se toma de él 1ml y se transfiere al siguiente tubo que contiene 9ml, La operación se repite hasta el sexto tubo.

Page 70: Curso microbiología

Siembra Se pesan 100g del sustrato contaminado

y se disuelven en 1000 ml de agua destilada. Se agita profusamente y deja reposar por uno 20 minutos.

A continuación se soma una micro gota de la solución con ayuda de una aza de siembra. Para facilitar la toma, inicialmente se flamea el aza en el mechero bunsen y se pone en contacto con el medio de cultivo sólido de la caja petri elegida para la siembra. Esta operación hace factible la adhesión de una gota al aza microbiológica.

Page 71: Curso microbiología

Siembra mediante diluciones

Los tubos deben rotularse con 10-1. 10-2, 10-3, 10-4, 10-5 y 10-6. Parra la siembra se debe considerar solamente las tres últimas diluciones

  Independientemente del valor obtenido

del conteo de UFCs, todos los resultados deben expresarse en valores de 10-6, para facilitar los cálculos de cinética y porque solo valores con dicho exponente garantizan una tasa de degradación efectiva.

Page 72: Curso microbiología

Siembra mediante diluciones

Page 73: Curso microbiología

Técnica de siembra

Page 74: Curso microbiología

Siembra en caja y en tubo

Page 75: Curso microbiología

Forma de crecimiento

En medio sólido b) en medio líquido.1.- Aeróbicos, 2.- Microaerófilas, 3.-

Anaerobios facultativos, 4.- Anaerobios

Page 76: Curso microbiología

Dinámica de crecimiento en gelatina

1.- En forma de cráter, 2.- En forma de tubérculo, 3.- En forma de embudo, 4.- En capas, 5.- En forma de burbujas.

1,3 y 5 la lisis generada por aeróbicos, 4 generado por anaerobios facultativos y 6 por anaerobios.

Page 77: Curso microbiología

Incubación La incubación de las siembras, para la gran

mayoría de microorganismos empleados en biorremediación transcurre bajo 37°C, pudiendo en dependencia del tipo de microorganismo a aislar, variar en un amplio rango que va de -8 a +57°C. Las bacterias sicrotolerantes se incuban a temperaturas inferiores a 0°C, mientras que los microorganismos termófilos bajo temperaturas superiores a los 45°C.

Para fines prácticos el tiempo de incubación es de 24 horas (para la gran mayoría de sepas). Cuando se está definiendo la cinética del proceso, el primer conteo se efectúa a las 4 horas de incubación.

Page 78: Curso microbiología

Identificación

La identificación microbiana es quizá la etapa de mayor responsabilidad de una investigación, razón por la que se requiere de la participación de un microbiólogo experimentado, que conozca la fisiología microbiana, las técnicas de identificación y las particularidades de cultivos específicos.

La identificación completa de cepas microbianas se logra mediante análisis físicos, químicos y genéticos.

Page 79: Curso microbiología

Identificación morfológica La identificación morfológica se puede

efectuar a simple vista o con ayuda de un microscopio. A simple vista o con ayuda de una lupa se pueden observar detalles de la morfología de las colonias, que sirven para su identificación. Entre los aspectos que se pueden explorar físicamente están:

Forma de la colonia. Color de la colonia. Olor Apariencia de la superficie Perfil de la colonia

Page 80: Curso microbiología

Perfil de colonias

1.- angulada, 2.- en forma de cráter, 3.- Ondulada, 4.-Sumergida, 5.- Plana, 6.- Convexa, 7.- En forma de gota, 8.- Cónica

Page 81: Curso microbiología

Perfil de colonias

1.- Lisa, 2.- Ondulada, 3.- Dentada, 4.- De empalizada, 5.- Irregular, 6.- De pestañas, 7.- Filamentosa, 8.- Pilosa, 9.- Ramificada

Page 82: Curso microbiología

Formas de colonias

a) Redondas, b)redondas con extremos

ondulados, c)Redonda con anillo interior,

d) Rizoides, e,f) con extremo rizoide,

g) amiboidea, h) filamentosa,

i) Arrugada (Plisada), j) irregular,

k) concéntrica, l) compleja.

Page 83: Curso microbiología

Formas de los bordes

1.- Regular (uniforme), 2.- Levemente granulada, 3.- Fuertemente granulada, 4.- Rugosa, 5.- fibrosa.

Page 84: Curso microbiología

Identificación microscópica

Para la identificación de la morfología de las bacterias aisladas, es necesario preparar fijados con ayuda de sustancias colorantes que resaltan las estructuras celulares, permitiendo ver su forma, tamaño y propiedades estructurales.

Entre las pruebas típicas está la tinción Gram, la misma que permite diferenciar morfológicamente a los microorganismos en

Page 85: Curso microbiología

Formas microscópicas

1.- Diplococos, 2.- Estreptococos, 3.- Tetracocos y sarcinas, 4.- Estafilococos y micrococos.

1.- Pseudomona aeruginosa, 2.- Bacillus mycoides, 3.- Bacillus megaterium, 4.- Cytophaga sp.

Page 86: Curso microbiología

Formas microscópicas

Células curvas: 1.- Vibriones, 2.- Espirilos, 3.- Espiroquetas.

Bacterias que forman prolongaciones.1.- Caulobacter, 2.- Hyphomicrobium, 3.- Ancalomicrobium, 4.-

Gallionella.

Page 87: Curso microbiología

HongosConidióforos y conidios

de hongos imperfectos.

1.- Trichoderma, 2.-Cladosporium, 3.- Altenaria, 4.- Fusarium, 5.- Stachybotris, 6.- Stemphylium, 7.- Verticillium, 8.- Oospora, 9.- Cephalosporium, 10.- Botrytis, 11.- Phoma, 12.- Mycogone, a)

Conidios.

Page 88: Curso microbiología

Hongos

a)Aspergillus, b) Penicillium: 1.- Micela vegetativa, 2.- Conidióforo, 3.- Sterigmas, 4.- Conidios.

Page 89: Curso microbiología

BIOQUÍMICA La identificación bioquímica, permite comprobar la

disponibilidad o no de un sistema fermentativo específico en la sepa analizada, que le permite al microorganismos emplear ciertas sustancias en calidad de fuente de carbono o nutrientes.

Entre las pruebas bioquímicas más empleadas podemos citar:

Prueba de la gelatina (capacidad de romper enlaces peptídicos).

Prueba de nitratos (capacidad de metabolizar nitratos).

Prueba de oxidasas (oxigenasas, peroxidasas) Generación de pigmentos.

Page 90: Curso microbiología

Pruebas bioquímicas

Page 91: Curso microbiología

GENÉTICA La identificación genética de las

sepas, es una prueba concluyente que permite establecer con absoluta certeza, el género, familia, especie y subespecie. La secuenciación de ADN microbiano, permite identificar especies nuevas, de gran utilidad en biotecnología ambiental, sobre las cuales se ejerce derechos de propiedad intelectual.

Page 92: Curso microbiología

GENÉTICA

La identificación de bacterias por métodos moleculares se realiza por establecer la secuencia de nucleótidos de algún gen marcador de una especie que está dentro de una muestra ambiental con varios genomas. A la fecha el gen más utilizado es el que codifica para el ARN de la subunidad pequeña del ribosoma es decir el gel ARN ribosomal 16S.

Page 93: Curso microbiología

GENÉTICA Este gen tiene muchas ventajas a comparación

de otros como son: 1. Se encuentra presente en cualquier eubacteria, 2. Tiene diferentes regiones que son comunes para

un phylum o inclusive para todo el reino eubacteria y otras que son exclusivas de cada género y especie.

Por lo tanto al amplificar el o los genes ARN ribosomales 16S de una muestra  ambiental por medio de la reacción de polimerización en cadena (PCR) y la posterior secuenciación de cada producto se obtiene la composición de especies de una muestra ambiental.

Page 94: Curso microbiología
Page 95: Curso microbiología
Page 96: Curso microbiología

ESTRUCTURA

Page 97: Curso microbiología

CELULA BACTERIANA

Page 98: Curso microbiología

Estructura general

cápsula o capa mucilaginosa capa S paracristalina vaina botones de anclaje pared celular Protoplasto

Page 99: Curso microbiología

Protoplasto membrana citoplásmica (que puede tener o no

invaginaciones) citoplasma, que incluye: genóforo, constituido por un cromosoma en algunas especies, uno o varios plásmidos

(elementos genéticos extracromosómicos) ribosomas inclusiones orgánulos Flagelos Fimbrias (= pelos)

Page 100: Curso microbiología

UBICACIÓN DE LOS MICROORGANISMOS

EN EL MUNDO VIVO

Existen dos tipos de organización celular, la procariótica y la eucariótica.

Dentro de los seres vivos con organización procariótica, existen dos grandes “dominios” o “imperios”: Bacteria (las eubacterias o bacterias “clásicas”) y Archaea (antes llamadas arqueobacterias)

A su vez, el dominio eucariótico comprende numerosas líneas filogenéticas, muchas de ellas de microorganismos. Los mismos Protozoos es un grupo muy heterogéneo, que comprende líneas filogenéticas diversas y a veces muy separadas en el tiempo evolutivo.

Page 101: Curso microbiología

Citoplasma

Es un sistema disperso formado por:

1. Coloides

2. Agua

3. Proteínas

4. Hidratos de carbono

5. Lípidos

Page 102: Curso microbiología

CITOPLASMA BACTERIANO

El citoplasma bacteriano es la masa de materia viva delimitada por la membrana citoplásmica. En su interior se albergan:

cuerpos nucleares (nucleoide); plásmidos (no en todas las cepas

bacterianas); ribosomas; inclusiones (no en todas); orgánulos (no en todas).

Page 103: Curso microbiología

CITOPLASMA BACTERIANO

Al igual que en los demás seres vivos, el citoplasma es un sistema coloidal cuya fase dispersante es agua junto con diversas sustancias en solución (citosol), y cuya fase dispersa está constituida por macromoléculas y conjuntos supramoleculares (partículas submicroscópicas). La viscosidad es mayor que la del citoplasma eucariótico, estando desprovisto de corrientes citoplásmicas.

Page 104: Curso microbiología

EL NUCLEOIDE

El ADN es el material genético de los procariotas, al igual que del resto de seres vivos (celulares). Está contenido en una región concreta del citoplasma, denominada nucleoide, no delimitado por membrana. El genoma es el conjunto de genes y secuencias de ADN de un organismo. En el caso de bacterias, el elemento obligatorio del genoma es el cromosoma, aunque es frecuente encontrar unidades de replicación autónomas llamadas plásmidos.

Page 105: Curso microbiología

Electron micrograph of the

nucleoid

Page 106: Curso microbiología

Localización del nucleoide

Page 107: Curso microbiología

COMPOSICIÓN QUÍMICA, ESTRUCTURA Y ORGANIZACIÓN DEL CROMOSOMA

Los cromosomas aislados muestran una composición de un 60% de ADN, 30% de ARN y 10% de proteínas.

En la mayor parte de las bacterias este ADN constituye un solo cromosoma circular, cerrado covalentemente (ADN c.c.c.). Existen algunas excepciones, en el sentido de que podemos encontrar cromosomas lineares o incluso más de un grupo de ligamiento (más de un cromosoma):

Page 108: Curso microbiología

COMPOSICIÓN QUÍMICA, ESTRUCTURA Y ORGANIZACIÓN DEL CROMOSOMA

En el género Borrelia el cromosoma es lineal con los extremos cerrados covalentemente (es decir, los extremos forman una especie de bucle de horquilla);

En bacterias del género Streptomyces también poseen un cromosoma lineal, pero sus extremos contienen secuencias cortas repetidas y están acomplejados con proteínas, lo que recuerda de algún modo los telómeros eucariotas;

Page 109: Curso microbiología

COMPOSICIÓN QUÍMICA, ESTRUCTURA Y ORGANIZACIÓN DEL CROMOSOMA

Algunas bacterias parecen poseer dos o más cromosomas:

Rhodobacter sphaeroides, Vibrio, Leptospira y Brucella presentan dos cromosomas circulares

Sinorhizobium melitoti presenta tres cromosomas circulares

Distintas cepas de Burkholderia cepacia presentan entre 2 y 4 cromosomas

Agrobacterium tumefaciens cuenta con un cromosoma lineal y otro circular.

Page 110: Curso microbiología

COMPOSICIÓN QUÍMICA, ESTRUCTURA Y ORGANIZACIÓN DEL CROMOSOMA

Las bacterias son organismos haploides: poseen un solo cromosoma. Sin embargo, cuando las células bacterianas se encuentran en crecimiento activo, y debido al desfase de la división celular respecto de la replicación, cada individuo puede albergar varias copias de ese cromosoma. Por ejemplo, E. coli puede llegar a 10 copias. Azotobacter puede llegar hasta las 100 copias al final de la fase de crecimiento exponencia, la bacteria gigante Epulopiscium, que aumenta el número de copias a 10.000 veces!).

Page 111: Curso microbiología

Tamaño de los cromosomas

Una bacteria típica, como Escherichia coli posee un cromosoma con 4.700 pares de kilobases (kb). Pero los rangos de tamaño oscilan entre las 700 kb de Mycoplasma genitalium (una bacteria carente de pared y parásita) y las más de 12 000 kb de ciertas bacterias capaces de diferenciación celular y fenómenos de multicelularidad (cianobacterias, actinomicetos).

Page 112: Curso microbiología

PLÁSMIDOS Se definen como elementos genéticos

extracromosómicos con capacidad de replicación autónoma (es decir, constituyen replicones propios). Todos los plásmidos bacterianos estudiados son de ADN de cadena doble. La inmensa mayoría son circulares cerrados covalentemente (c.c.c.) y superenrollados (aunque en Borrelia y algunos Actinomicetos existen plásmidos lineares). Algunos plásmidos poseen, además, la capacidad de integrarse reversiblemente en el cromosoma bacteriano: en esta situación se replican junto con el cromosoma (bajo el control de éste), y reciben el nombre de episomas.

Page 113: Curso microbiología

PLÁSMIDOS

Cada tipo de plásmido tiene un número medio de copias por célula característico. Por regla general, los grandes plásmidos tienen una o dos copias por célula (plásmidos con control estricto de la replicación), mientras que los pequeños suelen estar presentes como varias copias (>10), denominándose plásmidos de control relajado.

Page 114: Curso microbiología

Tipos de plásmidos plásmidos conjugativos (autotransmisibles),

que son aquellos que se transfieren entre cepas por medio de fenómenos de conjugación.

Plásmidos que no sólo se transfieren entre cepas de la misma especie, sino que son capaces de hacerlo entre especies y géneros muy diversos, se denominan plásmidos promiscuos o de amplio espectro de hospedadores, permitiendo transferencia horizontal de información genética entre grupos bacterianos filogenéticamente alejados.

Page 115: Curso microbiología

Tipos de plásmidos plásmidos no conjugativos, carentes

de esta propiedad de conjugación. Dentro de esta categoría existe un subgrupo, el de los plásmidos movilizables: son aquellos no autotransmisibles que pueden ser transferidos por la acción de un plásmido conjugativo coexistente en la misma bacteria.

Page 116: Curso microbiología

FENOTIPOS DETERMINADOS POR LOS PLÁSMIDOS

Resistencia a antibióticos (plásmidos R) Resistencia a metales pesados (por ejemplo,

resistencia a mercurio). Plásmidos de virulencia: producción de

toxinas, factores de penetración en tejidos, adherencia a tejidos del hospedador, etc., en ciertas bacterias patógenas.

Producción de bacteriocinas (proteínas tóxicas producidas por bacterias que matan a otras de la misma especie).

Page 117: Curso microbiología

FENOTIPOS DETERMINADOS POR LOS PLÁSMIDOS

Producción de sideróforos (quelatos para secuestrar iones Fe3+).

Utilización de determinados azúcares. Utilización de hidrocarburos, incluyendo

algunos cíclicos recalcitrantes (degradación de tolueno, xileno, alcanfor, etc.) en Pseudomonas.

Inducción de tumores en plantas (plásmido Ti de Agrobacterium tumefaciens)

Interacciones simbióticas y fijación de nitrógeno en ciertos Rhizobium.

Page 118: Curso microbiología

RIBOSOMAS El ribosoma está compuesto de un 63% de ARN (que

a su vez representa más del 90% del ARN total de la bacteria) y un 37% de proteínas. El ribosoma eubacteriano posee un coeficiente de sedimentación de 70S, frente al de 80S de los ribosomas citoplásmicos eucarióticos. Bajando la concentración de iones Mg++ cada ribosoma se disocia en sus dos subunidades: la pequeña (30S) y la grande (50S). In vivo esta disociación ocurre cada vez que se completa la síntesis de una molécula de proteína, para volver a unirse las dos subunidades al inicio del mensaje de otro gen.

Page 119: Curso microbiología

Subunidad pequeña (30S) Contiene un solo tipo de ARN: el ARNr 16S,

con una característica estructura secundaria con zonas de emparejamiento intracatenario (de cadena doble) y bucles.

Posee 21 tipos de proteínas, denominadas S1, S2 ... S21. Las posiciones relativas de algunas de estas proteínas han podido ser “cartografiadas” en el conjunto de la estructura de la subunidad 30S.

Page 120: Curso microbiología

Subunidad grande (50S) Posee dos tipos de ARN: ARNr 23S y ARNr

5S, cada uno con su correspondiente y peculiar estructura secundaria

Contiene 32 tipos de proteínas diferentes, denominadas L1 ... L32. La L7 y la L12 tienen la misma secuencia, pero la L7 está modificada químicamente en su extremo amino por unión con un radical acetilo. Con excepción de L7/L12, que están presentes en 4 copias cada una, las demás aportan una sola molécula cada una a la subunidad grande.

Page 121: Curso microbiología

INCLUSIONES DE RESERVA

Son acúmulos de sustancias orgánicas o inorgánicas, rodeadas o no de una envuelta limitante de naturaleza proteínica, que se originan dentro del citoplasma bajo determinadas condiciones de crecimiento. Constituyen reservas de fuentes de C o N (inclusiones orgánicas) y de P o S (inclusiones inorgánicas).

Page 122: Curso microbiología

INCLUSIONES CITOPLASMÁTICAS

Page 123: Curso microbiología

Inclusiones orgánicas:

1. inclusiones polisacarídicas

2. gránulos de poli-ß-hidroxibutírico (o, en general de poli-ß-hidroxialcanoatos)

3. inclusiones de hidrocarburos

4. gránulos de cianoficina

Page 124: Curso microbiología

Inclusiones inorgánicas

a)      gránulos de polifosfato

b)      glóbulos de azufre

Page 125: Curso microbiología

INCLUSIONES POLISACARÍDICAS

Son acumulaciones de (14) glucanos, con ramificaciones en (16), principalmente almidón o glucógeno (según especies), que se depositan de modo más o menos uniforme por todo el citoplasma cuando determinadas bacterias crecen en medios con limitación de fuente de N

Page 126: Curso microbiología

INCLUSIONES POLISACARÍDICAS

Estas inclusiones actúan, pues, como sistemas de almacenamiento de carbono osmóticamente inertes (la célula puede albergar grandes cantidades de glucosa que, si estuvieran como moléculas libres dentro del citoplasma, podrían tener efectos osmóticos muy negativos).

Page 127: Curso microbiología

INCLUSIONES POLISACARÍDICAS

Para observarlas se recurre a la tinción con una solución de I2 + IK (como el

lugol) glucógeno: aparece de color pardo-

rojizo; almidón (amilopectina): color azul

Page 128: Curso microbiología

GRÁNULOS DE POLI-ß-HIDROXIBUTÍRICO (PHB) Y

DE POLI-HIDROXIALCANOATOS Los gránulos de poli--hidroxibutírico son

acúmulos del poliéster del ácido ß-hidroxibutírico (= 3-hidroxibutírico), rodeados de una envuelta proteínica, y que al igual que en el caso anterior, se producen en ciertas bacterias como reserva osmóticamente inerte de C en condiciones de hambre de N. En las especies de Bacillus constituye la fuente de carbono y energía al inicio de la esporulación. Una función semejante parece implicada a la hora del enquistamiento de Azotobacter.

Page 129: Curso microbiología

GRÁNULOS DE POLI-ß-HIDROXIBUTÍRICO (PHB) Y DE POLI-HIDROXIALCANOATOS

Una célula puede contener de 8 a 12 de estos gránulos, que miden unos 0.2-0.7 m de diámetro, y que van provistos de una envuelta proteica de unos 3-4 nm de grosor. Pueden llegar a representar el 80% en peso de la célula.

A diferencia de los acúmulos de polisacáridos, los gránulos de PHB son visibles a microscopio óptico en fresco, debido a su elevado índice de refringencia. Se tiñen bien mediante Negro-Sudán.

Page 130: Curso microbiología

INCLUSIONES DE HIDROCARBUROS

Son acúmulos de reserva (con envuelta proteinica) de los hidrocarburos que determinadas bacterias (especialmente Actinomicetos y relacionados) usan como fuente de C.

Page 131: Curso microbiología

GRÁNULOS DE CIANOFICINA

Muchas cianobacterias (Oxifotobacterias) acumulan grandes gránulos refringentes de reservas nitrogenadas cuando se acercan a la fase estacionaria de crecimiento. Estos gránulos de cianoficina son acúmulos de un copolímero de arginina y aspártico.

Page 132: Curso microbiología

GRÁNULOS DE POLIFOSFATOS

Se denominan también gránulos de volutina o metacromáticos. El nombre de “metacromáticos” alude al efecto metacromático (cambio de color): cuando se tiñen con los colorantes básicos azul de toluidina o azul de metileno envejecido, se colorean de rojo. A microscopio electrónico aparecen muy densos a los electrones.

Page 133: Curso microbiología

GRÁNULOS DE POLIFOSFATOS

Son acúmulos de polifosfato, polímeros lineales del ortofosfato, de longitud variable (por término medio, unas 500 unidades), que representan un modo osmóticamente inerte de almacenar fosfato,la parte central de estos gránulos constituye un núcleo formado por lípidos y proteínas. En algunos casos pueden constituir una fuente de energía, en sustitución del ATP (¿se trata en este caso de una especie de “fósil bioquímico?”).

Page 134: Curso microbiología

GLÓBULOS DE AZUFRE

Las inclusiones de S aparecen en dos grupos de bacterias que usan sulfuro de hidrógeno (SH2):

Las bacterias purpúreas del azufre (que usan el SH2 como donador de electrones para la fotosíntesis);

Bacterias filamentosas no fotosintéticas como Beggiatoa, Thiomargarita o Thiothrix, que lo usan como donador de electrones para sus oxidaciones.

Page 135: Curso microbiología

GLÓBULOS DE AZUFRE

En ambos casos, el sulfuro de hidrógeno es oxidado a azufre elemental (S0), que en el citoplasma se acumula como glóbulos muy refringentes y rodeados de envuelta proteínica. Estos glóbulos son transitorios, ya que el S0 se reutiliza por oxidación hasta sulfato, cuando en el medio se agota el sulfuro.

Page 136: Curso microbiología

GLOBULOS DE SULFURO

Page 137: Curso microbiología

OTRAS INCLUSIONES

INCLUSIONES DE SALES MINERALES

Acúmulos grandes, densos y refringentes de sales insolubles de calcio (sobre todo carbonatos) que aparecen en algunas bacterias (como Achromatium), cuyo papel parece consistir en mantenerlas en el fondo de los lagos y ríos.

Page 138: Curso microbiología

OTRAS INCLUSIONES

FICOBILISOMAS Son estructuras supramacromoleculares, en

forma de cilindros o bastones, adosadas a la superficie de la membrana tilacoidal de las Cianobacterias, confiriendo a ésta un típico aspecto “granuloso” en las micrografías electrónicas. , cromoproteínas que sirven como “antenas” para la captación de luz en la fotosíntesis de estos procariotas. Los grupos cromóforos son: ficocianinas, aloficocianinas y ficoeritrina

Page 139: Curso microbiología

ORGÁNULOS PROCARIÓTICOS

CITOPLÁSMICOS

En algunos grupos bacterianos se pueden encontrar orgánulos citoplásmicos no rodeados por unidad de membrana (o sea, sin bicapa lipídica). Muchos de ellos presentan envueltas basadas en subunidades de proteínas:

Page 140: Curso microbiología

ORGÁNULOS PROCARIÓTICOS CITOPLÁSMICOS

carboxisomas vacuolas de gas clorosomas magnetosomas.

Page 141: Curso microbiología

CARBOXISOMAS (= CUERPOS POLIÉDRICOS)

Estructuras presentes en bacterias fotoautotrofas (Cianobacterias y ciertas bacterias purpúreas) y quimioautotrofas (nitrificantes, Thiobacillus), de apariencia poliédrica con tendencia a esférica. Su diámetro oscila entre 50 y 500 nm, y están rodeadas de envuelta monocapa proteinica de unos 3,5 nm. El interior tiene aspecto granular, debido a la acumulación de la enzima ribulosa-bifosfato-carboxilasa (RuBisCo, la carboxidismutasa, el enzima clave en el ciclo de Calvin de asimilación de CO2).

Page 142: Curso microbiología

VACUOLAS DE GAS

Son orgánulos muy refringentes al microscopio óptico, que al electrónico muestran una estructura a base de agrupaciones regulares de vesículas de gas. Cada vesícula tiene una forma de cilindro bicónico (200-1000 nm de longitud y unos 70 nm de diámetro), rodeado de una monocapa de unidades globulares de proteína ensambladas helicoidalmente que dan un aspecto a bandas (“costillas”).

Page 143: Curso microbiología

VACUOLAS DE GAS

Esta envuelta es impermeable al agua, pero permeable a los gases, por lo que la composición y concentración del gas dentro de la vesícula depende de las que existan en el medio. Conforme se sintetizan y ensamblan las vesículas, el agua va siendo eliminada del interior.

Page 144: Curso microbiología

VACUOLAS DE GAS

La función de estas vacuolas es mantener un grado de flotabilidad óptimo en los hábitats acuáticos a las bacterias que las poseen, permitiéndoles alcanzar la profundidad adecuada para su modo de vida (según los casos, para obtener una intensidad adecuada de luz, concentración óptima de oxígeno o de otros nutrientes).

Page 145: Curso microbiología

CLOROSOMAS Son vesículas oblongas situadas por debajo

de la membrana citoplásmica, que contienen los pigmentos antena de las bacterias fotosintéticas verdes (antigua familia Chlorobiaceae). Son invisibles a microscopía óptica; miden 100-150 nm de longitud y unos 50 nm de anchura, estando rodeadas de una monocapa de proteínas. Se disponen por debajo de la membrana citoplásmica, sin estar en continuidad con ella, aunque en muchos casos aparecen conectadas a través de un pedúnculo de naturaleza no lipídica.

Page 146: Curso microbiología

MAGNETOSOMAS

Son orgánulos sensores del campo magnético terrestre, que aparecen en ciertas bacterias acuáticas flageladas microaerófilas o anaerobias (p. ej., en Aquaspirillum magnetotacticum). Consisten en cristales homogéneos de magnetita (Fe3O4), de formas cubo-octaédricas o de prisma hexagonal delimitados por una envuelta proteínica.

Page 147: Curso microbiología

LA ENDOSPORA BACTERIANA Y

LA ESPORULACIÓN Los géneros Bacillus, Clostridium,

Sporosarcina y Thermoactinomyces), disponen de una notable estrategia adaptativa cuando se ven sometidas a privación de nutrientes en su medio ambiente: si los niveles de fuentes de C, N, o P caen por debajo de un umbral. Entonces, la célula se implica en una serie de complejos cambios genéticos, metabólicos, estructurales, etc. (proceso de esporulación o esporogénesis).

Page 148: Curso microbiología

LA ENDOSPORA BACTERIANA Y LA ESPORULACIÓN

La célula-madre (o sea, la célula vegetativa original que generó la endospora) finalmente se autolisa, liberando la espora, que es capaz de permanecer en estado criptobiótico, durmiente, varios decenios, -incluso siglos. Las esporas son fácilmente diseminadas por el aire; cuando caen en medios ricos en nutrientes, se desencadena su germinación, se reinicia la actividad metabólica, de modo que cada espora genera una nueva célula vegetativa, capaz de divisón binaria, etc.

Page 149: Curso microbiología

ENDOSPORA

Las endosporas son formas de reposo (y no formas reproductivas), que representan una etapa del ciclo de vida de ciertas bacterias, y que se caracterizan por una estructura peculiar, diferenciada respecto de las células vegetativas, por un estado metabólico prácticamente detenido, y por una elevada resistencia a agentes agresivos ambientales.

Page 150: Curso microbiología

TIPOS DE ESPORAS

Al microscopio óptico, en fresco (sin teñir), aparecen como cuerpos esféricos, ovoides e incluso en algunas especies, cilíndricos, muy refringentes, libres, o aún incluidos en la célula vegetativa (célula madre).

El tamaño relativo de la espora, y su situación en el esporangio, son criterios taxonómicos importantes en las bacterias esporulantes.

Page 151: Curso microbiología

Tipos de esporas

Según que el diámetro de la espora sea o no mayor que el de la célula vegetativa:

1. Esporas deformantes

2. Esporas no deformantes

Page 152: Curso microbiología

Tipos de esporas

Según la localización de la espora dentro del esporangio:

1. Terminal

2. Subterminal

3. Central

Page 153: Curso microbiología

Tipos de esporas

Los esporangios deformantes de Clostridium son característicos:

1. en forma de cerilla o palillo de tambor (plectridios)

2. en huso (clostridios)

Page 154: Curso microbiología

Tipos

CENTRALES

SUBTERMINALES

TERMINALES

Page 155: Curso microbiología

Tinción:

No se tiñen por los colorantes normales. Hay que forzar por calor y/o mordientes (por ejemplo, tras teñir reforzadamente con fuchsina, resisten decoloración por alcohol-ClH). Otra tinción muy empleada es la reforzada con verde de malaquita (que es la que el alumno realiza en nuestras prácticas de laboratorio).

Page 156: Curso microbiología

ESTRUCTURA Y COMPOSICION QUIMICA DE LA ENDOSPORA

Partes que comprende la endospora: Protoplasto o núcleo (“core”, en inglés), con

la membrana citoplásmica de la espora (membrana esporal interna).

Pared de la espora (= Germen de la pared de la futura célula vegetativa)

Corteza o córtex, rodeado externamente de la membrana esporal externa.

Cubierta Exosporio

Page 157: Curso microbiología

Estructura de una espora

Page 158: Curso microbiología

Endospora de Bacillus subtilis

Page 159: Curso microbiología

PROTOPLASTO O NÚCLEO

El citoplasma de la espora está muy deshidratado. Sus componentes están inmovilizados en una matriz de quelatos de iones Ca++ y ácido dipicolínico.

El citoplasma de la espora contiene altas concentraciones de ion Ca++ (1-3% del peso seco de la espora), y de ácido dipicolínico (DPA) (10% en peso); ambos están formando un quelato, llamado dipicolinato cálcico (DPC), una sustancia exclusiva de las esporas bacterianas.

Page 160: Curso microbiología

PROTOPLASTO O NÚCLEO El protoplasto contiene un cromosoma

completo, condensado, y todos los componentes indispensables para reiniciar el crecimiento vegetativo cuando la espora germine, pero carece de muchos componentes típicos de la célula vegetativa:

Rodeando al protoplasto está la membrana citoplásmica (membrana interna de la espora), una bicapa lipídica carente de fluidez, posiblemente como resultado de su estructura policristalina.

Page 161: Curso microbiología

PARED DE LA ESPORA Situación: inmediatamente por encima de la

membrana interna de la espora. Composición: a base de un peptidoglucano (PG)

similar al de la célula vegetativa, con sus característicos enlaces entre los tetrapéptidos.

Funciones: al germinar la espora, dará lugar a la pared celular de la nueva célula vegetativa, confiriéndole, mientras tanto, resistencia osmótica.

Origen: se sintetiza a partir de la prespora, atravesando los precursores la membrana interior que hemos citado arriba.

Page 162: Curso microbiología

CORTEZA O CÓRTEX Composición: un peptidoglucano (PG)

especial, diferente en composición al PG de la célula vegetativa:

30% del NAM tiene tetrapéptidos normales, pero el grado de entrecruzamiento es muy bajo (6%).

15% del NAM tiene solo la L-ala inicial, en lugar de tetrapétido.

55% de una modificación del ácido murámico (lactama del ácido murámico), producida por condensación del -COOH lactilo con el -NH2, para formar la lactama correspondiente).

Page 163: Curso microbiología

CORTEZA O CÓRTEX

Origen: Se sintetiza a partir de la célula madre, con sus intermediarios ensamblados a nivel de la membrana externa que rodea a la corteza.

Page 164: Curso microbiología

CORTEZA O CÓRTEX

Propiedades de la corteza 1) Tiene un bajo grado de puentes entre

tetrapéptidos (sólo un 6%). Ello condiciona: a) una estructura más laxa, que es la base

de su apariencia de gel. b) su rápida autolisis, durante la germinación

de la espora. 2) La lactama del murámico condiciona una

gran resistencia a la lisozima.

Page 165: Curso microbiología

CUBIERTAS

Composición y estructura: la composición depende de las especies, pero en general, a base de una o varias proteínas de tipo queratina, todas muy ricas en cisteína y en aminoácidos hidrófobos, y que llegan a constituir el 60% en peso seco de la espora.

Page 166: Curso microbiología

CUBIERTAS

Propiedades: son muy insolubles e impermeables, e impiden la entrada de numerosos agentes químicos, incluyendo sustancias tóxicas. La abundancia de puentes S-S las hace muy compactas y muy estables químicamente.

Page 167: Curso microbiología

EXOSPORIO

Composición química: mezcla de proteínas, polisacáridos complejos, y lípidos.

Propiedades: muy resistente a enzimas proteolíticas, lo que sugiere (pero no prueba directamente) que el exosporio puede representar algún papel como barrera de defensa externa de la espora.

Page 168: Curso microbiología

ESPORULACIÓN Para que se produzca la esporulación, se

necesitan dos condiciones previas: 1) Los cultivos bacterianos han de estar en

buenas condiciones; 2) Cuando cesa el crecimiento

exponencial, la mayoría de las células entran en esporulación, en un lapso de tiempo relativamente breve (5,5-8 horas en Bacillus subtilis) casi todo el cultivo aparece en forma de esporas, habiendo desaparecido las células vegetativas..

Page 169: Curso microbiología

ESPORULACIÓN

La división celular típica de la fase de crecimiento exponencial y la esporulación son procesos mutuamente excluyentes

Page 170: Curso microbiología

FASES DE LA ESPORULACIÓN

Page 171: Curso microbiología

PROPIEDADES BIOLÓGICAS DE

LAS ESPORAS

Las endosporas son células en estado de dormancia, con una bajísima tasa metabólica (hipometabolia, la menor que existe en el mundo vivo), y capaces de conservar su vitalidad durante larguísimos períodos. Son muy resistentes a la acción de diversos agentes químicos (octanol, cloroformo) y físicos (altas temperaturas, congelación, desecación, radiaciones).

Page 172: Curso microbiología

PROPIEDADES BIOLÓGICAS DE LAS ESPORAS

1) Hipometabolia: Poseen la más baja tasa respiratoria de todos los seres vivos. Por ello son capaces de sobrevivir en ausencia de nutrientes durante largos períodos de tiempo.

2) Dormancia: Esta propiedad se refiere al hecho de que la espora tiene una gran inercia a los sustratos exógenos. Como veremos, la espora sólo perderá la dormancia cuando se haya activado para la germinación.

Page 173: Curso microbiología

PROPIEDADES BIOLÓGICAS DE LAS ESPORAS

3) Resistencia al calor: Las esporas de ciertas especies resisten el calor húmedo de 120oC durante 10 min, lo cual condiciona los parámetros para esterilizar materiales. La resistencia al calor seco, es decir, en ausencia de vapor de agua, se debe a las proteínas SASP, que protegen al ADN de los daños oxidativos de este tipo de calor).

4) Deshidratación: El muy bajo contenido en agua de la espora (0.3 g de agua/g de peso seco frente a los 3-4 g de agua/g de peso seco de la célula vegetativa) hace que la espora sea muy refráctil al microscopio óptico en fresco.

Page 174: Curso microbiología

PROPIEDADES BIOLÓGICAS DE LAS ESPORAS

5) Resistencia a los rayos UV: Parece que depende de varios componentes:

a) absorción de luz UV por las cubiertas; b) por el DPC; c) pero cada vez está más claro que las proteínas

SASP tienen un papel central en esta resistencia a los UV, las SAPS de tipo α/β acomplejan al ADN y favorecen su configuración de tipo A, lo cual a su vez provoca un cambio en su fotoquímica.

d) cambio en la fotoquímica del ADN de la espora

Page 175: Curso microbiología

PROPIEDADES BIOLÓGICAS DE LAS ESPORAS

6) resistencia a agentes químicos: La resistencia de la endospora a agentes como octanol, cloroformo, etc. se debe a la impermeabilidad de las cubiertas, gracias a su gran grosor y su peculiar composición a base de proteínas ricas en aminoácidos hidrófobos y con abundantes puentes disulfuro (cistinas). La resistencia a la lisozima se debe por un lado a la propia impermeabilidad de las cubiertas, y a la resistencia de la corteza.

Page 176: Curso microbiología

GERMINACIÓN DE LA ENDOSPORA

1. preactivación 2. activación 3. iniciación (o germinación en sentido

estricto) 4. crecimiento ulterior (entrada en fase

vegetativa)

Page 177: Curso microbiología

PREACTIVACIÓN Antes de que la espora esté en

condiciones de germinar se requiere que sus cubiertas se alteren. En la naturaleza esto ocurre por erosión por envejecimiento progresivo. Artificialmente, en laboratorio, se puede recurrir a algún procedimiento para alterar esas cubiertas:

Page 178: Curso microbiología

Procedimientos

Tratando las esporas a altas temperaturas, pero inferiores a su inactivación (100oC durante unos minutos);

Por radiaciones ionizantes; Por pH bajos; Por tratamiento con sustancias que posean

grupos -SH libres (p. ej., mercaptoetanol).

Page 179: Curso microbiología

ACTIVACIÓN

La activación es una etapa aún reversible, desencadenada por un agente químico externo (germinante) presente en el medio. Este agente es variable según las especies

Page 180: Curso microbiología

Agentes activantes

iones inorgánicos (Mn2+, Mg2+); L-alanina en B. subtilis; glucosa u otros azúcares; adenina u otras bases nitrogenadas.

Page 181: Curso microbiología

INICIACIÓN O GERMINACIÓN EN

SENTIDO ESTRICTO

En esta etapa la germinación se hace ya irreversible, y se rompe definitivamente el estado de dormancia, si bien el metabolismo es endógeno (no depende todavía de sustancias externas). Los principales acontecimientos bioquímicos son:

Page 182: Curso microbiología

ACONTECIMIENTOS

Se pierde DPA, lo que supone pérdida de Ca++;

Este Ca++ pasa al córtex, donde neutraliza las cargas negativas se favorece la rehidratación del protoplasto y su hinchamiento,

El 3-fosfoglicérico (3-PG) se convierte en 2-PG, y éste en PEP, que a su vez dona su fosfato de alta energía para producir ATP;

Page 183: Curso microbiología

ACONTECIMIENTOS

Las pequeñas proteínas SASPs se hidrolizan por una proteasa específica que hasta ese momento estaba inactiva. De este modo los aminoácidos constituyentes de las SASPs se reutilizan para la síntesis de nuevas proteínas por parte de la pequeña dotación de ribosomas y demás moléculas accesorias;

La ARN polimerasa comienza a sintetizar ARN (comienza la transcripción de genes vegetativos).

Page 184: Curso microbiología

TERMINACIÓN Y CRECIMIENTO

ULTERIOR

Aparece ya el metabolismo exógeno, de modo que la espora puede tomar nutrientes del exterior y metabolizarlos. Los eventos bioquímicos y estructurales más notorios son:

Page 185: Curso microbiología

EVENTOS

Se sintetiza ADN; El protoplasto crece aún más; La pared de la espora sirve como cebador

(germen) para la producción de la pared de la célula vegetativa naciente.

La célula vegetativa sale por rotura de las cubiertas, que puede ser de tipo polar o ecuatorial.

Page 186: Curso microbiología

EXOSPORAS

Determinadas bacterias (Methylosinum, Rhodomicrobium) forman esporas reproductivas por gemaciones sucesivas al final de sus prostecas. Estas exosporas poseen una envuelta a base de pared rodeada de una cápsula o cubierta gruesa.

Page 187: Curso microbiología

DIFERENCIACIONES EN

ACTINOMICETOS

Los actinomicetos constituyen un grupo amplio y complejo de bacterias Gram positivas con tendencia a un tipo de crecimiento micelial y un estilo de vida similar a los hongos. Muchos de los taxones de Actinomicetos y bacterias relacionadas poseen células diferenciadas de tipo reproductivo, genéricamente conocidas como esporas.

Page 188: Curso microbiología

Género Actinoplanes

Las especies de este género producen micelios vegetativos de sustrato (subterráneos). Algunos de estos micelios generan hifas verticales que sobresalen a la superficie. El extremo de cada una de estas hifas se diferencia para constituir un saco llamado esporangio, que se fragmenta en un conjunto de esporas móviles (flageladas) llamadas zigosporas o esporangiosporas.

Page 189: Curso microbiología

Género Streptomyces Forma un micelio de sustrato ramificado,

interrumpido de vez en cuando por pared transversal. Cuando hay limitación de nutrientes se comienza a formar un micelio aéreo a partir de ramificaciones de las hifas subterráneas. En los extremos de algunas de estas hifas aéreas las células se diferencian en cadenas de esporas. Durante la formación de estos micelios aéreos y de las esporas la población de micelios subterráneos sufre una lisis masiva.

Page 190: Curso microbiología

Propiedades de las esporas de los estreptomicetos

La pared celular de la espora es más gruesa que la de la célula vegetativa;

No hay cambio cualitativo en el peptidoglucano;

No hay córtex ni cubiertas son muy hidrofóbicas: se resisten a ser

suspendidas en agua. Esto parece que se debe a una vaina que rodea a la pared celular, compuesta a base de túbulos auto-ensamblables.

Page 191: Curso microbiología

Propiedades de las esporas de los estreptomicetos

Resisten más al calor y a la desecación en comparación a las células vegetativas, pero menos que las endosporas.

Son metabólicamente durmientes (células en reposo).

Page 192: Curso microbiología

QUISTES BACTERIANOS Son células que se producen en algunas

especies por engrosamiento de la pared celular de la célula vegetativa, por deposición de nuevos materiales externamente a la membrana citoplásmica, al mismo tiempo que se acumulan materiales de reserva en el citoplasma. Poseen metabolismo endógeno, y resisten al calor, a la desecación y a agentes químicos más que la correspondiente célula vegetativa (pero menos que las endosporas).

Page 193: Curso microbiología

EJEMPLOS

Quistes de Azotobacter y Bdellovibrio. Microquistes de Mixobacterias,

llamados mixosporas: sus envueltas constan de una corteza, rodeada de cubiertas (interna y externa). Estas cubiertas se componen de una glucoproteína muy rica en polisacáridos.

Page 194: Curso microbiología

DIFERENCIACIONES EN

CIANOBACTERIAS

En las cianobacterias filamentosas (que forman tricomas) se pueden observar dos tipos principales de células diferenciadas a partir de las vegetativas: heteroquistes y acinetos.

Page 195: Curso microbiología

HETEROQUISTES

Son células de término, sin función reproductiva, especializadas en la fijación de nitrógeno molecular (N2),

de mayor tamaño que las células vegetativas.

Page 196: Curso microbiología

HETEROQUISTES

COMPOSICIÓN Por fuera de la pared celular (que es de tipo

Gram-negativo), existen tres cubiertas: Una capa laminada interna a base de

glucolípidos exclusivos de cianobacterias; Una capa homogénea central a base de

polisacáridos; Una capa fibrosa externa, también

polisacarídica, pero menos compactada.

Page 197: Curso microbiología

HETEROQUISTES

Estas tres capas evitan la difusión del O2 al interior del heteroquiste, lo que

representa uno de los mecanismos para la protección de la nitrogenasa (complejo enzimático que reduce el N2 a

NH4+, y que es muy sensible al

oxígeno).

Page 198: Curso microbiología

ACINETOS

Son formas de reposo que se originan a partir de células vegetativas, por acumulación de nuevas capas de materiales polisacarídicos por fuera de la pared celular, y por formación de acúmulos de reserva en el citoplasma.

Resisten más que las células vegetativas los períodos de desecación y de congelación, pero no al calor.

Page 199: Curso microbiología

ACINETOS

Cuando las condiciones ambientales mejoran, se producen sucesivas divisiones transversales en el acineto, que finalmente se convierte en un filamento más corto y menos grueso que los tricomas, llamado hormogonio.

Page 200: Curso microbiología

Estructuras de la cubierta

Fimbrias y pelos Capas S Cápsulas Capas mucosas

Page 201: Curso microbiología

Fimbrias

De estructura similar a los flagelos, pero no son móviles. Las fimbrias son más cortas y mucho más numerosas, son de naturaleza proteica.

Favorecen la fijación bacteriana. Forman películas o biofilms sobre

superficies líquidas.

Page 202: Curso microbiología

Pelos o pili

Son similares a las fimbrias, pero más largas, son pocas. Actúan como receptores específicos, para algunos tipos de virus.

Participan en el proceso de conjugación.

Facilitan la fijación bacteriana.

Page 203: Curso microbiología

Pili y Fimbriae

Page 204: Curso microbiología

Capas S

Son capas de proteínas en posición bidimensional. Presentes en casi todas las bacteria y universales en Archaea.

Tiene apariencia cristalina y adopta disposiciones de simetría variadas como: hexagonal, tetragonal, o trimérica, en dependencia del número de las unidades que lo forman.

Page 205: Curso microbiología

Capas S

Son una barrera permeable que permite el paso de sustancias de bajo peso molecular.

En bacterias patógenas, actúan como elementos de protección frente a mecanismos de defenza del hospedador.

Page 206: Curso microbiología

Cápsulas

Muchos microorganismos secretan materiales viscosos, compuestos de polisacáridos (glicocálix) y proteínas.

Su composición varía en cada organismo y puede ser rígida o flexible, fina o gruesa.

Polisacáridos de gluc, fruct, gal, y ácido glucurónico (Str. pneumoniae). Ácido poliglutámico (B. antracis)

Page 207: Curso microbiología

Funciones

Fijación bacteriana. Reconocimiento de puntos de ingreso al

hospedador. Resistir la acción de células fagocitarias

y del sistema inmunitario. Retención de agua

Page 208: Curso microbiología

Capsula entorno a la célula de Klebsiella planticola

Page 209: Curso microbiología

Microcápsulas

Se forman en estafilococos, streptococos y cianofitos, cuando los cultivos son ricos en hidratos de carbono.

Pueden formarse dentro del organismo como en Str. Pneumoniae y Clostridium perfrigens.

Las cápsulas comunes que rodean a varias células se denominan zoogleas

Page 210: Curso microbiología

Estructura

ENDOPLASMA

ECTOPLASMA

CAPSULA MUSILAGINOSA

Page 211: Curso microbiología

MEMBRANA

CITOPLÁSMICA

Page 212: Curso microbiología

COMPOSICIÓN QUÍMICA

La membrana citoplásmica bacteriana es la estructura de tipo bicapa proteo-lipídica que delimita al protoplasto. Su proporción proteínas: lípidos es superior a la de las membranas celulares eucarióticas, llegando a alcanzar valores relativos de 80:20.

Page 213: Curso microbiología

Modelo de membrana

Page 214: Curso microbiología

CARENCIA, EN GENERAL, DE

ESTEROLES Las membranas procarióticas, a diferencia de las de

eucariotas, carecen de esteroles (con las salvedades de Cianobacterias, ciertas bacterias metilotrofas; además, los micoplasmas presentan colesterol, pero lo “secuestran” de las células eucarióticas a las que parasitan).

Pero en cambio, en muchas bacterias existe una peculiar clase de compuestos policíclicos, denominados hopanoides (triterpenoides pentacíclicos) que parecen condicionar parte de la rigidez de las membranas citoplásmicas.

Page 215: Curso microbiología

HOPANOIDES

Los hopanoides se sintetizan a partir del mismo tipo de precursores que los esteroles. (Por cierto, como dato curioso diremos que los sedimentos de combustibles fósiles como el petróleo presentan cantidades gigantescas de hopanoides, lo que confirma el papel que tuvieron las bacterias en su formación).

Page 216: Curso microbiología

LÍPIDOS

Abundan los fosfolípidos del ácido fosfatidico.

1. Fosfatidiletanolamina2. Fosfatidilglicerol3. CardiolipinaEn bacterias Gram-positivas, además se

encuentran glucolípidos y glucofosfolípidos.

Page 217: Curso microbiología

LIPIDOS

Page 218: Curso microbiología

Membrana de Archaea

Los lípidos de Archaea poseen enlaces éter entre el glicerol y las cadenas laterales hidrofóbicas.

Carecen de ácidos grasos, poseen unidades repetitivas de isopreno (5 “C”).

Cadenas laterales de fitano (4 unidades de isopreno)

Page 219: Curso microbiología

Enlace éter

Page 220: Curso microbiología

ACIDOS GRASOS

1)  saturados, como p. ej.: a)  palmítico (16:0) b)  mirístico (14:0) c)  de cadena ramificada (muy frecuentes en

muchas bacterias Gram-positivas) 2)  monoinsaturados (sobre todo en Gram-

negativas), como p. ej.: a)  palmitoleico (cis-9, 16:1) b)  cis-vaccénico (cis-11, 18:1)

Page 221: Curso microbiología

ACIDOS GRASOS

En Arqueas, en lugar de los habituales lípidos a base de ésteres de ácidos grasos con glicerol, existen lípidos a base de éteres de alcoholes de cadena larga con glicerol (p. ej., difitanil-glicerol-diéteres). Los alcoholes suelen ser derivados poliisoprenoides. Este tipo de membranas son más rígidas que las de eubacterias. Incluso existen arqueas con membranas a partir de tetrafitanil-diglicerol-tetraétereres, que consituyen bicapas monomoleculares.

Page 222: Curso microbiología

PROTEÍNAS Constituyen la mayor parte de la

membrana bacteriana (hasta el 80% en peso seco). Existe una gran variedad de tipos de proteínas en una misma bacteria (hasta 200), pero la composición y proporción concreta varía según las condiciones de cultivo.

Según su localización en la membrana, y su grado de unión con la porción lipídica, se distingue entre:

Page 223: Curso microbiología

PROTEÍNAS Proteínas integrales de membrana

(=endoproteínas): son proteínas estrechamente unidas a la membrana, por lo general atravesadas en plena bicapa lipídica. Las proteínas integrales pueden desplazarse lateralmente en la bicapa lipídica, pero no son capaces de rotar, por lo que siempre presentan una determinada orientación o polaridad. Algunas presentan hidratos de carbono que sobresalen hacia la superficie externa (glucoproteínas).

Page 224: Curso microbiología

PROTEÍNAS

Proteínas periféricas (= epiproteínas): unidas a la superficie de la membrana, de forma más débil, por lo que son más fáciles de extraer y purificar. Incluso algunas establecen contactos sólo transitorios con la membrana

Page 225: Curso microbiología

Estructura Consiste en una bicapa lipídica, con los

grupos polares (hidrófilos) hacia afuera, y las cadenas hidrofóbicas de ácidos grasos (o, en el caso de Arqueobacterias, de alcoholes) hacia adentro, ajustándose al modelo de mosaico fluido de Singer y Nicholson. Inmersas en esta bicapa se encuentran las abundantes proteínas, que pueden moverse lateralmente en el mosaico de moléculas de lípidos, igualmente dotados de una rápida movilidad.

Page 226: Curso microbiología

Estructura

La membrana citoplásmica es asimétrica (aunque no tanto como la membrana externa de Gram-negativas). Esto se traduce en el hecho de que muchos de los procesos que tienen lugar en la membrana sean vectoriales (tengan una dirección determinada).

Page 227: Curso microbiología

FUNCIONES DE LA MEMBRANA

CITOPLASMICA La membrana citoplásmica de los

procariotas es una notable estructura multifuncional (como uno podría esperar de la constatación del gran número de tipos de proteínas), siendo el sitio donde se producen muchos procesos metabólicos complejos, en un grado desconocido en el resto del mundo vivo.

Page 228: Curso microbiología

FUNCIONES

Barrera osmótica (que mantiene constante el medio interno), impidiendo el paso libre de sales y de compuestos orgánicos polares

Es el límite metabólicamente activo de la célula: establece la frontera entre el protoplasto y el medio externo, impidiendo la pérdida de metabolitos y macromoléculas del protoplasto.

Permite selectivamente el paso de sustancias entre el exterior y el interior (y viceversa).

Page 229: Curso microbiología

FUNCIONES

Interviene, además, en procesos bioenergéticos (fotosíntesis, respiración)

Participa en la biosíntesis de componentes de membrana, de pared y de cápsulas,

En la secreción de proteínas.

Page 230: Curso microbiología

TRANSPORTE DE NUTRIENTES

Tradicionalmente se viene considerando tres métodos principales de transporte de sustancias a través de la membrana:

1. transporte pasivo inespecífico (= difusión simple);

2. transporte pasivo específico (= difusión facilitada);

3. transporte activo.

Page 231: Curso microbiología

TRANSPORTE PASIVO INESPECÍFICO O DIFUSIÓN SIMPLE

Este transporte consiste en la difusión pasiva de ciertas sustancias para las que la membrana es impermeable, debido a la diferencia de concentración (C) a ambos lados de dicha membrana (la sustancia tiene mayor concentración fuera que dentro de la célula). Aparte de esta diferencia de concentración, en la difusión pasiva influyen:

1. la constante de permeabilidad (P), es decir, el grado de permeabilidad de la membrana a la sustancia en cuestión;

Page 232: Curso microbiología

TRANSPORTE PASIVO INESPECÍFICO O DIFUSIÓN SIMPLE

1. El área o superficie total (A) a través de la que se produce el transporte.

2. Las membranas citoplásmicas son impermeables en sí mismas a la mayor parte de las moléculas. Sólo se da en el caso de O2, CO2, NH3, agua y otras pequeñas sustancias polares no ionizadas.

3. La difusión simple se produce por el paso de estas sustancias a través de poros inespecíficos de la membrana citoplásmica.

Page 233: Curso microbiología

TRANSPORTE PASIVO ESPECÍFICO O DIFUSIÓN FACILITADA

Es un proceso que permite el paso de compuestos por difusión a través de transportadores estereoespecíficos y (al igual que en el caso anterior) sobre la base de un gradiente de concentración (en la dirección termodinámicamente favorable).

El transportador suele ser una proteína integral de membrana (permeasa o facilitador), cuya conformación determina un canal interior, y por el cual un determinado sustrato puede alcanzar el interior, sin gasto de energía.

Page 234: Curso microbiología

TRANSPORTE PASIVO ESPECÍFICO O DIFUSIÓN FACILITADA

Cuando el soluto se une a la parte de la permeasa que da al exterior, esta proteína sufre un cambio conformacional que libera la molécula en el interior. Como al entrar la molécula, enseguida entra en el metabolismo y desaparece como tal, esto basta para mantener el gradiente de concentración que permite esta difusión. La difusión facilitada exhibe propiedades similares a las de las reacciones enzimáticas:

Page 235: Curso microbiología

Propiedades

Especificidad de sustrato: cada permeasa transporte un solo tipo de sustratos químicamente parecidos.

Cinética de saturación de tipo Michaelis-Menten, es decir, la velocidad de transporte aumenta con la concentración de sustrato, hasta un valor límite (Vmax) por encima del cual ulteriores aumentos del soluto no aumentan dicha velocidad (debido a que todas las porinas disponibles están ya totalmente ocupadas).

Page 236: Curso microbiología

TRANSPORTE PASIVO ESPECÍFICO O DIFUSIÓN FACILITADA

Aunque este sistema de transporte es muy común en eucariotas, es muy raro encontrarlo en bacterias. La explicación evolutiva es que los procariotas suelen vivir en ambientes con pocas concentraciones de nutrientes, y por lo tanto no es frecuente que se den gradientes adecuados. Una de las pocas excepciones la constituye el glicerol, que es transportado por difusión facilitada en una amplia gama de bacterias, tanto Gram-positivas como Gram-negativas

Page 237: Curso microbiología

TRANSPORTE PASIVO ESPECÍFICO O DIFUSIÓN FACILITADA

Page 238: Curso microbiología

TRANSPORTE ACTIVO

Consiste en el transporte de sustancias en contra de un gradiente de concentración, lo que requiere un gasto energético. En la mayor parte de los casos este transporte activo (que supone un trabajo osmótico) se realiza a expensas de un gradiente de H+ (potencial electroquímico de protones) previamente creado a ambos lados de la membrana, por procesos de respiración y fotosíntesis;por hidrólisis de ATP.

Page 239: Curso microbiología

TRANSPORTE ACTIVO

Los sistemas de transporte activo son los más abundantes entre las bacterias, y se han seleccionado evolutivamente debido a que en sus medios naturales la mayoría de los procariotas se encuentran de forma permanente o transitoria con una baja concentración de nutrientes.

Page 240: Curso microbiología

TIPOS DE TRANSPORTE ACTIVO

Transporte activo ligado a simporte de protones;

Transporte activo ligado a simporte de iones Na+

Transporte activo dirigido por ATP Transporte acoplado a translocación de

grupos.

Page 241: Curso microbiología

TRANSPORTE ACTIVO LIGADO A SIMPORTE DE PROTONES

El simporte se puede definir como el transporte simultáneo de dos sustratos en la misma dirección, por un mismo transportador sencillo. En el caso del transporte activo ligado a simporte de protones, lo que ocurre es que uno de los sustratos (H+) ha creado previamente un gradiente de concentración, cuya disipación es aprovechada por el otro sustrato para entrar con él. Este otro sustrato puede ser:

Page 242: Curso microbiología

TRANSPORTE ACTIVO LIGADO A SIMPORTE DE PROTONES

Una molécula de carga negativa: en este caso, su simporte ligado a protones tiende a disipar sólo el gradiente de concentración. Ejemplos: transporte de iones fosfato, de glutamato, etc.

Una molécula neutra: en este caso, su simporte tiende a disipar no sólo el gradiente de concentración, sino también el gradiente eléctrico. Ejemplo: en Escherichia coli, la lactosa usa una ß-galactósido-permeasa.

Page 243: Curso microbiología

TRANSPORTE ACTIVO LIGADO A SIMPORTE DE IONES SODIO

Se puede considerar una versión modificada del anterior: algunas sustancias no son transportadas activamente de forma directa por el potencial electroquímico de protones, sino indirectamente, a través de un gradiente de Na+ que a su vez se origina a expensas de dicha fuerza protón-motriz (fpm).

El sustrato entra por una permeasa, junto con iones Na+, pero a su vez este sodio se recicla por un sistema de antiporte, a expensas de la disipación del potencial de protones.

Page 244: Curso microbiología

TRANSPORTE ACTIVO DIRIGIDO POR ATP

El tipo de transporte se denomina de transportadores ABC o ATPasas de tráfico, y se conocen muchos ejemplos en eubacterias y arqueas. En enterobacterias (como E. coli). Se trata de un sistema de varios componentes, en el que existen proteínas periplásmicas que captan el sustrato con gran afinidad, y lo llevan hasta unas proteínas de membrana, las cuales acoplan el paso de dicho sustrato hasta el citoplasma (sin alteralo químicamente) con la hidrólisis de ATP.

Page 245: Curso microbiología

Elementos de este tipo de sistema

Porinas u otras proteínas de membrana externa para lograr la difusión del sustrato desde el medio hasta el espacio periplásmico.

Proteína(s) solubles de espacio periplásmico que se unen al sustrato con gran afinidad.

Un heterodímero formado por dos proteínas integrales de membrana (cada una de ellas posee 5 o 6 trechos en -hélice que atraviesan la membrana citoplásmica), que son la permeasa propiamente dicha del sistema (el canal por donde pasa el sustrato).

Page 246: Curso microbiología

Elementos de este tipo de sistema

Dos proteínas periféricas de membrana citoplásmica, adosadas al lado citoplásmico, que incluyen el módulo conservado ABC que acopla la hidrólisis de ATP con el transporte unidireccional del sustrato a través de la membrana.

Page 247: Curso microbiología

Modelo del mecanismo de este sistema

Page 248: Curso microbiología

EJEMPLOS

Existen muchos ejemplos de transportadores procarióticos de tipo ABC, y cada uno de ellos está especializado en transportar un sustrato específico o varios sustratos parecidos. Ejemplo de sustratos transportados de esta forma:

Page 249: Curso microbiología

EJEMPLOS Monosacáridos como arabinosa,

galactosa, maltosa, ribosa, xilosa, etc. Oligosacáridos Iones orgánicos e inorgánico Aminoácidos como histidina, glicina,

leucina, etc. Oligopéptidos Algunas vitaminas y metales. Sideróforos con hierro

Page 250: Curso microbiología

TRANSPORTE ACOPLADO A TRANSLOCACION DE GRUPOS

Es un sistema de transporte que acopla la entrada del sustrato con su modificación química por unión covalente con un grupo químico. Estrictamente hablando, no es un transporte activo, porque no funciona en contra de un gradiente de concentración, pero se considera de hecho como activo, ya que la concentración del sustrato modificado dentro de la célula supera con creces a la del sustrato sin modificar en el exterior.

Page 251: Curso microbiología

EJEMPLOS

En E. coli el sistema PTS permite el transporte de glucosa, manosa, fructosa y los polioles sorbitol y manitol.

Entrada de ácidos grasos mediante un sistema de transferencia de Coenzima A, que los transforma en acil-CoA.

Entrada de purinas y pirimidinas, mediante un sistema de fosforribosil-transferasas

Page 252: Curso microbiología

TRANSPORTE DE HIERRO

El hierro es un cofactor de muchas enzimas y citocromos, por lo que las bacterias necesitan captarlo. La captación de hierro se complica porque el ión férrico (Fe3+) es muy insoluble. Además, las bacterias que viven dentro de animales superiores tienen un problema: en los fluidos y tejidos de sus patrones el hierro libre es muy poco abundante (el hierro suele estar acomplejado con proteínas), por lo que se vuelve vital aprovisionarse con este elemento de alguna manera.

Page 253: Curso microbiología

TRANSPORTE DE HIERRO Muchas bacterias secretan unas

moléculas de bajo peso molecular llamadas en general sideróforos, que son capaces de formar quelatos (complejos) con el hierro férrico. Por ejemplo, Escherichia coli secreta un sideróforo llamado enterobactina.

Page 254: Curso microbiología

ESTRUCTURAS MEMBRANOSAS

INTRACITOPLÁSMICAS

Page 255: Curso microbiología

MESOSOMAS

Son estructuras membranosas intracitoplásmicas que se observan en la mayor parte de las bacterias, constituidas por invaginaciones de la membrana citoplásmica

Page 256: Curso microbiología

Estructura y composición Los mesosomas más característicos y

patentes son los de bacterias Gram-positivas. Su aspecto es el de repetidas invaginaciones de la membrana: una invaginación primaria en forma de sáculo irregular, de la que surge una invaginación secundaria, llamada túbulo mesosómico, que rellena el hueco de la invaginación primaria. El túbulo mesosómico suele consistir en un conjunto de pequeñas vesículas arrosariadas, o túbulos, conectados entre sí, a veces con aspecto de cebolla.

Page 257: Curso microbiología

Funciones transporte de electrones, síntesis de

componentes de las envueltas.... Probable papel en la síntesis del septo

transversal, quizá regulando las autolisinas implicadas en la división celular-

Page 258: Curso microbiología

Funciones

Puntos de anclaje del cromosoma bacteriano (y quizá de algunos plásmidos), actuando en la segregación de los cromosomas hijos a las células hermanas (y en el caso de las bacterias esporuladas, en la segregación de los cromosomas a los compartimentos de la célula madre (esporangio) y de la preespora.

Zonas de secreción de ciertas exoenzimas (p. ej., penicilinasa en Bacillus).

Page 259: Curso microbiología

OTRAS INVAGINACIONES En muchas bacterias quimiolitoautrofas

(especialmente las nitrificantes) existen invaginaciones de la membrana (a menudo denominadas citomembranas) que permiten una mayor superficie para la realización de sus actividades respiratorias. Sus formas y disposiciones son igualmente muy variadas.

En Azotobacter, una bacteria aerobia fijadora de nitrógeno atmosférico, y que presenta una altísima tasa respiratoria, se pueden detectar también invaginaciones de membrana que aumentan la superficie disponible para sus intensos procesos de oxidación.

Page 260: Curso microbiología

TILACOIDES

Son sacos membranosos aplastados presentes en las cianobacterias, que no están en continuidad con la membrana citoplásmica; en su cara externa se disponen filas de ficobilisomas. El conjunto de membrana tilacoidal + ficobilisomas es el responsable de la fotosíntesis oxigénica en este grupo de procariotas.

Page 261: Curso microbiología

PARED CELULAR

Page 262: Curso microbiología

INTRODUCCIÓN La mayor parte de los procariotas posee una

pared celular (P.C.) rígida rodeando al protoplasto. Las excepciones son los micoplasmas (dentro del dominio Bacteria) y algunas arqueas, como Thermoplasma.

Al microscopio electrónico se puede observar como una capa en íntimo contacto con la membrana citoplásmica, con un espesor que oscila entre 10 y 80 nm (según especies) -frente a los 8 nm de la membrana celular- , y con una estructura más o menos compleja, según los tipos bacterianos.

Page 263: Curso microbiología

PAREDES DE LAS EUBACTERIAS

Consisten en un esqueleto macromolecular rígido, llamado peptidoglucano (= mucopéptido o mureína), que en Gram-positivas se encuentra inmerso en una matriz aniónica de polímeros azucarados; y en Gram-negativas está rodeada por una membrana externa, e inmersa en un espacio periplásmico.

Page 264: Curso microbiología

Funciones

Crecimiento División celular. Protección contra factores ambientales

desfavorables. Determina la forma celular. Virulencia. Defenza contra la Lisosima y penicillina

Page 265: Curso microbiología

PARED CELULAR

Page 266: Curso microbiología

Prueba de Gram

Cristal violeta Yodo Formación de un complejo coloreado Tratamiento con alcohol, las células

mantienen la coloración o la pierden El complejo se forma en el protoplasma,

sin embargo su retención depende de la composición de la pared celular.

Page 267: Curso microbiología

Reacción de Gramm

Page 268: Curso microbiología

BACTERIA GRAM POSITIVA

Page 269: Curso microbiología

BACTERIA GRAM NEGATIVA Serratia marcescens

Page 270: Curso microbiología

COMPOSICIÓN QUÍMICA Y

ESTRUCTURA

En las bacterias Gram-positivas el peptidoglucano representa el componente mayoritario de la pared celular (50-80% en peso), mientras que en Gram-negativas supone sólo del 1 al 10%.

Page 271: Curso microbiología

COMPOSICIÓN QUÍMICA Y ESTRUCTURA

BÁSICAS DEL PEPTIDOGLUCANO La unidad disacarídica repetitiva: es N-

acetilglucosamina (NAG) unida por enlace ß(14) a N-acetilmurámico (NAM). Las distintas unidades disacarídicas se van uniendo entre sí por enlaces ß(14) entre el NAM de una unidad y la NAG de la siguiente. Este enlace es susceptible a la rotura catalizada por el enzima lisozima. El número de repeticiones (n) puede oscilar entre 10 y 100.

Page 272: Curso microbiología

COMPOSICIÓN QUÍMICA Y ESTRUCTURA BÁSICAS DEL PEPTIDOGLUCANO

La cadena tetrapeptídica: Desde el grupo carboxilo de cada ácido NAM, y mediante un enlace amido, se encuentra unido el tetrapéptido. Un tetrapéptido típico de muchas bacterias es:

L-alanina---D-glutámico---meso-diaminopimélico---D-alanina

Page 273: Curso microbiología

COMPOSICIÓN QUÍMICA Y ESTRUCTURA BÁSICAS DEL PEPTIDOGLUCANO

Page 274: Curso microbiología

COMPOSICIÓN QUÍMICA Y ESTRUCTURA BÁSICAS DEL PEPTIDOGLUCANO

La estructura global: Las distintas cadenas polisacarídicas, con sus respectivos tetrapéptidos, se unen entre sí por medio de puentes o enlaces peptídicos, entre un aminoácido de una cadena y otro aminoácido de una cadena adyacente (la D-ala terminal). De este modo, la estructura global es una sola macromolécula gigante que envuelve al protoplasto, formando un sáculo rígido, a modo de tejido continuo, que tiene el volumen y la forma de la bacteria respectiva.

Page 275: Curso microbiología

Estructura global

Page 276: Curso microbiología

EL PEPTIDOGLUCANO DE BACTERIAS GRAM-POSITIVAS

Es más variado que el de Gram-negativas, sobre todo en función de ciertas variantes en la composición del tetrapéptido y del tipo de enlaces entre los tetrapéptidos.

Page 277: Curso microbiología

EL PEPTIDOGLUCANO DE BACTERIAS GRAM-POSITIVAS

Variantes en composición del tetrapéptido: En bacterias Corineformes: 1. el grupo -CO- en del D-glu (2) puede estar

amidado o unido a una glicina (Gly);2. el aa (1) puede ser Gly o L-Ser, en lugar de

la L-ala;3. el hidroxilo en 6 del NAM puede estar

acetilado, lo que hace que el PG de estas bacterias sea resistente a la lisozima.

Page 278: Curso microbiología

Pared celular gram positivaÁ. tecóico

Á. lipotecóico

Page 279: Curso microbiología

Pared celular en Archaea

Poseen paredes con pseudopeptidoglicano, formado por:

1. N-acetilglucosamina y

2. Ácido N- acetiltalosaminurónico.

3. Presenta enlaces glicosídicos -1,3 en vez de -1,4

Page 280: Curso microbiología

Pared celular en Archaea

Otras poseen polisacáridos, glicoproteínas o proteínas (methanosarcina).

Polisacáridos de glucosa, ácido glucurónico, galactosamina y acetato.

Proteínas paracristalinas con simetría hexagonal, capas S.

Page 281: Curso microbiología

Pared celular de Archaea

Page 282: Curso microbiología

Pared celular Gram - A más del peptidoglicano (10%), poseen

una capa de lipopolisacáridos (bicapa lipídica), que contiene polisacáridos y protínas (LPS), conocido también como membrana externa.

Es relativamente permeable debido a la presencia de las porinas, que actúan como canales para sustancias hidrofílicas de bajo peso molecular.

Page 283: Curso microbiología

Composición de LPS

Consta de dos porciones:

1. El núcleo del lipopolisacárido, compuesto de Cetodesoxioctonato, heptosas, gluc, gal y N-acetilglucosamina

2. Polisacárido O específico, que consta de gal, gluc, ramn y manosa, así como dideoxiazúcares

Page 284: Curso microbiología

Composición de LPS

La parte lipídica se conoce como lípido A y está formado por ácidos grasos y el disacárido de N-acetilglucosamina fosfato, unidos mediante enlace aminoéster.

Los ácidos grasos son:

Capróico, laurico, mirístico, palmítico y esteárico

Page 285: Curso microbiología

Membrana externa

Es tóxica para la mayoría de los animales, como por ejemplo: Salmonella, Shigella y Escherichia.

La toxicidad está ligada al lipopolisacárido (lípido A)

Page 286: Curso microbiología

ESTRUCTURA DE LPS

Page 287: Curso microbiología

Porinas

Existe porinas específica e inespecíficas (llenas de agua).

Son proteínas que poseen tres unidades idénticas (proteínas transmembranales), que se asocian formando poros de 1 nm de diámetro.

Retiene algunas enzimas que se hallan fuera de la membrana plasmática.

Page 288: Curso microbiología

ESTRUCTURA DE PORINA

Page 289: Curso microbiología

Periplasma

Espacio ubicado entre la membrana plasmática y la superficie interna de la membrana externa (12-15 nm).

Tiene consistencia gelatinosa por su abundante

contenido de proteínas.

Page 290: Curso microbiología

Pared celular Gram negativa

Lipopolisacáridos

Lip. Prot Brown

Page 291: Curso microbiología

EL PEPTIDOGLUCANO DE BACTERIAS GRAM-NEGATIVAS

En la mayor parte de Gram-negativas el peptidoglucano corresponde a la composición descrita. Sin embargo, en las espiroquetas, el diaminoácido en posición 3, en vez de ser meso-DAP, está sustituido por la L-ornitina (que también es un diaminoácido).

Page 292: Curso microbiología

EL PEPTIDOGLUCANO DE BACTERIAS GRAM-NEGATIVAS

El resultado es una capa simple de PG (de 1 nm de espesor), a modo de malla floja, y con grandes poros. Ello explica el comportamiento de las bacterias Gram-negativas en la tinción de Gram, que tiñe a estas bacterias de rojo.

Page 293: Curso microbiología

VARIANTES

Muchas bacterias Gram-positivas carecen de meso-DAP (3), y en su lugar puede existir:

LL-DAP L-diaminobutírico (DAB) L-lisina L-homoserina L-ornitina

Page 294: Curso microbiología

Movimiento bacteriano

Muchas bacterias son móviles gracias a la disponibilidad de flagelos.

Son apéndices largos y finos (20 nm), vistos solo al microscopio electrónico.

Según su disposición puede ser: Monotricos, amfitricos, lofotricos y peritricos

Page 295: Curso microbiología

TIPOS CELULARES FLAGELADOS

Page 296: Curso microbiología

Estructura Su forma es helicoidal. Consta de :

Cuerpo basal, Gancho y Filamento Filamento. Está compuesto de proteína

llamada Flagelina ( en Archaea existen varios tipos de flagelinas).

En la base está dispuesto el gancho, que une al filamento con la parte motora.

El motor anclado en la membrana citoplasmática y en la pared celular.Tiene un eje central y un sistema de anillos.

Page 297: Curso microbiología

Estructura

En las bacterias G-, existe un anillo anclado a la capa de lipopolisacárido y otra en la capa de peptidoglicano.

En las bacterias G+, solo existen anillos internos y un par de proteínas Mot, que controlan al motor y las proteínas Fli, que actúan como conmutador del motor

Page 298: Curso microbiología

Composición

Flagelina Lisina Ácido aspartico Ácido glutámico. Alanina

Page 299: Curso microbiología

ESTRUCTURA DE LOS FLAGELOS

Page 300: Curso microbiología

Movimiento flagelar

Los flagelos presentan algunos tipos de movimiento (50 m/s):

1. Rotación (consumen 1000 protones)2. Ondulación.3. Impulsión.4. PénduloSe estudian por el método de la gota

aplastada o suspendida

Page 301: Curso microbiología

Movimiento por deslizamiento

Muchos procariotas a pesar de carecer de flagelos, se mueven por deslizamiento (10m/s), este es el caso de células filamentosas o bacilares. El proceso requiere contacto entre células y una superficie sólida.

Se produce por dos posibles mecanismos:1. Secreción mucosa2. Proteínas de la superficie.

Page 302: Curso microbiología

Respuestas sensoriales

Los movimientos celulares suponen ventajas evolutivas. Las bacterias se encuentran con frecuencia en medios con gradientes físicos y químicos, en consecuencia con ellos, las bacterias han desarrollado respuestas positivas o negativas (movimientos dirigidos) denominadas Taxias.

Page 303: Curso microbiología

Taxismos

Quimiotaxis. Es la respuesta a la acción de agentes químicos, gracias a la participación de quimioreceptores

Fototaxis. Es la respuesta a la acción de la luz, gracias a fotoreceptores de la membrana plasmática.

Aerotaxia. Es la respuesta a la la presencia de oxígeno.

Page 304: Curso microbiología

Taxismos

Osmotaxis. Respuesta a los cambios de la fuerza iónica del medio

Page 305: Curso microbiología

VIRUS Y VIRIONES

CURSO DE MICROBIOLOGIA

UDLA

Page 306: Curso microbiología

VIRUS

Son elementos genéticos que pueden replicarse independientemente de los cromosomas de una célula.

Son microorganismos que se hallan en los límites entre lo vivo e inerte, que solo pueden existir asociados a un organismo vivo al cual parasitan

Page 307: Curso microbiología

VIRUS CARACTERÍSTICAS

Aprovechan de la maquinaria genética de la célula hospedadora.

Son parásitos obligados de plantas animales y el hombre.

Tiene una forma extracelular que les capacita para ser transmitidos de un hospedador a otros.

Page 308: Curso microbiología

VIRUS CARACTERÍSTICAS

Son complejos nucleoprotéicos, donde el material genético AND o ARN, se encuentran dentro de la cápside formada por proteínas y lípidos organisados en capsómeros.

Su replicación intracelular es destructiva. Son herramientas para la genética

microbiana e ingeniería genética.

Page 309: Curso microbiología

Estados virales

Extracelular.- son partículas que contienen ácido nucleico rodeado de una proteína, asociados a otros componentes macromoleculares en dependencia del tipo de virus.

En este estado se llama Virión , es metabólicamente inerte y carece de funciones respiratorias y biosintéticas.

Page 310: Curso microbiología

Estado extracelular

Es la estructura mediante la cual, el genoma del virus se transporta, desde la célula donde se ha producido hasta otra célula a la cual invade.

Page 311: Curso microbiología

Estado intracelular

Estado durante el cual tiene lugar la replicación viral, donde se producen copias del genoma virico y se sintetizan los componentes de la cubierta viral.

El proceso de ingreso de un virus a una célula se denomina Infección.

La célula que es infectada, se denomina hospedador.

Page 312: Curso microbiología

Genomas víricos

Los virus contienen o bien AND o ARN, de cadena sencilla o doble.

También existen virus que contienen ambos tipos de material genético, en distintos estadios de su ciclo reproductivo; este es el caso de los retrovirus (ARN en el virión y ADN en la replicación) y del virus de la hepatitis B (ADN en el virión y ARN en la replicación).

Page 313: Curso microbiología

Clasificación

En función del tipo de material genético. En función de los hospedadores. En función de niveles taxonómicos

gerárquicos: orden, familia, genero y especie.

Según el número de filamentos de material genético.

Page 314: Curso microbiología

Clasificación

Según la masa molecular relativa. Según el mecanismo de reproducción. Según su morfología

Page 315: Curso microbiología
Page 316: Curso microbiología

Tamaño

El tamaño de los virus varía ampliamente de especie a especie.

Poliovirus 28 nm., y 200 nm., virus de la viruela.

Los genomas son más pequeños que la mayoría de las células. Así el más grande es de 670 kilopares de bases (Bacteriófago G)

Page 317: Curso microbiología

Determinación del tamaño

Filtración Ultracentrifugación Difusión Fotografía

Page 318: Curso microbiología

Estructura

A mas del material genético, poseen un número específico de unidades proteicas llamadas capsomeros, que se disponen siguiendo un modelo preciso y repetitivo en torno al genoma.

Algunos poseen un solo tipo de proteína, otros poseen varios tipos de proteínas.

Page 319: Curso microbiología

Estructura

Algunos virus poseen envolturas lipoproteicas (glicoproteínas).

Estas membranas interaccionan con la célula hospedadora, es la responsable de:

1. Especificidad de la infección

2. Penetración viral

Page 320: Curso microbiología

Estructura

Page 321: Curso microbiología

Estructura

Page 322: Curso microbiología

Capsómeros

Son unidades protéicas que forman la cubierta, con capacidad de autoensamblaje. Este proceso es mediado por Chaperones.

El complejo ácido nucléico y proteína se denomina nuecleocápsida vírica

Page 323: Curso microbiología

Capsómeros virales

Page 324: Curso microbiología

Subunidades del capsómero

Page 325: Curso microbiología

Simetría viral

La simetría hace referencia a la manera como las unidades proteicas se ordenan en la cubierta vírica.

Se reconocen tres tipos de simetría que corresponden a dos formas: cilindrica y esférica.

Los alargados poseen simetría Helicoidal, como VMT.

Page 326: Curso microbiología

Simetría viral

Los virus esféricos tienen simetría icosaédrica, posee 20 caras.

Los virus con simetría combinada, poseen una nuecleocáside con simetría cúbica y el nucleoproteido dispuesto en espiral.

Page 327: Curso microbiología

Simetría viral

Page 328: Curso microbiología

Enzimas en viriones

Participan en el proceso de infección celular (lisozima).

Polimerasas de ácidos nucleicos Transcriptasa inversa (retrovirus) Enzimas que ayudan a la liberación de

los virus de las células hospedadoras. Neuraminidasas, que rompen proteínas

y glicolípidos del tejido conectivo.

Page 329: Curso microbiología

Replicación vírica

El virus debe inducir a la célula hospedadora a sintetizar todos los componentes necesarios para fabricar más virus. El proceso ocurre en cinco etapas:

1. Fijación

2. Penetración

Page 330: Curso microbiología

Replicación vírica

3. Síntesis de ácido nucleico y proteína.

4. Ensamblaje

5. Liberación

Page 331: Curso microbiología

FIJACIÓN

La interacción es altamente específica. Una o más proteínas superficiales del

virus interaccionan con receptores de la superficie celular.

Los receptores determinan qué células son susceptibles de ser infectadas.(ácido siálico, que es reconocido por el virus de la gripe)

Page 332: Curso microbiología

FIJACIÓN

En ausencia de receptores el virus no puede adsorberse y no puede infectar. Si el receptor se altera el hospedaor puede hacerse resistente a la infección

Page 333: Curso microbiología

PENETRACIÓN

La unión del virus a la célula genera cambios en el virus o en la célula, que permiten el ingreso del genoma vírico a la célula.

Los virus animales son decapsidados en la membrana plasmática.

Otros ingresan íntegramente en la célula por endocitosis.

Page 334: Curso microbiología

PENETRACIÓN

Estos virus son decapsidados en el citoplasma celular.

Los mecanismos más complejos se presentan en virus que infectan bacterias (T4 en E.coli)

Page 335: Curso microbiología

Bacteriofagos

Page 336: Curso microbiología

Bacteriofagos

El virión tiene una cabeza, en cuyo interior se encuentra el ADN plegado y una larga cola en cuyo extremo hay una serie de fibras de cola.

Las fibras fijan al virión a la pared celular.

Estas ser retraen y la cola contacta con la pared celular

Page 337: Curso microbiología

Bacteriofagos

El virion inyecta lisozima que perfora la pared celular.

La vaina d ela cola se contrae y el ADN del virus ingresa en la célula bacteriana.

La cápside se queda en el exterior de la célula.

Page 338: Curso microbiología

MECANISMO DE REPRODUCCIÓN

Page 339: Curso microbiología

MECANISMO DE REPRODUCCIÓN

Page 340: Curso microbiología

Ciclo lisogénico

Serie de etapas tras la infección del virus que conduce aun estado (lisogenia) en el que el genoma vírico se replica como un profago junto con el genoma del hospedador.

Page 341: Curso microbiología

Ciclo lítico

Serie de etapas que tras la infección del virus que conducen a la replicación vírica y destrucción (lisis) de la célula hospedadora.

Page 342: Curso microbiología

¿Lisis o lisogenia?

Virus como el bacteriofago lambda tiene interruptores genéticos que definen seguir el ciclo lítico o el ciclo lisogénico.

Para la lisogenia deben ocurrir dos procesos: Impedirse la producción de proteínas tardías y la integración de una copia de lambda en el genoma del hospedador.

Page 343: Curso microbiología
Page 344: Curso microbiología
Page 345: Curso microbiología

Características del genoma de retrovirus Contienen dos moléculas identicas de

ARN monocatenario. El proceso de replicación vírica se

reduce a:

1. Entrada

2. Decapsidación del virión.

3. Transcripción inversa

Page 346: Curso microbiología

Características del genoma de retrovirus

4. Integración

5. Transcripción.

6. Encapsidación.

7. Gemación.

Page 347: Curso microbiología

Viroides y priones

Viroides.- Son pequeñas moléculas de ARN monocatenario circular. Son causa de enfermedades en plantas.

La forma extracelular es el ARN desnudo sin cápside, es totalmente dependiente de la función del hospedador para su replicación. Se consideran intrones fugados.

Page 348: Curso microbiología

Viroides y priones

Priones.- A diferencia de los anteriores poseen una forma extracelular distintiva compuesta exclusivamente de proteína, la misma que es infecciosa, para animales (prurito lumbar de las obejas “scrapie”, encefalopatía espongiforme bovina BSE, y el Kuruen el hombre.

Page 349: Curso microbiología

ECOSISTEMAS MICROBIANOS

CURSO DE MICROBIOLOGIA UDLA

Page 350: Curso microbiología

POBLACIONES Y COMUNIDADES

En un sistema microbiano, el crecimiento celular forma poblaciones.

Las poblaciones metabólicamente relacionadas se denominan gremios y los conjuntos de agrupaciones interaccionan formando comunidades microbianas, que a su vez interaccionan con comunidades de macroorganismos y el ambiente, todo lo cual se definie como Ecosistema.

Page 351: Curso microbiología

FUENTES DE ENERGÍA

La energía entra en los ecosistemas en forma de luz solar, carbono orgánico y sustancias inorgánicas reducidas.

El mecanismo de incorporación de la energía solar es la fotosíntesis, realizada por los organismos llamados fotoautotrofos, que constituyen la base de la cadena alimenticia.

Page 352: Curso microbiología

FUENTES DE ENERGÍA

La materia inorgánica reducida se incorpora como fuente de energía mediante los organismos quimioautotrofos (quimiolitotrofos), que utilizan la energía de donantes de electrones como el H2, Fe2+, S0 ó NH3; para su crecimiento y reproducción.

Page 353: Curso microbiología

FUENTES DE ENERGÍA

El carbono orgánico es metabolizado por los organismos quimioorganotrofos, que lo asimilan de los productores primarios como fototrofos y quimiolitotrofos.

Page 354: Curso microbiología

AMBIENTES MICROBIANOS

Los hábitat naturales de los microorganismos son diversos. Abarca condiciones ambientales extremas, desde zonas de hielos perpétuos hasta fuentes termales, desde profundidades terrestres hasta la estratósfera; en el interior de seres vivos hasta la superficie corporal de macroorganismos.

Page 355: Curso microbiología

Microorganismos y microambiente

Nicho ecológico, Es la función que cumple el microroganismo en el ecosistema. Las diferencias entre cantidad calidad de recursos y de condiciones físicoquímicas de un hábitat definen a un nicho.

Para cada microorganismo existe al menos un nicho.

Page 356: Curso microbiología

Microorganismos y microambiente

El microambiente puede ser generado en un grano de suelo, donde los microroganismos anaerobios habitan el interior de la partícula y los aeróbicos, la superficie.

Esto indica que a lo largo de una dimensión espacial pequeña existen varios nichos.

Page 357: Curso microbiología

Microorganismos y microambiente

En un microambiente las condiciones físicoquímicas pueden cambiar rápidamente en el tiempo y espacio (variaciones de pH, temperatura, etc.).

Los microambientes contribuyen al incremento de la diversidad microbiana en un espacio reducido.

Page 358: Curso microbiología

COMPETENCIA Y COOPERACION

MICROBIANAS.

Los microorganismos compiten por:

1. Espacio.

2. Nutrientes. Depende de la tasa de incorporación

de nutrientes. Tasas metabólicas. Velocidad de crecimiento

Page 359: Curso microbiología

COMPETENCIA Y COOPERACION MICROBIANAS

Existe también el metabolismo complementario, como es el caso de las bacterias nitrosificantes y las nitrificantes, que se combinan para oxidar el NH3NO2

- a NO3-.

Esto es, los mircoorganismos trabajan en posta.

Page 360: Curso microbiología

AMBIENTES TERRESTRES

Los microorganismos participan en:

1. Formación del suelo

2. Metabolismo vegetal,

3. Autodepuración de los suelos.

4. Reciclado de materia orgánica.

Page 361: Curso microbiología

FORMACIÓN DEL SUELO

Los suelos son el resultado de una combinación de procesos físicos, químicos y biológicos.

Los líquenes, musgos y algas(autotrofos), permanecen en estado de vida latente en la roca seca y se desarrollan cuando esta adquiere humedad.

Page 362: Curso microbiología

FORMACIÓN DEL SUELO

Su crecimiento permite la proliferación de bacterias quimioorganotrofas y hongos, cuya respiración produce CO2, que a su vez se convierte en H2CO3, que es un agente de disolución de rocas (calizas).

Page 363: Curso microbiología

FORMACIÓN DEL SUELO

Las variaciones diarias y nocturnas de temperatura también contribuyen a la meteorización de las rocas y a la formacion de los suelos.

Las raíces vegetales al penetrar el suelo contribuyen a su meteorización, sus excreciones permiten el desarrollo de la Rizosfera

Page 364: Curso microbiología

FORMACIÓN DEL SUELO

Los restos vegetales son fuente de nutrientes para un crecimiento microbiano más profuso. Las sales minerales se solubilizan y lixivian al interior, el suelo se hace más profundo. Los invertebrados del suelo contribuyen a su aireación y meteorización, permitiendo la conformación de los perfiles edáficos típicos. El proceso de formación de suelos dura cientos de años.

Page 365: Curso microbiología

EL SUELO COMO HÁBITAT MICROBIANO

El crecimiento bacteriano más importante tiene lugar en la superficie (rizosfera).

Un factor determinante para el crecimiento bacteriano es la disponibilidad de agua; que existe de dos formas en el suelo:

Agua de absorción en la superficie. Agua libre en forma de láminas entre

las partículas del suelo.

Page 366: Curso microbiología

EL SUELO COMO HÁBITAT MICROBIANO

La población de microroganismos superficiales está comuyesta por organismos aeróbicos, saprofitos (hongos y bacterias), así como microinvertebrados, insectos, annélidos.

Page 367: Curso microbiología

EL SUELO COMO HÁBITAT MICROBIANO

En suelos profundos podemos encontrar a organismos aeróbicos facultativos y anaeróbicos facultativos, quiene mineralizan compuestos orgánicos y liberan productos a las aguas subterráneas.

Page 368: Curso microbiología

COMPONENTES DEL SUELO

CUARZO

AGUA

METRIA ORGÁNICAAIRE

ARCILLA

MICROCOLONIA

Page 369: Curso microbiología

Microflora del suelo

Generan procesos de : Metanogénesis. (metanobacterias)

4H2 + CO2 CH4 + 2H2O

Acetogénesis.(cetobacterias)

4H2 + 2 HCO3- + H+ CH3COO- + 4H2O

Reducción de sulfato.(sulfobacterias)

4H2 + SO42- + H+ HS- +4H2O

Page 370: Curso microbiología

Microflora del suelo

Producción inorgánica de H2:

FeO + H2O H2 + FeO2

Especies bacterianas y fúngicas: Pseudomonas. Bacillus Antramonas. Cocos gram (+) y gram (-) Penicillum, Aspergillum Mucor.

Page 371: Curso microbiología

AMBIENTES DE AGUA DULCE

En las zonas óxicas proliferan las cianobacterias y algas; en las zonas anóxicas habitan las bacterias fototróficas anoxigénicas.

Las algas flotantes constituyen el fitoplancton.

Las adheridas al fondo o a los lados del lecho, son algas Bénticas.

Page 372: Curso microbiología

AMBIENTES DE AGUA DULCE

La actividad microbiológica de un sistema acuático depende de la producción primaria a cargo de los organismos fototróficos.

Un factor limitante es el oxígeno, cuya concentración disminiye con la profundidad y la temperatura. También depende del contenido de materia orgánica y de la capacidad de intercambio entre las capas superficiales y profundas (estratificación).

Page 373: Curso microbiología

Fauna de agua dulce

Page 374: Curso microbiología

AMBIENTES

RÍOS. Ambientes que requieren grandes cantidades de oxígeno, por que en ella, se depositan grandes cantidades de materia organica en forma natural o por la acción de las actividades humanas (eutrofización).

La turbulencia de los ríos contribuye a su oxigenación

Page 375: Curso microbiología

AMBIENTES

La disminución del oxígeno en las aguas produce condiciones anóxicas y la muerte de peces, la proliferación de bacterias anóxicas y la generación de malos olores causados por: H2S, CH4, NH3 y Mercaptanos.

Se incrementa el DBO5, y el pH se hace ácido.

Page 376: Curso microbiología

AMBIENTES MARINOS

Difieren en mucho de los ambientes de agua dulce en:

1. Salinidad.

2. Temperatura media.

3. Estado nutricional que es limitante, especialmente en relación al N, P, y Fe.

Page 377: Curso microbiología

PRODUCCIÓN PRIMARIA

Se produce a mar abierto, en la superficie y a profundidades considerables, por los proclorofitos (Prochlorococcus), parientes de las cianobacterias (Trichodesmium), que participa en el ciclo del nitrógeno.

Eucariotas autotrofos de aguas costeras (Ostreococcus), alga de unos 0,7 mm.

Page 378: Curso microbiología

PRODUCCIÓN PRIMARIA

La zona próxima a la costa es más fértil que el mar abierto, existe mayor biodiversidad microbiana y de animales superiores que se alimentan de estos.

A mar abieto se hallan poblaciones de 105 y 106 células por unidad de volumen.

Page 379: Curso microbiología

PRODUCCIÓN PRIMARIA

Los eucariotas se hallan en cantidades de 104/ml.

Otro género representativo del mar es Archea, Halobacterium (posee bacteriorodopsina como pigmento fotosintético). Habita las zonas superficiales hasta zonas profundas (5000m.), donde existen 4x103 células.

Page 380: Curso microbiología

Fauna marina

Page 381: Curso microbiología

Microbiología de aguas profundas

La luz solar penetra hasta un máximo de 300m en el mar abierto.

La parte iluminada se llama Fótica. Por debajo de esta hasta unos 1000m

se produce una intensa actividad biológica por acción de organismos quimiorganotróficos, a temperaturas de 2 ó 3 °C.

Page 382: Curso microbiología

Microbiología de aguas profundas

Las bacterias soportan grandes presiones (300 atm.).

Bacterias que habitan a 4000- 6000 m. soportan presiones de 500 atm.

De profundidades mayores a 10000m, se han obtenido bacterias que soportan 700-800 atm.

Page 383: Curso microbiología

FUENTES HIDROTERMALES

En fuentes hidrotermales submarinas de 6-23°C y 270-280°C, son ricas en microorganismos y gusanos túbicos, mejillones gigantes (20-25 cm).

Reducen H2S, Mn2+, H2 y CO. Los más representativos son:1. Thiobacillus2. Thiomicrospira3. Thiothrix y 4. Beggiatoa

Page 384: Curso microbiología

CICLOS BIOGEOQUÍMICOS

CARBONO, NITROGENO, FÓSFORO, AZUFRE, AGUA

Page 385: Curso microbiología

CICLO DEL CARBONO

Los dos procesos básicos de la vida que participan en el ciclo del carbono-oxígeno son la respiración y la fotosíntesis. Tanto las plantas como los animales respiran. Sólo las plantas verdes fotosintetizan

Page 386: Curso microbiología

CICLO DEL CARBONO

Durante la respiración celular, la glucosa se oxida y el bióxido de carbono es puesto en libertad. Durante la fotosíntesis, las plantas verdes utilizan agua, bióxido de carbono y energía del Sol para hacer oxígeno, glucosa y agua.

Page 387: Curso microbiología

CICLO DEL CARBONO

Cuando mueren las plantas y los animales, aquellos compuestos orgánicos de los que están hechos sus cuerpos, son liberados por los microorganismos. Uno de los productos finales que se forma es el bióxido de carbono.

Page 388: Curso microbiología

CICLO DEL CARBONO

Otra fuente de bióxido de carbono en las sociedades modernas se forma al quemar los combustibles fósiles. Los compuestos de carbono de muchas plantas y animales muy antiguos fueron almacenados en forma de carbón y de petróleo, al ser quemados estos combustibles, el bióxido de carbono es liberado en la atmósfera. Así, el carbón realiza un círculo completo, de CO2 de la atmósfera a glucosa, y a CO2 de nuevo.

Page 389: Curso microbiología

CICLO DEL CARBONO

CO2

Atmosférico

Plantas terrestres

Animales y microorganismos

Plantas acuáticas y

algas

CO2 disuelto

Animales acuáticos

Combustibles fósiles

Humus

CORTEZA TERRESTRE

ROCA

Actividades humanas

Page 390: Curso microbiología

CICLO DEL NITRÓGENO

Nuestra atmósfera está formada de un 78% de nitrógeno por volumen. A pesar de esta abundancia, el nitrógeno en ocasiones es un factor limitante para el crecimiento de las plantas. La razón de esto es que, aunque las plantas deben tener nitrógeno para manufacturar sus proteínas estructurales y sus enzimas, no pueden cambiar el elemento nitrógeno en los compuestos que necesita.

Page 391: Curso microbiología

CICLO DEL NITRÓGENO

El nitrógeno debe estar presente en forma de compuestos como los nitratos antes de que las plantas lo puedan absorber y usar.

Las bacterias simbióticas como la Rhizobium y algunas bacterias azul verdosas, pueden cambiar el nitrógeno atmosférico en compuestos de amonio (NH4).

Page 392: Curso microbiología

CICLO DEL NITRÓGENO

La Rhizobium vive en las raíces de las leguminosas, que incluyen plantas como el trébol y la alfalfa. Las bacterias usan el azúcar producida por las leguminosas y a su vez ayudan a las plantas dando los compuestos de nitrógeno que ellas pueden utilizar. Este proceso se denomina fijación de nitrógeno.

Page 393: Curso microbiología

CICLO DEL NITRÓGENO

Existen otras fuentes naturales de nitratos:1. Tormentas atmosféricas.2. Erosión de ciertas rocas que son ricas en

nitratos.3. Ciertas bacterias nitrificantes químico-

sintéticas convierten el amonio en nitritos y nitratos mediante el proceso denominado nitrificación.

Page 394: Curso microbiología

CICLO DEL NITRÓGENO

Cuando los animales comen proteínas vegetales, pueden utilizar los aminoácidos para hacer sus propias proteínas. Sus desechos regresan el nitrógeno al suelo en forma de urea y otros compuestos que se convierten en amoniaco.

Page 395: Curso microbiología

CICLO DEL NITRÓGENO

Algunas bacterias logran que el nitrógeno regrese a la atmósfera metabolizando el amoniaco presente en el suelo. Este proceso se llama desnitrificación. Las bacterias que causan la liberación del nitrógeno libre del suelo son anaerobias. Son más abundantes en el suelo denso y saturado de agua.

Page 396: Curso microbiología

CICLO DEL NITRÓGENO

Los procesos a los que se somete el nitrógeno son:

1. Denitrificación, a cargo de Bacillus y pseudomonas.

2. Amonificación, a cargo de Clostridium y Acetobacter (de N2 a amoníaco).

3. Nitración a cargo de Nitrobacter (de nitrito a nitrato)

4. Nitrosación a cargo de Nitrosomonas ( de amoníaco a nitrito)

Page 397: Curso microbiología

CICLO DEL NITRÓGENO

NO3-1

NO2-

N2

NON2O

NH2

NH3

N2

NO2-

NH2

Denitrificación

Nitrificación

Fijación de N2

Óxico

Anóxico

Fijación de N2

Amonificación

Page 398: Curso microbiología

CICLO DEL AZUFRE El azufre presenta varios estados de

oxidación, en los que participan reacciones químicas y microorganismos:

Sulfhidrilo. R-SH. Sulfuro, HS-. Azufre elemental S°. Sulfato, SO4

2-

La mayor parte del azufre se encuentra en sedimentos y rocas en forma de sales de sulfato.

Page 399: Curso microbiología

CICLO DEL AZUFRE Como minerales de sulfuro (pirita FeS2). El mar es el reservorio más importante. El H2S se forma por reducción bacteriana

(sulfato reductoras) del sulfato, por emisiones volcánicas.

El H2S, se transforma por acción de bacterias a S° en condiciones anóxicas.

El S° se oxida por Thiobacillus a SO42-

Page 400: Curso microbiología

CICLO DEL AZUFRE Además de copmpuestos inorgánicos

existen formas orgánicas de azufre, volátiles de olor desagradable (mercaptanos), como el dimetilsulfuro, que se origina en fondos marinos como resultado de la degradación del propionato de dimetilsulfonio, que regula la presión osmótica en las algas marinas.(45 millones ton/año).

Page 401: Curso microbiología

CICLO DEL AZUFRE Otros son: Metanosulfonato, que se oxida

produciendo metano y ácido sulfhídrico, o como donante de electrones en la fijación fotosintética del CO2.

Tambien como donador de electrones para algunos quimioorganotrofos y quimiolitotrofos.

Dimetildisulfuro. Disulfuro de carbono.

Page 402: Curso microbiología

CICLO DEL AZUFRE

Las fuentes de azufre son:

1. Aspersión marina como sulfatos.

2. Volcanes activos, como SO2 y H2S.

3. Cienegas y pantanos, como SO2 y H2S.

4. Procesos industriales (industria petroquímica).

Page 403: Curso microbiología

CICLO DEL AZUFRE

SO42-

H2S

HS-.

HS-.

Oxidación quimiolitotrófica

Óxico

Anóxico

Page 404: Curso microbiología

CICLO DEL FÓSFORO Inicia en la roca fosforada de los lechos

marinos (Halofano), la misma que se diluye liberando PO4

3-, que es asimilado por las plantas, que son consumidas por los animales.

Sus restos y deyecciones, son fijados y pasan a la roca fosforada.

De la roca fosforada o de restos y deyecciones, el PO4

3- pasa a las aguas continentales.

Page 405: Curso microbiología

CICLO DEL FÓSFORO

De las aguas, pasan al fitoplancton, de allí al zooplancton, que es consumido por los peces, estos son cazados por las aves marinas, quienes depositan guano, que sirve de abono, que retorna al suelo los fosfatos, para su fijación en la roca halofana.

Page 406: Curso microbiología

CICLO DEL FÓSFORO

El fósforo es sometido a los siguientes procesos:

1. Mineralización

2. Almacenamiento

3. Recambiuo en el humus

4. Fijación química en el suelo