caracterización de equipos y medios multifásicos …...iv Índice 1 - introducción y objetivos 1...

172
Dirección: Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Contacto: Contacto: [email protected] Tesis Doctoral Caracterización de equipos y medios Caracterización de equipos y medios multifásicos con métodos que multifásicos con métodos que emplean fuentes radiactivas emplean fuentes radiactivas Salierno, Gabriel Leonardo 2016-03-30 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Salierno, Gabriel Leonardo. (2016-03-30). Caracterización de equipos y medios multifásicos con métodos que emplean fuentes radiactivas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Salierno, Gabriel Leonardo. "Caracterización de equipos y medios multifásicos con métodos que emplean fuentes radiactivas". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2016-03-30.

Upload: others

Post on 11-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

Di r ecci ó n:Di r ecci ó n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :Co nta cto : [email protected]

Tesis Doctoral

Caracterización de equipos y mediosCaracterización de equipos y mediosmultifásicos con métodos quemultifásicos con métodos queemplean fuentes radiactivasemplean fuentes radiactivas

Salierno, Gabriel Leonardo

2016-03-30

Este documento forma parte de la colección de tesis doctorales y de maestría de la BibliotecaCentral Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe seracompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis FedericoLeloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the correspondingcitation acknowledging the source.

Cita tipo APA:

Salierno, Gabriel Leonardo. (2016-03-30). Caracterización de equipos y medios multifásicos conmétodos que emplean fuentes radiactivas. Facultad de Ciencias Exactas y Naturales.Universidad de Buenos Aires.

Cita tipo Chicago:

Salierno, Gabriel Leonardo. "Caracterización de equipos y medios multifásicos con métodosque emplean fuentes radiactivas". Facultad de Ciencias Exactas y Naturales. Universidad deBuenos Aires. 2016-03-30.

Page 2: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales

Departamento de Industrias

Caracterización de equipos y medios multifásicos con métodos que emplean fuentes radiactivas

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires

(área Química Industrial)

Gabriel Leonardo Salierno

Directores de Tesis: Dra. Miryan C. Cassanello Fernández

Dr. Daniel L. Hojman

Consejero de Estudios: Dra Miryan C. Cassanello Fernández

Ciudad autónoma de Buenos Aires, marzo 2016

Fecha de defensa: 30 de marzo de 2016

Page 3: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

I

Dedicatoria A mis abuelos por instalar y optimizar el programa inicial, y ayudarme a alcanzar lo que soy

A mi madre por darme y cuidarme la vida

A mi hermano por acompañarme en esto de la filosofía de la Naturaleza, falta eh?

A mi padre por vigilarme desde el cielo

A mi directora Miryan Cassanello por inspirarme a ser cada vez mejor de la manera más pacífica

posible, dejé de creer en imposibles por ello

A mi co-director Daniel Hojman por perdonarme la vida y permitir que esta tesis sea posible a

través de ponerle toda la Física al asunto

A María Angélica Cardona y Héctor Somacal por su ayuda indispensable en cada experimento

A Stella Piovano por ser tan tía y por su trabajo docente stealth para enseñarme conceptos

ingenieriles

A Mauricio Maestri por enseñarme los secretos de la montaña de la programación

A los compañeros del PINMATE por coparse dejándome entrar en sus recintos y reírse de mis

chistes

A todos mis amigos, por aceptarme tal como soy

A todos mis enemigos, por volverme cada vez más fuerte

Agradecimientos Al RA1 de la Comisión Nacional de Energía Atómica - CAC por activar nuestros

trazadores

A CONICET por financiar mis estudios de doctorado

A la UBA por formarme siempre en la senda de la alta performance

Al pabellón de Industrias de FCEyN por su buena onda

A la escuela técnica, por ser la herramienta preferida del progreso desde hace siglos

Un saludo al Sol, por dejar aprovecharnos de tus fotones como podemos, ya vienen

tiempos de mayor eficiencia energética, tranqui

Page 4: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

II

Resumen

Los sistemas multifásicos se encuentran en una gran cantidad de operaciones y en la

gran mayoría de los procesos de la industria química, donde es necesario contactar

reactivos presentes en distintas fases. Ejemplos de ellos pueden ser los procesos de

fermentación que requieren del aireado de una suspensión densa de aglomerados de

biomasa o la producción de jugos, que requiere de la trituración de frutas de manera

continua minimizando el contacto con aire, o el proceso Fisher-Tropsch, que produce

combustibles líquidos a partir de gas natural por reacción catalítica en torres de lecho

fluidizado gas-líquido-sólido. Un ejemplo de creciente impacto económico-social son los

tratamientos de efluentes líquidos o gaseosos, que requieren lidiar con sistemas de

composición y reología complejos.

Para controlar, diseñar u optimizar un equipo a escala industrial o para contrastar

resultados de simulación computacional de fluido dinámica o de dinámica granular, se

requiere de información experimental del movimiento y la distribución de las fases

presentes. La información que se utiliza para evaluar la performance y verificar modelos

que describen el movimiento de las fases presentes en un reactor, vinculando la

fluidodinámica del sistema con el transporte de materia y energía son los campos de

velocidad de las fases presentes, parámetros de turbulencia, distribución de fases o

patrón de flujo, tiempos de residencia y de mezclado. Los equipos industriales suelen ser

de paredes opacas y, aún si se operara con paredes translúcidas, los mismos sistemas

multifásicos tienen la característica de dispersar la luz intensamente. En consecuencia,

las técnicas que explotan la interacción con la luz visible por parte del sistema poseen

aplicaciones muy limitadas y resulta apropiado recurrir a técnicas que utilizan radiación de

alta energía para obtener información sobre el comportamiento de las fases en sistemas

multifásicos que contribuya a optimizar diseños y monitorear la operación de un equipo.

El objetivo general de este trabajo es el estudio de la fluido dinámica de sistemas

multifásicos en equipos de escala piloto, empleando técnicas no-invasivas basadas en el

uso de métodos que utilizan la detección de radiación . En particular, se optimizó y utilizó

la técnica conocida como Radioactive Particle Tracking (RPT) para caracterizar la

fluidodinámica de columnas de burbujeo bifásicas y trifásicas y de un reactor slurry

agitado. Además, se propuso una simplificación de la técnica de RPT que facilitaría su

empleo en instalaciones industriales, comparándose la información extraíble.

Page 5: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

III

Characterization of multiphase systems with methods

involving radioactive sources

Multiphase systems are found in a large number of operations and in most of the

processes of the chemical industry where contact of reagents present in different phases

is necessary. Examples of these processes are the aerated fermentation that requires a

slurry of biomass agglomerates, or juice production, requiring crushing fruit continuously

minimizing contact with air, or Fisher-Tropsch process, that produces liquid fuels from

natural gas by gas-liquid-solid catalytic reaction fluidized beds. An example of growing

economic and social impact are gaseous or liquid effluent treatments that deal with

systems of complex composition and rheology.

To control, design or optimize industrial scale of multiphase units, or for validation of

computational fluid or granular dynamics simulations, experimental data of the motion and

distribution of the phases present is required. The information used to assess the

performance and verify models describing the motion of the phases present in a reactor

are the velocity fields of the phases present, turbulence parameters, phases distribution,

flow patterns, residence times and mixing times. Industrial equipments have usually

opaque walls, and they were translucent, multiphase systems have the property of

scattering light intensely. Consequently, techniques that exploit interaction of the system

with visible light have very limited applications, high-energy radiation is more appropriate

to use to obtain information about the behavior of the phases in multiphase systems with

the aim to optimizing design and monitoring.

The objective of this work is the study of fluid dynamics of multiphase pilot scale vessels,

using and developing non-invasive techniques based on detecting radiation. Particularly,

the technique known as Radioactive Particle Tracking (RPT) was used to characterize the

fluid dynamics of two and three phase bubble columns and a slurry stirred tank. Moreover,

a simplification of the RPT technique is proposed to promote its use in industrial

installations, making a comparison of the arising information.

Page 6: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

IV

Índice

1 - Introducción y objetivos 1

2 - Estado del arte 4

2.1 -

Los sistemas multifásicos en química industrial 5

2.1.1 - Columnas de burbujeo y sus aplicaciones en la

industria 7

2.1.2 - Tanques agitados multifásicos 9

2.2 - Estudio de la fluido-dinámica de sistemas multifásicos 9

2.2.1 - Métodos basados en sensores 11

2.2.2 - Métodos ópticos 11

2.2.3 - Tomografías eléctricas y magnéticas 13

2.2.3.1 - Tomografías de impedancia y capacitiva 13

2.2.3.2 - Tomografía de resonancia magnética ultra

rápida (fMRI) 15

2.2.4 - Métodos que utilizan fuentes de radiación de alta

energía 18

2.2.4.1 - Tomografía de transmisión de rayos X o 20

2.2.4.2 - Seguimiento de partícula única radiactiva 22

2.2.4.2.1 - Tomografía de seguimiento de

partículas emisoras de positrones - Positron

Emitter Particle Tracking - PEPT 23

2.2.4.2.2 - Radioactive Particle Tracking –

RPT 24

3 - Desarrollo experimental 29

3.1 - Técnica de tomografía de emisión de una única partícula

radiactiva (Radioactive Particle Tracking – RPT) 29

3.1.1 - Elección de radiotrazadores 29

3.1.2 - Instrumentación para la detección de radiación en RPT 31

3.1.2.1 - Detectores 32

3.1.2.2 - Sistema de adquisición de datos 34

3.1.3 - Disposición espacial de los detectores y método

de reconstrucción de la trayectoria del trazador 38

3.1.3.1 - Disposición espacial para reconstrucción 38

Page 7: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

V

en 3D (RPT)

3.1.3.2 - Disposición espacial alineada para

reconstrucción en 1D (RPT1D) 43

3.2 - Densitometría como técnica complementaria de RPT 46

3.3 - Equipos multifásicos en estudio 49

3.3.1 - Columna de burbujeo bifásica (gas-líquido; GL) 49

3.3.2 - Columna de burbujeo trifásica (gas-líquido-sólido;

GLS) 52

3.3.3 - Reactor tipo tanque agitado 54

4 - Procedimientos de análisis de los resultados 58

4.1 - Análisis del movimiento de la fase trazada en base a la

teoría estadística de la turbulencia 58

4.1.1 - Campos de velocidades 59

4.1.2 - Parámetros de turbulencia 61

4.1.3 - Varianza y coeficientes de dispersión 63

4.2 - Análisis considerando herramientas utilizadas para la

explotación de grandes volúmenes de datos 64

4.2.1 - Análisis simbólico 64

4.2.1.1 - Simbolización estática 64

4.2.1.2 - Simbolización dinámica 65

4.3 - Análisis del mezclado considerando elementos de la teoría

de la información 66

4.3.1 - Entropía de Shannon y tiempos de mezcla 66

4.3.2 - Probabilidades y distribución de fases 69

5 - Resultados y discusión 71

5.1 - Columna de burbujeo trifásica con sistema GLS1 71

5.1.1 - Trayectorias determinadas por RPT y su análisis 71

5.1.1.1 - Campo de velocidades 74

5.1.1.2 - Parámetros de turbulencia 80

5.1.1.3 - Distribución de fases 82

5.1.1.4 - Coeficientes de dispersión axial y radial 84

5.1.2 - Trayectorias determinadas por RPT1D y su análisis 85

5.1.2.1 - Análisis simbólico 86

5.1.2.1.1 - Símbolos estáticos 87

5.1.2.1.2 - Símbolos dinámicos 89

5.1.2.2 - Entropía y mezclado macroscópico 93

Page 8: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

VI

5.1.2.3 - Distribución de fases 96

5.2 - Columna de burbujeo trifásica con sistema GLS2 99

5.2.1 - Trayectorias determinadas por RPT1D y su análisis 99

5.2.1.1 - Coeficientes de dispersión axial 99

5.2.1.2 - Análisis simbólico estático 100

5.2.1.3 - Análisis simbólico dinámico 102

5.2.2 - Entropía y mezclado macroscópico 104

5.2.2.1 - Identificación de cambios en regímenes de

flujo mediante el uso de teoría de la información 104

5.2.2.2 - Tiempos de mezcla 105

5.2.3 - Distribución de fases 107

5.3 - Columna de burbujeo bifásica GL 108

5.3.1 - Trayectorias determinadas por RPT1D y su análisis 108

5.3.1.1 - Distribución de tiempos de residencia 109

5.3.1.2 - Velocidades de movimientos persistentes 112

5.3.2 - Distribución de fases y transiciones de flujo 113

5.3.2.1 - Distribución de fases 114

5.3.2.2 - Cambio de régimen de flujo en columna

bifásica identificado por análisis simbólico 118

5.3.2.2.1 - Análisis estático 118

5.3.2.2.2 - Análisis dinámico 123

5.4 - Comparación entre sistemas 129

5.4.1 - Trayectorias determinadas por RPT y su análisis 129

5.4.1.1 - Coeficientes de dispersión 129

5.4.1.2 - Entropía y mezclado macroscópico 131

5.4.1.2.1 - Influencia del caudal de gas sobre

la

entropía de Shannon asintótica 131

5.4.1.2.2 - Entropía y análisis simbólico para

determinación de cambios en regímenes de

flujo 133

5.4.1.3 - Hold up de fases en columna trifásica 134

5.5 - Tanque agitado trifásico (nitrógeno-isooctano-óxido de

metal) 135

5.5.1 - Trayectorias determinadas por RPT y su análisis 135

5.5.2 - Campo de velocidades 136

5.5.3 - Parámetros de turbulencia 140

Page 9: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

VII

5.5.4 - Distribución de fases 143

6 - Conclusiones 146

6.1 - Alcance de las técnicas RPT y RPT1D 147

6.2 - Mezclado macroscópico: distribución de fases, dispersión,

entropía y tiempos de mezcla macroscópicos en columnas de

burbujeo bifásicas y trifásicas. 148

6.3 - Campos de velocidades y parámetros de turbulencia en

columna de burbujeo trifásica GLS y tanque agitado trifásico

GLS 149

7 - Perspectivas del presente cercano 151

Referencias 153

Page 10: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

1

( ... ) Yes, tomorrow we will purify all the sciences

and banish forever the remaining hidden unknowns. ( ... )

Ernest Solvay

Introducción y objetivos

A una década y media luego del inicio del tercer milenio, la humanidad está atravesando un

momento en el cual es prioritario un desarrollo significativamente más sustentable. En el área de

ingeniería química, este hecho se ve reflejado en la necesidad de optimizar los procesos ya

existentes, a fin de mantenerlos rentables, y de reducir los riesgos del escalado de nuevas

tecnologías limpias. Para ello es necesario un conocimiento cada vez más profundo sobre los

fenómenos de transporte que gobiernan dichos procesos, tanto en la meso escala como a macro

escala1 y la interacción de ellas con la micro escala.

La motivación del presente estudio radica en buscar fuentes de información que permitan un

detallado conocimiento de los procesos de transporte de materia y cantidad de movimiento en

equipos industriales. Dicha información es clave para lo que en la actualidad se denomina

intensificación de procesos, una rama de la ingeniería que se dedica a optimizar la economía de

los equipos industriales, y para el escalado de nuevos procesos, tarea que está cobrando cada

vez mayor relevancia dada la necesidad de la humanidad de optimizar procesos existentes y

emergentes para construir un paradigma de producción de cada vez mayor sustentabilidad.

Los sistemas multifásicos están presentes en la mayoría de las plantas químicas tanto en equipos

de separación, en reactores o simplemente en conductos, donde frecuentemente hay circulación

de mezclas dos o más fases inmiscibles. En muchos casos es importante determinar el caudal y

las proporciones de mezclas líquido-gas, líquido-sólido o gas-líquido-sólido, tarea complicada

debido a los distintos patrones de flujo que se pueden presentar. Por otra parte, los reactores son

el corazón de las plantas químicas; conocer su funcionamiento implica entender la cinética y la

termodinámica de la reacción que ocurre en su interior pero también, dada la gran escala a la que

se trabaja en la industria, se vuelve esencial entender la fluidodinámica para evitar zonas muertas,

Page 11: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

2

cana‘izaci“nes, ”unt“s ca‘ientes , que ‘‘evan a baj“s rendi’ient“s ”“r un ’a‘ ’ezc‘ad“. Es

evidente que no entender la dinámica interna en un reactor puede acarrear tanto grandes pérdidas

económicas como accidentes de gravedad letal.

Se requieren métodos de estudio no invasivos para capturar la dinámica de reactores y equipos

multifásicos sin perturbar estas unidades y, debido a la naturaleza inherentemente opaca de los

flujos multifásicos, los métodos radiactivos han demostrado ser muy apropiados2,3,4,5. Entre ellos,

el seguimiento de una partícula radiactiva (Radioactive Particle Tracking - RPT) es una técnica

poderosa utilizada para examinar la dinámica de fases condensadas (sólido fluidizado o líquido) en

medios opacos. RPT se ha aplicado para extraer características de diversos equipos

multifásicos5,6. Parte de la información que surge de RPT está relacionada con el análisis de la

trayectoria axial trazador, especialmente cuando el mismo está involucrado en movimientos

ascendentes rápidos7,8. Si bien RPT permite inferir un panorama completo de la fluidodinámica del

equipo en estudio, es bastante complicado de implementar en instalaciones industriales, debido

principalmente a la etapa de calibración que se requiere bajo condiciones reales de operación.

La técnica RPT se ha aplicado exitosamente para caracterizar reactores multifásicos de manera

no invasiva en equipos de escala laboratorio y piloto. Por ejemplo, se pueden inferir tiempos de

mezclado de sólidos en un lecho fluidizado gas-líquido-sólido a partir de la trayectoria del trazador

radiactivo que imita partículas en suspensión9. Su aplicación en estos casos para extraer

información macroscópica del mezclado y régimen de flujo subyacente puede resultar de utilidad

en condiciones frecuentemente encontradas en procesos petroquímicos y biotecnológicos, que

presentan reología compleja10 y son generalmente opacos11,12. Los resultados de analizar por

RPT estos equipos bajo las condiciones mencionadas contribuyen a caracterizar mejor el

movimiento interno de los mismos13,14,15 y así optimizar las metodologías de diseño y de cambio

de escala16. Sin embargo, la técnica de RPT requiere una etapa de calibración, dificultando su

implementación en la industria.

El objetivo general de la presente tesis es el estudio de la fluidodinámica de sistemas multifásicos

en equipos de escala piloto, empleando técnicas no-invasivas basadas en el uso de métodos que

utilizan radiación de alta energía (o radiación gamma). Asimismo, este trabajo propone un método

que permite extraer información de utilidad para el diseño y monitoreo de reactores fluidizados

gas-líquido-sólido utilizando una variante de la técnica de RPT que, si bien provee menos

información, elimina la etapa de calibración y puede implementarse en equipos industriales.

Emplea el mismo conjunto de detectores pero los utiliza alineados verticalmente al lado del equipo

que se estudia. A fin de validar la información obtenida a partir de la técnica propuesta, es

interesante comparar con aquella determinada por RPT. Ambas técnicas se usarán para estudiar

el movimiento de fases condensadas en equipos bifásicos y trifásicos de gran aplicación en

diversos campos de la industria química.

Page 12: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

3

Se abordó este objetivo general a partir de los siguientes objetivos específicos:

Optimizar el sistema de RPT implementado por el grupo de trabajo, con especial énfasis en

desarrollar un trazador óptimo para los sólidos generalmente presentes en procesos

biotecnológicos

Mejorar la disposición de los detectores de centelleo alrededor del equipo en el cual se

llevaron a cabo los experimentos para simplificar el arreglo experimental con miras a una

implementación de la técnica en un sistema industrial real.

Establecer un sistema de medición de altos contajes, redundando en un menor error

estadístico en la determinación de la posición del trazador, sin pérdidas de datos del sistema

de adquisición.

Realizar ensayos de RPT con agua y con líquidos modelos de reología compleja,

determinando el movimiento de trazadores de distinta densidad, asimilables al líquido o a

catalizadores depositados en soportes sólidos, agregados de células o enzimas/células

encapsuladas. Analizar las trayectorias de los trazadores con el fin de caracterizar

principalmente la distribución espacial de fases condensadas, su movimiento y parámetros de

turbulencia.

Aplicar técnicas de explotación de datos a fin de extraer información de interés en el diseño de

reactores y equipos industriales.

En los siguientes capítulos se presenta: en primer lugar, en el capítulo 2, una revisión actualizada

de la bibliografía existente en materia de caracterización no invasiva de equipos industriales y su

importancia en el diseño, caracterización y monitoreo de medios multifásicos. La descripción de

los experimentos realizados se expone en el capítulo 3, donde se explica en detalle cómo se

instrumenta y opera el sistema de adquisición de datos en la técnica de RPT para luego describir

detalladamente los experimentos realizados para caracterizar una columna de burbujeo en

operación con sistemas de dos y tres fases, y un tanque agitado trifásico. En el capítulo 4, se da

una descripción de los procedimientos para la explotación de los datos obtenidos. En el capítulo 5

se reportan los resultados de mayor relevancia en el área de ingeniería de equipos multifásicos,

discutiendo la información que surge para los distintos equipos estudiados. El capítulo 6 resume el

trabajo realizado remarcando las conclusiones principales alcanzadas. Finalmente, en el capítulo

7, se incluye una breve discusión sobre perspectivas de trabajo futuro en el área del estudio no

invasivo de equipos industriales y su potencial aporte a la simulación dinámica multiescala.

Page 13: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

4

‘The results of this investigation have both a practical and a philosophical aspect.’

Osborne Reynolds: An experimental investigation of the circumstances which determine

whether the motion of water shall be direct or sinuous, and the law of resistance

in parallel channels. Proceedings of the royal society of London (1883)

1. Estado del arte

A medida que la conciencia medioambiental se instala en las sociedades del mundo, los procesos

biotecnológicos van ganando los nichos productivos que demandan, en consecuencia, procesos

más limpios. Es por ésto que, entre las tareas más urgentes que deben realizar las comunidades

de científicos y tecnólogos mundiales de la actualidad se encuentra el desarrollo de tecnologías de

producción sustentables que permitan el acceso de toda la sociedad a los bienes y servicios de

manera equitativa y amigable con el medio ambiente17. Este hecho, en conjunto con las leyes de

los mercados, exige que las industrias emergentes sean económicamente competitivas18.

En el ámbito de la ingeniería de procesos químicos ésto se logra por dos vías: optimizando la

explotación de recursos no renovables o desarrollando el uso de recursos renovables19. Ambas

vías tienen en común la estrategia de escalado para transformar pruebas de concepto exitosas a

escala laboratorio o piloto en procesos de escala industrial. Para aumentar la competitividad de los

procesos biotecnológicos como contraparte del menguante paradigma productivo heredado de

finales del siglo 20, basado exclusivamente en extractivismo y energías no renovables, se requiere

de diseños que sean eficientes energéticamente20 y que puedan extender la vida útil de insumos

costosos, tales como catalizadores u organismos vivos21.

Si bien la metodología empírica de escalado requiere un menor capital de inversión, experiencias

en el campo de la garantía de calidad en la producción de catalizadores indican que las

predicciones sobre la performance del catalizador en la escala real mejoran $ustancialmente

cuando a los datos tradicionalmente recabados empíricamente se los incorpora en una

descripción detallada del proceso22.

La performance de equipos industriales donde se realizan transformaciones fisicoquímicas

depende fundamentalmente de la interacción de tres escalas fenomenológicas23:

- Interacciones a escala molecular (escala cuántica, 10-10 – 10-8 m ; 10-16 – 10-7 s).

- Transporte mesoscópico de calor y materia (10-6-10-3 m ; 10-6 – 10-2s).

- Tiempo de contacto (escala de respuesta de válvulas de control, > 10-2 s).

Page 14: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

5

La escala mesoscópica, o mesoescala, es el puente entre reacciones químicas bien

caracterizadas a escala laboratorio y el control de resultados clave a escala industrial, como

rendimiento y selectividad. Este puente está fundado en las leyes de la mecánica de fluidos y del

transporte de calor y masa, cuyas ecuaciones permiten cuantificar el efecto de la distribución de

fases sobre la velocidad o eficiencia de un proceso. Integrando dichas ecuaciones en el tiempo y

el espacio, se pueden estimar resultados de interés en ingeniería tales como productividad

volumétrica y tiempos de proceso24.

En este capítulo, se discuten algunos ejemplos del impacto del mezclado macroscópico en

diversas áreas de la industria para luego describir las principales técnicas que pueden brindar

información útil sobre el mismo que permita mejorar el diseño, el monitoreo o el control de los

equipos industriales, que son mayoritariamente multifásicos.

2.1. Los sistemas multifásicos en química industrial

Los equipos multifásicos son ampliamente empleados en diversas industrias, en numerosos

procesos de la industria química y petroquímica, en el tratamiento de minerales, en las industrias

de alimentos y farmacéutica, en bioprocesos y para el tratamiento de efluentes25. En estos

equipos, que pueden emplearse para operaciones de acondicionamiento y/o como reactores, se

encuentran presentes varias fases (gas, líquidos y sólidos). El correcto diseño y operación de

estos equipos es fundamental tanto para el desarrollo de tecnologías limpias como para la

optimización de los procesos de producción existentes, pues maximizan la eficiencia de uso de

energía y de especies atómicas que constituyen los reactivos o solventes del proceso26.

Es cada vez más común encontrar en la literatura reciente ejemplos de utilización de enzimas o

células inmovilizadas en reactores multifásicos con un objetivo concreto en la industria

biotecnológica. En particular, muchos utilizan reactores trifásicos de lecho fluidizado por ventajas

tales como la minimización de zonas estancas y la facilidad del agregado o remoción de sólidos

sin necesidad de detener la operación27.

Cabe resaltar que el uso de electricidad contribuye significativamente en el costo general de

producción, es por eso que una de las caracteristicas más deseables de los procesos emergentes

es el uso óptimo de la energía suministrada20. En el caso de fermentaciones que funcionan

continuamente por semanas enteras, esa energía se usa principalmente para termostatizacion,

mezclado y generación de interfase gas líquido28.

La inmovilización de catalizadores, enzimas o microorganismos se realiza para mejorar la

performance del proceso29, facilitar la separación del producto, evitar el lavado de catalizador o por

protección de microorganismos frente al stress hidrodinámico30, o turbohipobiosis31. Sin embargo

existe un amplio rango de operación donde un control impreciso de las variables de proceso

Page 15: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

6

conduce a un descenso importante en el aprovechamiento de la capacidad operativa32. Por

ejemplo, conocer el movimiento de los sustratos y las células en un proceso biotecnológico es

crucial para seleccionar las variables de diseño y las condiciones de operación que aseguren un

buen mezclado, minimizando la existencia de zonas estancas y manteniendo niveles de

turbulencia compatibles con los organismos vivos33.

En el campo de los biocombustibles, optimizar procesos desde el diseño es un paso clave para

alcanzar precios accesibles de biocombustibles alternativos a los de primera generación

(típicamente a partir de aceites comestibles) que compiten por la superficie cultivable con la

producción de alimentos: los biocombustibles de segunda generación (etanol a partir de materiales

lignocelulósicos o alcoholes a partir de fermentación de biomasa algal) o de tercera generación

(biodiesel a partir del cultivo de algas productoras de lípidos).

En el caso de los biocombustibles de segunda generación, su producción puede incrementarse

mediante el pretratamiento de materiales lignocelulósicos con celulasas34. Sin embargo, su

implementación en forma económica a escala industrial se ve obstaculizada principalmente por el

costo de producción35. Frecuentemente, se utilizan reactores tipo tanque agitado para la obtención

de celulasa pero en este diseño es difícil modular los niveles de turbulencia para evitar el daño de

los filamentos de microorganismos y se corren riesgos de suboptimizar la producción. La celulasa

se ve afectada por dos grandes fuentes de desactivación: inhibición por adsorción o por excesivos

niveles de turbulencia locales. En la Figura 2.1 se muestra la respuesta del sistema enzimático

celulasa frente a distintas condiciones de operación en un tanque agitado. Se observa un marcado

decrecimiento de la actividad enzimática con la velocidad de agitación36.

Figura 2.1: Influencia de distintas condiciones de agitacion sobre la actividad global de

celulasa ( 17 rps; 33 rps; 50 rps).

Page 16: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

7

En la producción de biocombustibles a partir de microalgas, se observa que el escalado de

fotobiorreactores es demasiado costoso, mientras que la producción de biomasa en estanques

abiertos es inferior a la de los fotobiorreactores. Para lograr una alta concentración de biomasa se

necesita nueva tecnología que permita reducir el costo de fotobiorreactores, y son necesarias

nuevas cepas de microalgas productoras de lípidos que tengan alta capacidad de adaptación para

mejorar la producción en estanques abiertos. Además, la cosecha de la biomasa también es cara

y consume mucha energía. A medida que se desarrollan nuevos métodos de cosecha, se necesita

más investigación para aumentar la fiabilidad de estos métodos en operaciones a gran escala37.

En fermentaciones aeróbicas, garantizar un adecuado coeficiente volumétrico de transferencia de

oxígeno es el criterio más aceptado para el escalado de tal forma que la velocidad de crecimiento

de células y los rendimientos de productos obtenidos en estudios de optimización a pequeña

escala se mantengan a escalas más grandes38. Este coeficiente volumétrico de transferencia de

oxígeno depende principalmente de la temperatura, las propiedades reológicas del medio y la

turbulencia desarrollada durante el mezclado39,40.

Asimismo, algunas fermentaciones anaeróbicas, como la del vino, requieren el control del régimen

de flujo a fin de regular la estabilidad del color y para asegurar el flavor41. El mezclado también es

crítico para el caso de lodos activados42.

En consecuencia, un detallado conocimiento de los factores que determinan el comportamiento de

los equipos multifásicos, especialmente los procesos de transporte y la fluidodinámica, resulta

indispensable para contribuir al desarrollo de métodos de escalado de las unidades comerciales.

2.1.1. Columnas de burbujeo y sus aplicaciones en la industria

Las columnas de burbujeo son contactores gas-líquido que se emplean en gran medida,

fundamentalmente debido a sus bajos costos de operación y mantenimiento, ausencia de partes

móviles y baja necesidad de espacio. Además, la elevada velocidad de transferencia, gran área

interfacial, y la posibilidad de funcionamiento con sólidos sin erosión grave o problemas de

taponamiento promueve el uso de estos contactores en muy diversos campos. Por lo tanto,

muchas aplicaciones de estas unidades se encuentran en la industria química, petroquímica,

farmacéutica, industria alimentaria y de tratamiento de aguas y gases27, 43.

Las columnas de burbujeo trifásicas de lecho fluidizado son utilizadas fundamentalmente en

petroquímica (hidrocraqueo44, síntesis Fischer-Tropsch45), y en biotecnología (fermentaciones con

células inmovilizadas46,47, cultivo de algas48,49). Tanto para fermentaciones de gran escala como

para la degradación enzimática de materiales lignocelulósicos y en cultivo de algas, el diseño más

recomendado para lograr los niveles de transferencia de materia entre fases requeridos en la

operación, minimizando los niveles de turbulencia, son las columnas de burbujeo operadas

Page 17: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

8

forzando la recirculación, comunmente denominadas reactores de arrastre o tipo Airlift 50. Sin

embargo, el diseño, escalado y control preciso de estos reactores es complicado debido a la

compleja interacción entre fases, que ocasiona retromezclado y atrición de los sólidos

suspendidos, y a las dificultades en la caracterización del movimiento de los mismos a fin de poder

formular modelos más detallados51,52,53.

En reactores catalíticos de lecho fluidizado, el conocimiento preciso de las estructuras que adopta

el flujo multifásico es crítico para el diseño, el modelado e incluso la operación a escala

industrial54. La distribución espacial de catalizador ejerce una gran influencia sobre la conversión y

la selectividad de una reacción catalítica heterogénea, indicadores fundamentales de la

performance de un reactor55. En los reactores trifásicos de lecho fluidizado, estos factores

dependen en gran medida de la hidrodinámica del sistema a través de los tiempos de residencia

que adoptan en distintas regiones del volumen de control del reactor56. Como complejidad

adicional se encuentra la formacion de espuma en el tope de las columnas, tipicamente cuando se

utilizan solventes orgánicos y en fermentaciones. La espuma es una dispersión de burbujas en un

volumen relativamente bajo de líquido que, si bien está fuera del equilibrio, es estable y su

formación es muchas veces indeseable debido a la reducción del volumen activo de líquido e

incluso puede provocar pérdidas de fase líquida57.

Fundamentalmente, los regímenes de flujo que se encuentran en las columnas de burbujeo son

de 2 tipos58: de burbuja, tendencia monomodal en la distribución de tamaño de burbuja con mayor

o menor interacción entre burbujas, con la fracción volumétrica de gas uniforme en la direccion

radial, y heterogéneo (turbulento o slug o flujo anular)59. Estos se muestran en la Figura 2.2. Se

denomina régimen de transición a la zona gris entre régimen de burbuja y régimen heterogéneo.

Figura 2.2: Regímenes de flujo que pueden presentarse en columnas de burbujeo.

Page 18: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

9

2.1.2. Tanques agitados multifásicos

El equipo que se usa como reactor en modo batch por excelencia es el tanque agitado dada su

versatilidad y relativa facilidad de instalación60,61. En la industria minera se emplean tanques

bifásicos L-S para la suspensión de partículas sólidas en un líquido que se utiliza para el lavado

de menas o en la etapa de cristalización62. También se suele utilizar en reacciones de

polimerización. Los tanques agitados trifásicos gas-líquido-sólido se usan ampliamente en

hidrogenación y reacciones de oxidación, fermentación, tratamiento de efluentes líquidos y

flotación por espuma63.

Para el escalado de un tanque agitado64 fundamentalmente se considera el número de potencia,

definido como el cociente entre la potencia entregada por el motor del agitador y la potencia

disipada por el sistema. El número de potencia depende principalmente de dos factores, uno

reológico, dependiente del conjunto de las propiedades intensivas del sistema y otro geométrico,

dependiente principalmente de la geometría del tanque y del agitador. Generalmente, los

agitadores se pueden clasificar en dos categorías40: el agitador de flujo radial (por ejemplo, turbina

Rushton) y el agitador de flujo axial (por ejemplo, turbina de cuchilla inclinada), dependiendo

también de la dirección del flujo secundario (el flujo principal es el de rotación en la dirección del

movimiento del impulsor), que influye significativamente en el mezclado65.

A pesar de ser un equipo ampliamente utilizado, los diseños de tanques agitados se basan en

correlaciones de tipo global que involucran el número de potencia, el número de Reynolds y el

número de Froude (cociente entre la energía cinética de las partículas y su energía potencial

gravitatoria)66. Este enfoque resulta en modelos que no proveen información detallada sobre los

fenómenos locales que gobiernan el verdadero resultado del proceso en la escala deseada. Los

diseños basados en correlaciones globales no tienen en cuenta la complejidad del movimiento

interno de los tanques agitados67.

En los tanques agitados trifásicos, los sólidos suspendidos suelen ser muy pequeños,

normalmente menos de cien micrones de diámetro medio. Sin embargo, durante la agitación se

pueden formar agregados a partir de una masa dada de líquido y sólido por oclusión. Estos

agregados pueden ser voluminosos pero tendrían densidad aparente menor a la del sólido

suspendido libre. Es importante estudiar si estos agregados continuan en movimiento en el

recipiente o se convertirían en un depósito en la parte inferior del reactor.

2.2. Estudio de la fluido-dinámica de sistemas multifásicos

Conocer la fluidodinámica de un sistema multifásico en detalle permite describir lo que pasa en su

interior con mayor precisión. Tal es así que muchos autores se han abocado a obtener

información que pueda delimitar los regímenes (o patrones) de flujo, es decir, la distribución e

Page 19: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

10

interacción de las fases que componen el sistema. Si bien existen en la literatura numerosos

trabajos orientados al estudio, diseño y escalado de equipos multifásicos68,69,70, su fluidodinámica

extremadamente compleja, producto de la interacción turbulenta de las distintas fases, hace que el

diseño de los mismos siga siendo en gran parte un arte22,71. Los trabajos de fluidodinámica

computacional (CFD) orientados a su simulación adolecen frecuentemente de la apropiada

validación debido a la dificultad en determinar el movimiento de las fases intervinientes72,73,74. Un

método óptimo de estudio debe permitir el movimiento en el espacio y no alterar el flujo de las

fases a‘ rea‘izar ‘a ’edición; es decir, debe ser n“-invasiv“ . Un“ de ‘“s ’ay“res desafí“s es e‘

análisis del movimiento de las fases debido a la dificultad de encontrar trazadores apropiados que

‘“s re”resenten y técnicas ana‘íticas que ”er’itan ’edir in situ sin necesidad de extraer una

muestra para evitar alterar el movimiento71,75.

Durante muchos años, para medir caudal en sistemas monofásicos, se utilizaron medidas de

presión. Si bien dichas medidas no brindan la misma información en sistemas multifásicos, se

pueden aprovechar medidas de fluctuación de presión para determinar proporción de fases,

regímenes de flujo y disipación de energía por turbulencia. Las diversas técnicas de

caracterización de flujo multifásico de principios de siglo proveen información global como relación

de fases y regímenes de flujo. Actualmente se puede lograr obtener información de tipo local de

manera no invasiva con alta resolución espacio temporal71,76,77,

Si bien ninguna técnica puede suministrar una caracterización absoluta de la fluido-dinámica de un

reactor78,79, los procedimientos antes mencionados pueden ser muy útiles a la hora de monitorear

la performance de reactores multifásicos y de proveer datos para contribuir al perfeccionamiento

de modelos computacionales. En muchos casos, el uso de una combinación de técnicas permite

una caracterización completa de la dinámica interna de un reactor. Las limitaciones de cada

técnica se ven compensadas por la valiosa información que suministran, dándole continuidad a

sus desarrollos. Los avances tecnológicos recientes permitieron que muchas de las técnicas que

mencionaremos en este capítulo puedan utilizarse en equipos industriales o al menos en escala

piloto71. Se pueden establecer 3 grandes grupos de métodos de observación no invasiva de flujo

multifásico3,80:

Basados en sensores: uso de sensores de distinta naturaleza (térmicos, transductores de

presión piezoeléctricos o piezorresistivos, fibras ópticas y LASER, conductividad81,

electroquímicos) dispuestos de manera de minimizar su interferencia con el flujo.

Tomografías (imagenología): RX, , capacitivas, de impedancia, resonancia magnética

nuclear.

Velocimetrías (tracking): puede ser visual (Particle Image Velocimetry – PIV) o vía el uso

de trazadores de emisión de radiación de alta energía (Radioactive Particle Tracking –

RPT; Positron Emision Particle Tracking – PEPT).

Page 20: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

11

2.2.1. Métodos basados en sensores

El uso de trazadores conductivos para experiencias de estímulo-respuesta (como una inyección

de una solución de sal al sistema) o colorantes probó ser muy útil desde hace ya muchísimo

tiempo al momento de determinar tiempos de mezclado de una manera simple en tanques

agitados64, o para discernir si un modelo de flujo es apropiado68, mediante el empleo de sensores

de conductividad, fotones y temperatura externos o adheridos a las paredes de los recipientes80.

Con este tipo de sensores y con transductores de presión y de capacidad se han determinado

también perfiles de fracciones volumétricas, patrones de flujo y sus transiciones81,82,,83.

2.2.2. Métodos ópticos

Los equipos industriales suelen ser de paredes opacas y, aún si se operara con paredes

translúcidas, los mismos sistemas multifásicos tienen la característica de dispersar la luz

intensamente, complicando la observación lejos de la pared. En consecuencia, las técnicas que

explotan la interacción con la luz visible por parte del sistema poseen una gran resolución

temporal pero tienen aplicaciones muy limitadas dado que la información confiable es sólo

superficial a menos que el sistema sea translúcido o plano, casos que prácticamente no son

representativos de la industria real, por lo cual el uso de estas técnicas está limitado a estudios

académicos. Se puede observar el interior de los reactores opacos, pero siempre implicando la

inserción de un sensor que altera las condiciones de flujo del sistema. Entre las técnicas más

comunes se encuentran84:

Velocimetría por procesamiento de imágenes fotográficas (Particle Image Velocimetry –

PIV), también limitado a sistemas translúcidos pero con la posibilidad de obtener

información 3D a partir de la sincronización de las imágenes tomadas por cámaras

dispuestas en distintos planos de observación85,86. Una propiedad muy interesante de esta

técnica radica en la posibilidad de determinar el campo de velocidades instantáneo a

frecuencias de hasta 100 Hz (Figura 2.3). Calculando la correlación de puntos adyacentes

del campo de velocidades es posible determinar la distribución de cantidades muy útiles

para caracterizar la dinámica de un reactor como ser la energía cinética de turbulencia o

esfuerzos de corte. Dichas cantidades son críticas por ejemplo a la hora de verificar si la

energía que se le imprime al sistema efectivamente se corresponde con un mezclado

adecuado para el caso de la energía cinética de turbulencia y también para saber si las

condiciones de agitación no dañan las partículas en el interior, ítem especialmente

sensible en el ámbito de cultivos celulares a gran escala para la producción de proteínas o

anticuerpos donde un esfuerzo de corte elevado puede llevar a descensos en la

producción por stress hidrodinámico.

Page 21: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

12

La anemometría laser Doppler (Laser Doppler Anemometry – LDA) aprovecha la

interferencia de luz coherente proveniente de dos láseres, que correlaciona con la

densidad y la velocidad de las distintas fases. El láser se enfoca en un punto del equipo y

luego se recibe la radiación reflejada en un tubo fotomultiplicador (PMT, Figura 2.4)

acoplado a un osciloscopio para medir diferencias entre las fases de las ondas incidentes,

que luego se usa para efectuar un análisis de correlación a fin de determinar velocidades

relativas de fases.

Figura 2.3: Campo de velocidades instantáneo determinado mediante PIV33. Se muestran

dos condiciones distintas de agitación, con paletas tipo oreja de elefante (izquierda) y con

paletas tipo cuchilla (derecha).

Figura 2.4: Esquema típico de una interferometría láser Doppler87.

La ventaja de estas técnicas es la gran resolución temporal que poseen, en la actualidad la

tecnología de PIV puede tomar imágenes a más de 100 fps y las técnicas láser pueden tomar

datos a más de 1kHz88. La principal desventaja es su alcance: solo pueden ser utilizadas en forma

no invasiva en sistemas transparentes89.

Page 22: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

13

2.2.3. Tomografías eléctricas y magnéticas

En la actualidad se pueden aprovechar mayoritariamente 3 propiedades electromagnéticas de la

materia para generar imágenes tomográficas de las distintas fases de un sistema multifásico, a

saber: la impedancia eléctrica, la capacitancia eléctrica y el magnetismo nuclear.

2.2.3.1. Tomografías de impedancia y capacitiva

Las tomografías capacitivas90 (Electric Capacitance Tomography - ECT – Figura 2.5) y resistivas

(Electrical Impedance Tomography – EIT ó Electrical Resistance Tomography ERT - Figura 2.6)

no requieren la inyección de un trazador y poseen alta resolución temporal, aunque los

procedimientos de reconstrucción del comportamiento interno en función de las señales dependen

de ecuaciones integrales de Maxwell que relacionan la distribución de fases con la distribución de

permitividad eléctrica y el potencial eléctrico resultante en función de los potenciales eléctricos

aplicados entre cada par de electrodos. Su implementación utiliza algoritmos complejos, por lo

cual la resolución espacial es relativamente baja.

Figura 2.5: Esquema de montaje experimental y resultado típico de una Tomografía de

Capacitancia Eléctrica (ECT)91.

Figura 2.6: Esquema típico de un montaje experimental de Tomografía de Impedancia

Eléctrica (EIT)92.

Page 23: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

14

Cabe resaltar que estas técnicas han sido muy útiles para sistemas no conductivos, su aplicación

está muy extendida en el desarrollo de caudalímetros91,93 de sistemas bifásicos líquidos (mezclas

de aceites comestibles con agua, petróleos y barros con más del 40% de contenido de fase no

conductora) o sistemas gas-sólido y gas-líquido. En la Figura 2.7 se muestra un típico

caudalímetro de impedancia eléctrica.

Figura 2.7: Caudalímetro de impedancia eléctrica.

En el contexto de la técnica de ERT ó EIT, para adquirir la distribución de resistividades, la zona

de interés es usualmente transformada en una matriz espacial o malla. En general se utiliza un

a‘g“rit’“ n“ iterativ“ den“’inad“ ‘inear back ”r“jecti“n que, hasta el momento, es el más

rápido computacionalmente, lo cual es útil si se desea una reconstrucción en tiempo real. El valor

de resistividad en cada pixel a partir del set de medidas se determina a partir de la Ecuación 2.1:

Ecuación 2.1: Algoritmo no iterativo 'linear back projection'.

Donde P(x,y) es proporcional al valor de densidad media de un vóxel determinado. S es la

denominada matriz de sensibilidad, que está íntimamente relacionada con la ley de Ohm a través

de la Ecuación 2.2:

Ecuación 2.2: Matríz de sensibilidad.

Donde m y n representan un par de electrodos. La reconstrucción puede hacerse a partir de datos

de electrodos adyacentes o electrodos opuestos, eligiéndose generalmente los primeros por

Page 24: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

15

facilitar los cálculos. Conductividades bajas se corresponden típicamente con sólidos no

conductivos o gases. En la Figura 2.8 se muestra la influencia del número de canales del

instrumental de ECT sobre la resolución de un sistema de distribución de densidad conocida.

Figura 2.8: Reconstrucción tomográfica del apilamiento de dos esferas de arena de distinto diámetro (izquierda) utilizando ECT con 12 (centro) y 24 canales (derecha)

En la Figura 2.9 se muestra una reconstrucción tomográfica obtenida por ERT aplicada a un

tanque agitado L-S. Para bajas velocidades de gas, se pueden estimar tamaños de burbuja y

relaciones de fase GL, LS y GLS con gran confiabilidad si se cuenta con una calibración

adecuada.

Figura 2.9: Reconstrucción tomográfica obtenida por ERT aplicada a un tanque agitado líquido-sólido. Los colores de azul a rojo representan la conductividad de cada voxel.

2.2.3.2. Tomografía de resonancia magnética ultra rápida (fMRI)

Recientemente se ha incorporado a la amplia variedad de técnicas eléctricas de caracterización

de reactores a la novedosa técnica de Tomografía de Resonancia Magnética Nuclear ultra rápida

(ultra fast Magnetic Resonance Imagenología - Figura 2.10) 94. Esta técnica se basa en la sintonía

Page 25: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

16

fina de resonancia de ondas de radiofrecuencia con spines nucleares que se encuentran en

presencia de un campo magnético externo.

Figura 2.10: Esquema de un típico montaje experimental de RMN para el estudio de una

columna de burbujeo.

Si bien es una técnica de altos costos inicial y operativo, es la única técnica que permite identificar

el flujo de componentes individuales entre fases95. Incluso es posible cuantificar de manera

confiable la proporción de interfase por unidad de volumen, factor fundamental para la

transferencia de materia entre fases.

La influencia de la vecindad molecular sobre las señales de resonancia magnética permite obtener

información de interfase (Figura 2.11) sin recurrir a modelos que supongan formas de burbuja96

(Figura 2.12), que es fundamental para el monitoreo y control de contactado de fases97. Esto es

Page 26: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

17

ideal también para obtener una estimación más precisa del mojado de catalizadores en reactores

trifásicos98 y provee una forma alternativa de estudiar la reologia de sistemas complejos99.

Figura 2.11:Determinación de la distribución de tamaños de burbuja a partir del

tratamiento de imágenes obtenidas por resonancia magnética nuclear.

Figura 2.12: Estimación del contenido de fases en un burbujeador obtenido

por fMRI (arriba). Comparación con lo obtenido por observación visual (abajo).

Posiblemente la desventaja de los altos costos de instalación y operación puedan compensarse

con la obtención de esta invaluable información. La resolución espacial puede alcanzar el

milímetro pero la resolución temporal es relativamente inferior a otras técnicas (no más de 10

Hertz sin pérdida de resolución). Es deseable también que los componentes del sistema posean

un bajo nivel de paramagnetismo, pero trabajos recientes revelan que se puede extraer

Page 27: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

18

información incluso en presencia de sustancias de distinto grado de paramagnetismo100,101.

2.2.4. Métodos que utilizan fuentes de radiación de alta energía

Los ensayos no invasivos en la industria de procesos tienen su principal foco centrado en lograr

alta resolución espacial. Por otra parte, las condiciones de flujo transitorio en los procesos

generan la necesidad de una resolución temporal lo más alta posible. En la última década, se han

desarrollado técnicas no-invasivas para profundizar el estudio del movimiento de las fases que

coexisten en sistemas multifásicos, utilizando la detección de radiaciones ionizantes102,103,104,

fundamentalmente métodos de tomografías X y , muchas de ellas utilizadas también en medicina

y estudio de transportes de sedimentos105, con la diferencia en que la dosis de energía permitida,

en este contexto, no tiene casi ninguna limitación. Esta ventaja, sin embargo, genera que las

medidas de protección radiológica requeridas en el lugar de instalación a menudo dificulten y

eleven el costo del análisis, especialmente cuando se utilizan rayos X duros y radiación . De

todas maneras, con respecto a la resolución espacial y temporal, así como la capacidad de

penetrar en los materiales densos, los rayos X y son superiores a cualquier otro tipo de señal71.

Los avances tecnológicos en el área de detección de radiación nuclear permitieron que las

técnicas de tomografías X o posean alta resolución espacial y temporal. Los procedimientos de

reconstrucción de la relación y distribución de fases son mucho más simples que los

implementados en tomografías eléctricas, ya que están gobernados por ecuaciones de

decaimiento exponencial tipo Lambert - Beer donde se reemplaza la absortividad por un

coeficiente de atenuación que es dependiente de los elementos constituyentes, en particular de la

densidad. Aprovechando la misma tecnología, se desarrollaron técnicas de seguimiento de

trazadores líquidos y sólidos.

Las tomografías que utilizan radiación de alta energía pueden implementarse de tres modos:

- Modo de transmisión, que se basa en la dependencia de la atenuación de la radiación de

alta energía con la densidad del material y el número atómico de sus elementos

componentes. Por lo tanto, se pueden discriminar las estructuras a través de su diferente

atenuación, que proviene principalmente de diferentes densidades, es por ésto que se las

denomina genéricamente densitometrías. Las técnicas de imagenología de rayos X y son

mayoritariamente utilizadas de este modo para la visualización de las distribuciones de

fase en flujo bifásico, por ejemplo en reactores trifásicos de lecho fijo, o para flujos de

partículas en un lecho fluidizado. Otro ejemplo típico es la observación por densitometría del flujo trifásico en tuberías, por ejemplo, en el procesamiento de minerales o en

petroquímica106,107.

Page 28: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

19

- Las técnicas de imagenología pueden también explotarse a través de la radiación

dispersada. La tomografía de dispersión de rayos gamma se aplica a menudo cuando hay

acceso a un solo costado del objeto a ser inspeccionado o cuando sus dimensiones son

tan grandes que no hay transmisión a través de él108. La implementación más común es el

uso de uno o varios conjuntos de detectores, cada uno colimado para tomar una porción

de la radiación, cuya intensidad define su intersección con el haz incidente. Esta

implementación es denominada enfoque punto por punto. No hay necesidad de

reconstrucción de la imagen ya que los datos de cada voxel están directamente

disponibles71.

- Tomografías de emisión de partícula única: fundamentalmente basada en la emisión de

radiación , son técnicas que proveen gran cantidad de información y que se ha utilizado

para determinar características del movimiento del líquido o del sólido, como velocidades

medias axiales y radiales, intensidades de turbulencia, coeficientes de dispersión3,71,105 ,.

Además, se ha propuesto el análisis de los datos experimentales obtenidos mediante estas

técnicas en el marco de otras teorías, poniendo en evidencia que se pueden inferir

resultados que proveen información relevante de la dinámica del movimiento de las fases

en estos reactores14, 109,110,111.

La Figura 2.13 ilustra los 3 modos de uso de fuentes radiactivas para el estudio de sistemas

multifásicos.

Figura 2.13: Modos de implementacion de estudio no invasivo utilizando radiación de alta

energía. F: fuente de radiación. D: Detector de radiación.

La determinación de la circulación macroscópica en medios multifásicos es un tema que está muy

lejos de haber sido resuelto112,113. Esto se debe fundamentalmente a la posibilidad de múltiples

regímenes de flujo que impiden la aplicación de mediciones directas que se utilizan de rutina en

medios monofásicos114. Al respecto, varios trabajos han informado que el uso de técnicas de

densitometría empleando fuentes de alta energía puede contribuir exitosamente a la

determinación de caudales o al menos de las proporciones másicas de las distintas fases115.

Page 29: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

20

Teniendo en cuenta la importancia de poder determinar correctamente el régimen de flujo que se

impone en distintas condiciones de operación, es interesante analizar la factibilidad de optimizar la

explotación de datos obtenidos con los métodos existentes incorporando mediciones en base al

uso de fuentes radiactivas.

2.2.4.1. Tomografía de transmisión de rayos X o En flujos multifásicos, los rayos X son útiles para discriminar fases, siempre que posean suficiente

contraste radiológico. Cuando las diferencias de densidad entre las distintas fases son bajas, se

puede recurrir al uso de rayos X de baja energía o incluso fuentes de rayos X multienergéticos116.

Para energías de rayos X más bajas, la fotoabsorción se convierte en el proceso dominante de la

interacción radiación-materia; ésta es, a diferencia de la dispersión Compton para las energías

más altas, dependiente en gran medida del número atómico y, por tanto, de la composición de

especies a nivel elemental71.

Sin embargo, dado que las energías de rayos X más bajas tienen menos capacidad de

penetración global, también hay límites físicos en el contexto del estudio de equipos

industriales117. En los casos en que el contraste entre las fases es demasiado bajo, la adición de

agentes de contraste que contienen elementos químicos de alto número atómico, tales como bario

o yodo, es una opción71. Por otra parte, dichos agentes de contraste pueden utilizarse

deliberadamente como trazadores de flujo, por ejemplo, para estudiar los efectos de dispersión de

fase líquida. En la Figura 2.14 se muestra un esquema típico de tomografía ultra rápida de rayos

X118.

Figura 2.14: (a) vista lateral de un esquema de tomografia ultra rápida de rayos X y (b)

vista superior.

Page 30: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

21

La fuente de radiación necesaria para tomografía de transmisión o densitometría debe ser

atenuable3; es decir, de una energía no demasiado elevada para que los fotones del haz sean

parcialmente absorbidos por el medio que atraviesan, para poder así brindar información sobre él.

Los coeficientes de atenuación dependen de la energía; a medida que ésta aumenta, los

coeficientes generalmente decrecen. Además, dichos coeficientes pueden variar en forma

diferente para las distintas fases presentes, lo cual contribuye a la detección cuantitativa de la

fracción volumétrica de cada fase.

La radiación electromagnética, aquí rayos X y , interactúa con la materia principalmente mediante

tres procesos: a) efecto fotoeléctrico; b) efecto Compton y c) formación de pares electrón-positrón,

aunque este último sólo interviene cuando la energía de la radiación es superior a 1.022 MeV.

Durante el efecto fotoeléctrico, el fotón incidente es totalmente absorbido y su energía es

entregada a un electrón atómico que es eyectado con una energía cinética igual a la energía del

fotón menos la energía de ligadura del electrón. Por su parte, el efecto Compton puede

interpretarse como un choque elástico entre el fotón incidente y un electrón atómico, supuesto

libre y en reposo. Como consecuencia de la interacción, el fotón es dispersado con una menor

energía y el electrón adquiere como energía cinética, la energía remanente.

Dependiendo de la energía del fotón y del número atómico de los átomos que componen el medio,

los procesos de interacción tienen diferentes probabilidades de ocurrencia, dominando el

fotoeléctrico a las más bajas energías (hasta aproximadamente 100 keV), el Compton a energías

medias y la formación de pares a partir de unos 2 MeV. Como resultado de estas interacciones, la

intensidad del haz decrece a medida que penetra en el medio y ese decrecimiento está

fuertementente vinculado a las sustancias que componen el medio.

La variación en la atenuación del haz permite hacer una correlación entre la intensidad transmitida

en función de la proporción para un paso óptico de un largo determinado. Cabe señalar que, al

usar radiación , no se observan efectos de refracción como en la fotometría UV-visible. Luego, en

principio, no es necesario que las fases estén separadas, sólo importa su densidad y su

correspondiente coeficiente de atenuación en el rango de energías donde se presentan los picos

característicos.

En la Tabla 2.1 se muestran los radioisótopos comunmente utilizados en densitometría y para

tomografías de transmisión o X.

Isótopo Vida media (años) Emisión (keV) Emisión X (keV)

241Am 432,7 60 13.9; 17.8 133Ba 10.5 81; 303; 356 31; 35 137Cs 30.1 662 32 ; 36 60Co 5.3 1173; 1333 ---

Page 31: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

22

Tabla 2.1: Isótopos comunmente utilizados en densitometría y/o X.119

En la Figura 2.15 se muestra un esquema típico de tomografía de rayos utilizado en equipos de

escala piloto e industrial.

Figura 2.15: Disposición típica de un tomógrafo para aplicaciones industriales.

Los detectores son de germanato de bismuto (BGO)71.

2.2.4.2. Seguimiento de partícula única radiactiva

Dentro del campo del seguimiento de partículas radiactivas existen dos fenómenos nucleares que

se pueden explotar: la emisión de positrones (Positron Emitter Particle Tracking - PEPT) y la

emisión de radiación (Radioactive Particle Tracking – RPT, también llamada Computer

Automated Radioactive Particle Tracking - CARPT), utilizadas mayormente para el estudio del

movimiento de las fases sólidas. La técnica más común de seguimiento de trazadores líquidos es

la tomografía de emisión de positrones (PET), idéntica a la utilizada en medicina, la posibilidad de

sintetizar trazadores de distinta estructura molecular permite obtener información de distintos

componentes. La inyección de trazadores radiactivos en fase fluida requiere de insumos muy

costosos y condiciones de seguridad extremas.

En ambos casos se detecta radiación , en el caso de PET y PEPT los positrones son aniquilados

por la nube electrónica del núcleo emisor, emitiendo un neutrino y dos fotones en direcciones

opuestas (back-to-back emission) con una energía característica de 512 keV, y en el caso de

RPT, el trazador es activado por bombardeo neutrónico a una especie nuclear que decae

mayormente a través del mecanismo - y fotones (Figura 2.16). Los algoritmos de reconstrucción

son diferentes dado que en el caso de RPT el perfil de emisión de radiación es en todas

direcciones y en el caso de PEPT es co-lineal, influyendo a su vez en la complejidad del sistema

de detección. En el caso de PEPT además se requiere verificar la coincidencia temporal de los

eventos de emisión registrados.

Page 32: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

23

Figura 2.16: Tanto el decaimiento (derecha) como la aniquilación entre un positrón y un

electrón (izquierda) resultan en la emisión de radiación 120.

Las geometrías características de las dos emisiones son distintas, lo cual redunda en que los

dispositivos de detección y sus correspondientes reconstrucciones sean diferentes.

2.2.4.2.1. Tomografía de seguimiento de partículas emisoras de

positrones - Positron Emitter Particle Tracking - PEPT

En lo que respecta a PEPT se recurre a un algoritmo de triangulación3, lo que implica el uso de

una cámara de detección recubierta de micro-arreglos de detectores de estado sólido (típicamente

CdTe dopado con Zn o germanato de bismuto –BGO-). En las Figuras 2.17 y 2.18 se ilustran el

esquema de reconstrucción y las instalaciones necesarias para un procedimiento de PEPT.

Figura 2.17: Esquema de una cámara de detección para la tomografía de emisión de

positrones PEPT (izquierda). Configuración de arreglo de detectores de BGO para PEPT

(derecha)121.

Page 33: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

24

Figura 2.18: Instalaciones típicas de tomografía de emisión de positrones en escala

laboratorio (izquierda) y piloto (derecha)122.

Asimismo, en la Figura 2.19 se muestra un ejemplo de distribución de sólidos determinada por

esta técnica en un tambor rotatorio.

Figura 2.19: Distribución del contenido de sólidos determinada mediante PEPT en un

mezclador de sólidos tipo tambor rotatorio.123

2.2.4.2.2. Radioactive Particle Tracking – RPT

La técnica RPT c“’ienza en ‘a década de‘ 60 c“n ‘“s estudi“s de K“nduk“v y

colaboradores124,125 sobre movimiento de partículas en suspensión a través de conductos. Dos

décadas después, la técnica toma su impulso actual con el trabajo del grupo del Prof. Milorad P.

Dudukovic126,127 en el Laboratorio de Ingeniería de Reactores Químicos (Chemical Reactor

Engineering Laboratory, CREL)128 de la Universidad de Washington, St. Louis, Missouri, EEUU.

Actualmente existen 4 países en el mundo que realizan activamente esta técnica, entre ellos la

Argentina129,130.

Page 34: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

25

Para la técnica de RPT, mostrada esquemáticamente en la Figura 2.20, se usa un arreglo de

detectores de centelleo (típicamente ioduro de sodio dopado con talio) más accesible en términos

económicos con respecto al microarreglo de detectores de PEPT. La reconstrucción, es decir la

determinación de la posición de la partícula en función de la serie temporal de señales, puede

realizarse, a partir de una importante cantidad de datos, por alguno de estos tres métodos71:

- Realizar una calibración y modelar al sistema de detección mediante la determinación de

funciones -spline que se usan para interpolar posiciones considerando que la señal

depende fundamentalmente de la distancia a los detectores.

- El uso del método de Monte Carlo para simular la característica estocástica de la

desintegración del trazador131 a fin de estimar la respuesta del sistema de detección en

base a un modelo154 que considera que la señal depende del ángulo sólido subtendido

entre el trazador y cada detector, de la atenuación media del sistema, la potencia emisiva

del trazador y la eficiencia de los detectores.

- El entrenamiento de una red neuronal que asocia una posición espacial a cada conjunto de

señales simultáneas acusadas por cada detector132. Este último procedimiento requiere de

alguna parte de los anteriores (calibración o simulación) a fin de disponer de la información

necesaria para alimentar la red.

Estos métodos de reconstrucción involucran el empleo de algún procedimiento de optimización y

búsqueda que permita encontrar la mejor posición que ajusta la señal predicha con la señal

medida3.

La necesidad del procedimiento de optimización para encontrar la posición más probable del

trazador implica el requerimiento de una etapa de calibración, que consiste en disponer el trazador

en posiciones conocidas dentro del volumen de control a estudiar y el registro de la señal del

conjunto de detectores para cada posición3. La precisión de la reconstrucción de las trayectorias

por el método RPT depende entonces de la precisión del instrumental de detección y de la

precisión con la que se mida la posición espacial de los puntos de calibración.

La tecnología actual permite obtener resoluciones espaciales del orden del milímetro y temporales

del orden de los 100 Hz y se puede medir continuamente, lo que permite la obtención de

trayectorias de partículas muy extensas, de horas o hasta de días. Las mismas son de utilidad

para el análisis de la dinámica de las fases condensadas presentes en un equipo multifásico. A

partir de una trayectoria, suponiendo ergodicidad, se puede obtener el campo de velocidades

promediado en el tiempo y, de ello, información útil para el diseño de un reactor (distribución de

contenido de fases, energía cinética de turbulencia, esfuerzos de corte, tiempos de residencia y

mezclado macroscópico, velocidades de fluidización y recirculación)71,104,129,133. Los resultados

obtenidos son confiables siempre y cuando se construya el trazador adecuado que imite las

Page 35: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

26

propiedades (densidad, mojabilidad, resistencia mecánica) de la fase que se desea monitorear3,

además de requerir de un protocolo previo de calibración, que describiremos en las secciones

siguientes.

Figura 2.20: Esquema típico de RPT (izquierda) e información que puede obtenerse de

esta técnica (centro-derecha).

En la Figura 2.21 se muestra un mapa axial-radial de esfuerzos de corte en un reactor tipo airlift,

determinado a partir del análisis de trayectorias obtenidas por RPT.

Figura 2.21: Visualización de campos escalares, promediados en la dirección tangencial y en el tiempo, de los esfuerzos de corte en la dirección radial-axial en un reactor tipo airlift

(ug = 0,01 m/s)134.

Page 36: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

27

La técnica de RPT se ha empleado para la caracterización del movimiento de sólidos en diversos

equipos multifásicos. Se utilizó para el estudio de fluidizado gas-sólido135,136,137,138,139 y para

reactores fluidizados líquido-sólido y trifásicos7,140,141. En todos estos casos, la fase trazada es

sólida y se reportaron numerosas características de estos equipos, algunas de las cuales se

presentan y discuten en el capítulo 5. Además se ha utilizado RPT para estudiar el movimiento del

líquido en columnas de burbujeo126,142 tomando recaudos en la preparación del trazador a fin de

que tenga la misma densidad del líquido (neutrally buoyant particle).

Se discute respecto de la capacidad de la técnica para obtener información apropiada del

movimiento del líquido dado que es muy complicado lograr un trazador emisor que tenga las

”r“”iedades de ‘as ‘‘a’adas seeding ”artic‘es 143, que se utilizan para estudiar el movimiento de

fluidos por métodos ópticos (PIV). Está generalmente aceptado que es más importante que el

trazador tenga igual densidad que la fase trazada a que tenga igual tamaño143.

Asimismo, Mostoufi y Chaouki144 mostraron que en un reactor gas-sólido los resultados de RPT no

se modificaron fuertemente al emplear trazadores de distinto tamaño. La información que se

pierde por el tamaño del trazador es la que corresponde a torbellinos de tamaño menor al de la

partícula, que afecta los resultados de turbulencia. Sin embargo, dado que es una de las únicas

técnicas aplicables a equipos de gran envergadura (escala piloto o industrial) y en condiciones de

operación que corresponden a regímenes altamente turbulentos, la técnica se emplea para

determinar el movimiento de líquidos en estas condiciones; se ha empleado también para estudiar

el movimiento de sólidos en reactores tipo slurry agitados145 y para el estudio de mezcladores de

partículas146.

Cabe mencionar que muchos métodos actuales de diseño y escalado de equipos multifásicos se

basan en simular la compleja fluidodinámica que caracteriza a estos equipos mediante códigos de

CFD, los resultados proveen información relevante para proponer ecuaciones de clausura para los

mismos y eventualmente su validación en casos particulares. Como uno de los ejemplos más

recientes147, en la Figura 2.22 se muestra la comparación entre perfiles radiales de velocidades

axiales y radiales determinadas por Laser Doppler Anemometry, CFD Reynolds Averaged Navier

Stokes (RANS) basado en dos modelos de turbulencia148 (k/ estándar y k/ Reynolds

Normalization Group149) y RPT para un tanque agitado con una turbina tipo Rushton a una altura

normalizada de 0,39.

Aparte de su mayor costo, la resolución temporal de la técnica de PEPT es relativamente más

baja (típicamente 40-60 ms) con respecto a la que se puede lograr con RPT, además en PEPT la

energía cinética con la que sale el positrón hace casi imposible su aniquilación con la nube

electrónica correspondiente al núcleo emisor, limitándola a resoluciones mayores a 1mm. Esto

significa que las velocidades rápidas, por ejemplo las que se dan en la proximidad de una turbina

Page 37: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

28

Rushton o en las inmediaciones de burbujas de ascenso rápido, son a menudo significativamente

menores que los valores reportados en la literatura en hasta un 50%147. Ademas, PEPT no es muy

eficiente para la reconstrucción de posiciones de las partículas de trazador cerca del borde del

sistema. Es por ésto que la técnica RPT representa una gran promesa para la investigación de los

flujos turbulentos y las características del mezclado de equipos multifásicos, y para evaluar la

adecuación de los modelos numéricos de escala industrial.

Figura 2.22: Perfil de velocidades axiales (izquierda) y radiales (derecha), normalizadas por la velocidad de agitación y a una determinada altura, estimadas para un tanque

agitado a partir de LDA ( ), CFD- k/ estándar (-),CFD-RNG (- -) y RPT (o).

Page 38: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

29

“It is a really quite simple game, we just work by analogy. The only real complication is notation

and one slight twist of signs.” Richard Feynman: Lectures of Physics150.

3. Desarrollo experimental

En este capítulo se describen en primer lugar las principales técnicas y procedimientos

experimentales utilizados en el estudio de los sistemas multifásicos examinados.

Posteriormente se presentan los esquemas y características de las maquetas de escala

banco-piloto empleadas, incluyéndose detalles específicos que se tuvieron en cuenta en

cada caso.

3.1. Técnica de tomografía de emisión de una única partícula radiactiva

(Radioactive Particle Tracking – RPT)

El método de seguimiento de una partícula radiactiva única (Radioactive Particle Tracking - RPT)

consiste en contabilizar simultáneamente la cantidad de rayos que llegan desde un trazador

sólido en movimiento a un conjunto de detectores de radiación de alta energía ubicados

estratégicamente alrededor del equipo en estudio.

El número de fotones que alcanza a interactuar con cada detector es proporcional al ángulo sólido

subtendido por el detector a la fuente radiactiva utilizada como trazador, que a su vez depende de

la distancia trazador-detector. Por lo tanto, la detección simultánea de radiación con un conjunto

de detectores dispuestos alrededor de la columna permite determinar la posición media del

trazador en cada intervalo (o período) de medición.

3.1.1. Elección de radiotrazadores

La técnica RPT tiene como objetivo detectar la posición de una fuente radiactiva de forma tal que

el medio interpuesto entre ella y los detectores influya lo mínimo posible, lo cual orienta la

búsqueda de radioisótopos a emisores de alta energía (E > 0,4MeV). Cuanto mayor es la

energía de los fotones emitidos, la sensibilidad del método es mayor porque la trayectoria de

dichos fotones se ve menos afectada por el medio que atraviesa dependiendo fundamentalmente

de la distancia trazador-detector. Sin embargo la energía de la radiación no debe ser

excesivamente alta (menor a 1,7 MeV) ya que la eficiencia de detección disminuye rápidamente

con la energía de la radiación. Se establece entonces una relación de compromiso entre reducir la

Page 39: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

30

sensibilidad a la fluctuación de densidad del medio y la construcción de un sistema de detección

compacto que pueda contabilizar fotones gamma con mínima pérdida de eventos.

La técnica RPT se basa en considerar un patrón de emisión isótropo. Todo tipo de decaimiento

radiactivo provee una emisión de esas características, aunque existen limitaciones en cuanto a

la forma de producción del radioisótopo; en la actualidad, básicamente son 3 métodos: a) reacción

nuclear producida por un haz de iones en un acelerador, b) fisión nuclear y c) bombardeo

neutrónico en un reactor nuclear. Sin embargo, debido a costos, seguridad radiológica, cantidad

de radioisótopo producido y separación isotópica, el único medio práctico es el bombardeo

neutrónico. Los trazadores así obtenidos son ricos en neutrones y decaen por emisión . Dicho

mecanismo de emisión es característico de núcleos ricos en neutrones con respecto a sus pares

estables. Los emisores pueden obtenerse a partir de bombardeo neutrónico en un reactor nuclear,

como el RA1 de la Comisión Nacional de Energía Atómica (sede Constituyentes).

El hecho de que la síntesis del radionucleído para el trazador implique la utilización de bombardeo

neutrónico restringe los núcleos a partir de los cuales se puede obtener material radiactivo de las

características anteriormente descriptas. Por un lado se requiere que el isótopo abundante posea

una gran sección eficaz de captura neutrónica, , y por otro es necesario que el radionucleído

obtenido posea una vida media adecuada. En la Tabla 3.1 se muestran radionucleídos utilizados

como trazadores en RPT. En general, un trazador de RPT debe cumplir los siguientes requisitos:

- Ser insoluble en los fluidos a estudiar; debe ser sólido o estar debidamente encapsulado de

manera de constituir una partícula puntual, hipótesis fundamental de la metodología.

- Poseer una vida media lo suficientemente larga como para realizar los experimentos, además

es conveniente que no sea demasiado larga para que alcance un estado estable rápidamente

luego de ser usado, por cuestiones de seguridad radiológica.

Nucleído Preparación (barn) Vida media Núcleo hijo E (MeV) 24Na 23Na(n,)24Na 0.53 15.0 h 24Mg 1.369 y 2.754 46Sc 45Sc(n,)46Sc 27 83.8 d 46Ti 0.889 y 1.121 60Co 59Co(n,)60Co 37 5.27 a 60Ni 1.173 y 1.333 99Mo 98Mo(n,)99Mo 0.13 2.8 d 99Tc 0.740 198Au 197Au(n,)198Au 98.7 2.7 d 198Hg 0.412

Tabla 3.1: Radionucleídos de potencial aplicación en RPT151.

En este trabajo se emplearon, como precursores de trazadores, sales de sodio (que pueden

utilizarse con gran seguridad en medios gaseosos o líquidos no polares) u oro metálico que, por

poseer una gran sección eficaz para la captura de neutrones, se puede emplear en muy pequeñas

cantidades (del orden de los microgramos). El 198Au decae, por emisión de una partícula y un

antineutrino (Ecuación 3.1), a 198Hg (excitado, en la Figura 3.1 se muestra su esquema de niveles

Page 40: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

31

poblados por decaimiento ) que, a su vez, emite un fotón en forma isótropa. En el caso del 24Na, el emisor de los fotones es el 24Mg, también producto del decaimiento .

Au + n Capturaneutrónica→ Au Decaimientobeta −→ Hg∗↓Hg + γ + e− +

Ecuación 3.1: Procesos intervienentes en la activación y decaimiento del 198Au.

Figura 3.1: Esquema de niveles del 198Hg poblados por decaimiento - de 198Au.

3.1.2. Instrumentación para la detección de radiación en RPT

El objetivo de la técnica RPT es detectar la posición de un trazador radiactivo sólido en constante

movimiento. En consecuencia, es necesario que el detector pueda hacer conteos de fotones

rápidamente porque la frecuencia de muestreo es alta. En el caso de la presente tesis se trabajó

con intervalos (o períodos) de muestreo de 10 ó 30 ms.

La radiación , producto del decaimiento de núcleos atómicos excitados se puede detectar de

distintas formas, mediante una variedad de materiales, en función de lo que se necesite saber de

esa radiación. En el caso de RPT, es crucial adquirir los recuentos de fotones con alta eficiencia,

es decir, minimizando pérdidas de fotones en el sistema de detección. Típicamente, en el contexto

de RPT, los detectores traducen los fotones a un pulso de corriente proporcional a la energía

que transfiere el fotón a la zona de detección. Se dice que se opera el sistema de detección en

’“d“ de ”u‘s“s 152.

Page 41: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

32

3.1.2.1. Detectores

Los detectores aptos para realizar la experiencia de RPT deben, en primer lugar, poseer

eficiencias elevadas para fotones de alta energía. Además, deben traducir rápidamente los

fotones detectados en una señal que pueda ser leída por un sistema de adquisición, es decir se

requieren detectores de respuesta rápida, a fin de evitar apilamiento (y consecuente pérdida) de

eventos. También es deseable que se presenten en tamaños adecuados para poder ensamblar un

arreglo alrededor del sistema en estudio, que sean fáciles de operar y que además sean robustos

eléctrica y mecánicamente. Los detectores que cumplen, en principio, con estas condiciones son

los centelladores y los semiconductores.

En la Figura 3.2 se presenta una comparación de la resolución de dos detectores, uno de

germanio (Ge) hiperpuro (semiconductor) y uno de cristal de centelleo de ioduro de sodio dopado

con talio, NaI(Tl). Ambos tipos de detectores son adecuados para trabajar en el rango de 400 –

1700 keV de energía.

Figura 3.2: Espectro de energía de una fuente de 60Co medido con un detector de centelleo de NaI(Tl) y un semiconductor de Ge hiperpuro.

Para obtener buenas relaciones señal ruido, los detectores de centelleo son acoplados a tubos

fotomultiplicadores de ganancias de hasta 109 mientras que los detectores de tipo semiconductor

son refrigerados a bajas temperaturas (T -200ºC) para minimizar el ruido térmico.

Las ventajas de los detectores centelladores frente a los semiconductores, para RPT, son: a)

menores tiempos de respuesta (menor pérdida de fotones); b) menores tiempos de puesta a

punto; c) trabajan a temperatura ambiente; d) mayor eficiencia; e) menores costos (hasta 30

veces menores); f) menor fragilidad y g) menor tamaño. La desventaja es la menor resolución en

energía. Es importante que el fotopico pueda ser separado fácilmente del fondo Compton, ésto

nos restringe a detectores de menos del 10% de resolución en energía. Como no es necesaria

Page 42: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

33

una elevada resolución en energía, y por ser más económicos y de operación más sencilla, la

elección del tipo de detector recae sobre los detectores de centelleo, que consisten en un cristal

que emite luz de fluorescencia UV-visible al recibir radiación . En la Tabla 3.2 se detallan

características y costos de los detectores de centelleo (de 2 x2 ) más utilizados.

Material del cristal centellador Resolución energética (%) C“st“ (€) NaI (Tl) 6 800 LaBr3 3 10000 BaF2 10 1200

Tabla 3.2: Resoluciones y costos de los centelladores más utilizados.

Debido a su bajo costo y su adecuada eficiencia para los objetivos de RPT, los detectores

seleccionados para realizar estas experiencias fueron de NaI(Tl), que tiene un tiempo

característico de fluorescencia de 230 ns además de tener un gran rendimiento en fotones (38

fotones UV/keV de radiación , el mayor de los centelladores comunes). En la Figura 3.3 se

esquematiza el mecanismo de respuesta de un cristal de centelleo de NaI(Tl).

Bandaprohibida

Banda de conducción

Banda de valencia

Estados excitados del activador

Estado basal del activador

Fotón de centelleo

Figura 3.3: Mecanismo de fluorescencia del centro del detector de centelleo de NaI(Tl). Se llama activador al elemento Talio que se usó para dopar al NaI.

Un detector centellador como los utilizados (Figura 3.4) consta de un cristal de centelleo de NaI(Tl)

de f“r’a ci‘índrica (en nuestr“ cas“ crista‘es de 2 de ‘“ngitud x 2 de diá’etr“) as“ciad“ a un

fotomultiplicador que traduce los fotones UV provenientes de la interacción de los fotones con el

cristal a un pulso de corriente cuya integral es proporcional a la energía depositada por el fotón interactuante. Cada fotomultiplicador se alimenta con fuentes de tensión del orden de los 1000V.

Puede acoplarse a un preamplificador (opcional, en esta tesis no se han usado preamplificadores).

Figura 3.4: Estructura interna de un detector de centelleo acoplado a un tubo fotomultiplicador y preamplificador.

Page 43: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

34

3.1.2.2. Sistema de adquisición de datos

Como se mencionó anteriormente, se necesita un detector de rápida respuesta a fin de

contabilizar fotones con baja pérdida por apilamiento y, en principio, no es necesario saber la

energía exacta del fotón incidente sino sólo el número de fotones cuyo pulso de corriente supera

un umbral debidamente configurado de manera tal de capturar el fotopico (Figura 3.5).

Los pulsos de salida de los detectores son tomados por un sistema de tratamiento de señales y de

adquisición de datos (Figura 3.6) compuesto por amplificadores rápidos, discriminadores de

señales (que básicamente disciernen entre pulsos de corriente correspondientes a los fotones de

la energía esperada y las señales producidas por el denominado fondo Compton), acumuladores

de conteo de fotones (escalímetros), un reloj de alta precisión que determina el tiempo real de

cada período de muestreo de fotones y un conversor analógico-digital (ADC) responsable de la

habilitación del envío de señales registradas a la computadora al finalizar cada período de

muestreo (determinada desde un generador de señales).

La señal proveniente de cada detector pasa a través de un amplificador rápido, de menor

resolución energética que un amplificador espectroscópico, pero respuesta mucho más rápida.

A continuación se utiliza un filtro de energía a fin de considerar la cobertura completa del fotopico.

Esto se logra a través del módulo discriminador, que establece un umbral que permite eliminar

señales provenientes principalmente de la interacción, por efecto Compton, del fotón incidente con

el material del detector.

Figura 3.5: Espectro de energías de 198Au medido con cristal de centelleo de NaI(Tl).

Page 44: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

35

Figura 3.6: Disposición real de la electrónica asociada al sistema de detección.

Los módulos para el tratamiento de señales se montan en bastidores (crates) NIM (Nuclear

Instrumentation Measurement). El mencionado módulo discriminador, montado en el crate NIM1

(Figura 3.7), entrega a su salida una señal lógica cada vez que la señal del amplificador rápido

supera el umbral de interés fijado previamente.

Figura 3.7: Traducción de las señales provenientes del detector a contaje . Cada señal lógica, correspondiente a un pulso de corriente proveniente del detector que supera el

umbral prefijado en el discriminador, es acumulada en un módulo denominado escalímetro (scaler)

durante un intervalo (o período) de tiempo prefijado independientemente por un generador de

funciones y medida por un reloj contador regresivo de 216 pulsos con una frecuencia de

Page 45: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

36

aproximadamente 262 kHz lo cual significa que la precisión de la medida del tiempo real de

adquisición en cada período de muestreo es de 3,81 s.

En paralelo a la acumulación de conteos de fotones situado en el NIM1, en otro bastidor (NIM2,

Figura 3.8) se genera independientemente la ventana correspondiente al período de muestreo, a

partir del envío de pulsos (con forma similar a la obtenida a la salida de un detector y con un

período igual al valor nominal del intervalo de muestreo ajustado con una precisión de 1 ns) desde

un generador de funciones a un amplificador espectroscópico, que genera dos señales con la

misma frecuencia de entrada. Una de las dos señales es lógica e indica que ha llegado un pulso a

la entrada del amplificador. Esta señal lógica es a continuación tratada en un generador de

ventanas y retras“s Gate and De‘ay Generat“r (GDG), de manera tal que pueda ser aceptada

por una de las entradas del ADC, eliminando pérdidas por error de comunicación. La otra señal es

analógica, siendo su voltaje fijado arbitrariamente a un valor medio del período de aceptación del

ADC, alrededor de 5V. Las dos señales (la lógica y analógica) llegan al ADC en coincidencia

temporal y con la frecuencia de muestreo.

Figura 3.8: Generación de período de muestreo.

Cada vez que llegan las dos señales en coincidencia temporal desde el NIM2 al ADC, se marca el

fin de un período de tiempo de adquisición al activarse una alerta, denominada LAM (Look At Me),

que habilita la lectura de todas las señales contabilizadas por cada escalímetro, asociado a cada

detector, y los tiempos reales de adquisición determinados por el reloj contador regresivo; esa

información es transmitida desde el bus CAMAC (Computer Automated Measurement and Control)

a un almacenamiento de memoria (buffer) con interfase a una PC. En el mismo crate CAMAC se

encuentra una placa controladora que actúa como interfaz a una PC. La Figura 3.9 ilustra el flujo

de señales desde el detector hasta que se guarda en la memoria de una computadora.

Luego de adquirir los contajes de cada detector, la placa controladora reinicia los escalímetros y

se habilitan para un nuevo conteo de fotones . La batería de escalímetros + reloj contador

regresivo + ADC + placa controladora están montados en un crate CAMAC, que posee zócalos de

norma dedicada que administra la energía necesaria para el funcionamiento estable de dichos

Page 46: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

37

circuitos además de brindar la posibilidad de ser programados desde una computadora. El

resultado de esta serie de transducciones de señal es la cantidad de fotones que interactúan con

cada detector en un período de tiempo determinado con un error de aproximadamente 4 s.

Luego de la adquisición de datos, se hace una corrección por decaimiento normalizando todos los

conteos al tiempo inicial para que sean comparables entre sí. Así finalmente se obtienen los datos

crudos de número de fotones efectivos por cada período de tiempo real de adquisición medidos

en cada detector simultáneamente.

Fig

ura

3.9:

Dia

gram

a de

fluj

o qu

e re

pres

enta

eta

pas

de tr

ansd

ucci

ón d

e se

ñale

s.

Page 47: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

38

3.1.3. Disposición espacial de los detectores y método de reconstrucción de

la trayectoria del trazador

El tipo de información que se obtiene, con el método RPT, depende de la disposición espacial del

arreglo de detectores. En esta tesis se presentan una variante tridimensional (RPT) y otra con los

detectores formando una fila alineada, de donde se obtiene información unidimensional (RPT-1D).

A partir de la trayectoria tridimensional obtenida por RPT se pueden estimar: el campo de

velocidades de la fase medida, parámetros de turbulencia, tiempos de mezcla, etc. Si bien la

trayectoria tridimensional obtenida por RPT posee mucha más información que la unidimensional

reconstruida por RPT-1D, la reconstrucción aproximada de la trayectoria axial del movimiento de

un trazador, utilizando un sistema de detectores alineados verticalmente junto al equipo en

estudio, es suficiente para extraer de manera no invasiva información útil para el diseño y control

de estos equipos.

3.1.3.1. Disposición espacial para reconstrucción en 3D (RPT)

Para estimar la posición del trazador, y su desplazamiento en el espacio 3D, es preciso obtener

información de al menos 3 detectores ubicados alrededor del equipo que registren una relación

señal / ruido no despreciable. Rodeando de detectores en posiciones conocidas al equipo en

estudio se pueden estimar las posiciones más probables del trazador a partir de las señales

medidas simultáneamente por cada detector. En la Figura 3.10 se muestra una buena distribución

para el procedimiento de reconstrucción153, que resulta ser ubicando estratos de detectores

apilados de manera tal que los detectores no se apantallen entre sí y estén ubicados en distintas

posiciones angulares, minimizando la distancia axial entre ellos.

Figura 3.10: Esquema de un montaje para RPT (izquierda). Planteo geométrico para la reconstrucción 3D3 en el caso de uso de detectores de centelleo (derecha).

Page 48: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

39

En nuestro caso, para fijar los detectores alrededor de los equipos disponemos de un andamiaje

basado en piezas encastrables de perfil rectangular. Éste andamiaje es el más sencillo de

construir y garantiza la precisión necesaria para la determinación de las coordenadas de los

detectores. Éstos se disponen separados 90º entre sí y en posiciones axiales tales que se forman

estratos de hasta 4 detectores.

El número de fotones por unidad de tiempo que llegan a un detector juega un papel

importantísimo en la correcta detección de la radiación. Cuanto mayor sea este número, tanto

menor será el error estadístico, pero tanto mayor será el tiempo muerto y el apilamiento. Los

trazadores se activan por bombardeo neutrónico hasta una actividad para la cual el tiempo muerto

y el apilamiento pueden ser considerados despreciables, cuando el trazador se encuentra a la

menor distancia posible de cada detector (el peor escenario para estos problemas). Una vez fijada

esta actividad, habrá zonas del equipo para las cuales la sensibilidad de uno o más detectores

será baja debido al bajo contaje y al correspondiente alto error estadístico (el contaje es

proporcional al ángulo sólido que presenta el detector al trazador). Por lo tanto, es importante

trabajar con un gran número de detectores alrededor del equipo para tener alta sensibilidad en

todas las regiones donde se pueda encontrar el trazador.

Para lograr la reconstrucción de la trayectoria del trazador, se requiere estimar cuál sería el

conjunto de señales registradas por los detectores cuando el trazador se encuentra en distintas

posiciones del equipo. La reconstrucción de la trayectoria del trazador se realiza a partir del

conocimiento del contaje esperado en cada detector cuando la fuente radiactiva se ubica en las

diferentes ”“sici“nes de‘ react“r. Est“ es, debe’“s c“ntar c“n un dicci“nari“ que as“cie cada

posición del trazador con un conjunto de contajes en los detectores.

Dich“ dicci“nari“ se c“nstruye c“n“ciend“ ‘a ge“’etría de‘ react“r-siste’a de detección , ‘a

actividad de la fuente radiactiva, el coeficiente de atenuación lineal del medio, la eficiencia

absoluta de cada detector y otros parámetros, para cada posición del trazador. El proceso total es

el siguiente:

El número de fotones (C) detectados por un detector a partir de una fuente emisora de radiación

(ecuación 3.2)154 depende del tiempo de muestreo (T), de la actividad de la fuente (A), del número

de fotones emitidos por cada desintegración (), de la eficiencia absoluta de detección (), de la

eficiencia del detector en el fotopico () y del tiempo muerto (). La eficiencia depende del ángulo

sólido subtendido entre la fuente y el cristal del detector (ver Figura 3.10), de los coeficientes de

atenuación lineales del medio dentro del reactor, R, de sus paredes, W y del detector, D, como

así también de la geometría del detector y del espesor de las paredes del reactor. R, W, D son

las distancias atravesadas por el fotón en el reactor, la pared del reactor y el detector,

respectivamente.

Page 49: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

40

tectordedelerficie

dSneer

rdonde

A

ATCfotonesdeCuentas

DDWWRR

sup

)(3

ˆ)·1·(ˆ

1

Ecuación 3.2: Número de fotones detectados en función de la posición relativa de la

fuente al cristal del detector.

A fin de resolver el sistema de ecuaciones expresado en la Ecuación 3.2 (una ecuación para cada

detector), el modelo presenta, para cada detector, 3 parámetros a ajustar: R, el coeficiente de

atenuación medio del sistema multifásico que se interpone entre el trazador y el detector, , el

tiempo muerto del detector y A, la intensidad efectiva (en términos de fotones que interactúan

con los detectores mediante efecto fotoeléctrico) de la fuente. El cálculo de las eficiencias

absolutas de los detectores es en particular complejo y se realiza por el método de Monte Carlo.

Para realizar el ajuste de los parámetros involucrados deben realizarse, además diversas

mediciones previas.

A fin de maximizar la precisión de la reconstrucción, en primer lugar, se debe minimizar el

apilamiento de fotones tanto en el sistema de adquisición de datos como por regulación de la

actividad de la fuente y en segundo lugar, se deben conocer con exactitud las posiciones de los

detectores y del trazador en una calibración previa, que consiste en ubicar la fuente en posiciones

predeterminadas dentro del equipo y medir la respuesta típica de los detectores. La calibración se

realiza en las mismas condiciones de operación en la que se lleva a cabo el experimento, a fin de

poder asociar adecuadamente variaciones entre perfiles de señales y posición espacial. En la

Figura 3.11 se muestra el número de cuentas registrado por cada detector cuando el trazador se

ubica en distintas posiciones de calibración. Cuanto mayor sea el número de detectores del

arreglo, mejor es la resolución del método.

Una vez ajustados los parámetros del modelo para cada detector, se calcula una base de datos de

correspondencia entre posiciones dentro del reactor y distribución de señales, denominado

diccionario. Cabe mencionar que el diccionario depende sensiblemente de la disposición de los

detectores alrededor del sistema en estudio, por lo que es fundamental que los experimentos se

hagan manteniendo la disposición espacial de los detectores utilizada para la calibración.

Page 50: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

41

Figura 3.11: Señales simultáneas registradas por 15 detectores dispuestos alrededor del

equipo cuando el trazador se ubica en distintas posiciones durante una calibración de

experimentos de RPT.

Durante el experimento propiamente dicho, el trazador se mueve libremente dentro del equipo,

registrándose el número de fotones que descargan su energía en cada uno de los detectores

durante un tiempo de muestreo determinado (Figura 3.12). Comparando las señales medidas a

cada tiempo por el conjunto de detectores con la información del diccionario, cada posición más

probable se estima como aquella que minimiza una función objetivo, calculada como la suma de

errores relativos de las señales medidas por los detectores respecto de las estimadas.

Page 51: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

42

Figura 3.12: Cuentas registradas por cada detector con tiempos de muestreo de 30ms. Se muestra un intervalo de 3s.

A ”artir de ‘a rec“nstrucción, ent“nces, se “btiene c“’“ resu‘tad“ una ”“sición ’ás ”r“bab‘e

dado que en la reconstrucción se supone que el trazador permanece en una posición fija durante

todo el período de muestreo. Por este motivo, el tiempo de muestreo debe ser corto. La tecnología

actual permite efectuar mediciones con una resolución temporal de hasta 10ms y entre 1-5mm de

resolución espacial. En la Figura 3.13 se ilustran las proyecciones en el plano transversal y la

variación temporal de la coordenada axial de una porción de 3s de trayectoria. En la Figura 3.14

se muestra la misma porción de trayectoria en 3 dimensiones.

Figura 3.13: Proyección de la trayectoria obtenida por RPT 3D en el plano XY (izq.) y en el eje Z (der.), a partir de las señales de la Figura 3.12.

Page 52: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

43

Figura 3.14: Trayectoria obtenida por RPT mediante reconstrucción de los datos de la Figura 3.12.

3.1.3.2. Disposición espacial alineada para reconstrucción en 1D (RPT1D)

La metodología propuesta en esta sección requiere un arreglo de detectores de centelleo alineados

verticalmente junto al equipo que se analiza. Al igual que en RPT, los detectores registran en forma

simultánea la intensidad de radiación emitida por la partícula trazadora que representa al líquido o al

sólido en suspensión.

A partir de las series temporales obtenidas por el sistema de detección, se determina solamente la

componente axial de la trayectoria del trazador (en adelante trayectoria axial) considerando que el

conteo de fotones es fuertemente dependiente de la distancia entre el trazador y el detector. La

dependencia de la intensidad de la señal (el número de cuentas que registran los detectores) con

la distancia del trazador al detector es una función mono modal cuyo pico es muy pronunciado.

Page 53: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

44

La Figura 3.15 ilustra un esquema del sistema utilizado.

Figura 3.15: Esquema del montaje experimental de RPT-1D, también denominado RPT-AAD.

Dada la geometría del equipo y la localización de los detectores, si el período de muestreo es

suficientemente corto, aquel que se encuentra más próximo al trazador registrará un mayor conteo

de fotones. El procedimiento de reconstrucción asigna al trazador la posición axial del centro del

detector que acusa la máxima señal y, si dos detectores comparten el mismo orden de magnitud

de señal (con un 25% de tolerancia), se asigna a la partícula una posición axial ubicada

equidistante de las coordenadas axiales de los centros de dichos detectores. Este procedimiento

de reconstrucción brinda 2N-1 posiciones posibles (donde N es el número de detectores del que

consta el arreglo).

En la Figura 3.16 se ilustra la respuesta de 8 detectores alineados estimada por simulación

considerando el modelo expresado en la Ecuación 3.2, suponiendo valores típicos de los

parámetros ajustados en las experiencias de RPT.

Figura 3.16: Simulación del número de cuentas registradas por 8 detectores alineados. Se encuentran superpuestas señales del trazador encontrándose en 81000 posiciones dentro

de la columna. En negro se indica la posición axial de cada cristal detector.

Page 54: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

45

La Figura 3.17 muestra boxplots de la distribución de señales obtenidas por detectores alineados

cuando el trazador está en movimiento, mostrando que la hipótesis de base para RPT-1D se

mantiene válida en una condición experimental normal.

Figura 3.17: Distribución de señales obtenidas simultáneamente en cada detector cuando

se estima la posición del trazador a distintas alturas.

En las Figuras 3.18 y 3.19 se ilustra, respectivamente, la información medida y la trayectoria axial

del trazador, reconstruida mediante el método RPT-1D.

Figura 3.18: Serie temporal de conteo de fotones simultáneos en cada detector

obtenidas con el método RPT-1D.

Page 55: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

46

Figura 3.19: Trayectoria del trazador reconstruida por RPT-1D a partir de las señales

mostradas en la Figura 3.18.

Dado que no se requiere una etapa de calibración, el método de reconstrucción de la trayectoria

axial obtenido por RPT1D es más sencillo algorítmicamente (10 líneas de código fuente de RPT1D

vs. 500 líneas que a su vez invocan sub-rutinas que deben repetirse varias veces hasta optimizar

funciones objetivo para RPT1D), siendo varios órdenes de magnitud más rápido. Además, dado

que no requiere intervenir el equipo a examinar es más factible de ser implementado para

monitoreo y diagnóstico en tiempo real de la operación de un equipo industrial.

3.2. Densitometría como técnica complementaria de RPT

La densitometría es un procedimiento experimental que permite la determinación de

proporciones volumétricas de las fases presentes en sistemas multifásicos. Se requiere saber la

intensidad de un haz de rayos , de energía conocida, que atraviesa un sistema de composición a

determinar, y compararla con la intensidad de un haz de referencia.

A diferencia de los radionucleídos utilizados en RPT, la fuente de radiación necesaria para esta

experiencia debe ser atenuable; es decir, de una energía no demasiado elevada (del orden de

decenas de keV) para que los fotones del haz interactúen con cierta probabilidad con el medio que

atraviesan, brindando información sobre él. Los coeficientes de atenuación dependen de la

energía; los coeficientes generalmente decrecen porque decrece la probabilidad de interacción

con la materia a medida que la energía del fotón aumenta. Además, dichos coeficientes pueden

variar en forma diferente para las distintas fases presentes, lo cual contribuye a la detección

cuantitativa de la fracción volumétrica de cada fase.

La radiación proveniente de la fuente radiactiva interactúa con la materia dentro del equipo,

básicamente por efecto fotoeléctrico (se absorbe toda la energía del fotón) o efecto Compton (se

absorbe parte de la energía)155. Dado que se usan fotones de algunas decenas de keV no se

presenta la formación de pares electrón-positrón. De esta forma, la actividad de la fuente medida

es menor a la que se mediría en vacío. La porción de fotones absorbidos depende de los

Page 56: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

47

coeficientes de atenuación lineal de las sustancias que componen el medio y del camino recorrido

en cada una de ellas.

La variación en la atenuación del haz depende de la proporción de fases (hold up) para un paso

óptico de un largo determinado. Cabe señalar que, al usar radiación , no se observan efectos de

refracción como en la fotometría UV-visible. Luego, en principio, no es necesario que las fases

estén separadas. El razonamiento es enteramente análogo al de una espectrofotometría UV-

visible, donde la atenuación es mayormente proporcional a la densidad y, en menor medida, a la

composición del medio que se atraviesa.

La intensidad transmitida, I, es función de la intensidad emitida por la fuente, de los coeficientes

de atenuación y de los pasos ópticos de cada una de las fases presentes. Se los puede relacionar

según la Ecuación 3.3, donde Li es la proporción de paso óptico que corresponde a la fase i, i es

el coeficiente de atenuación, que depende de la identidad de la fase i y de la energía del fotón, Iref

es la intensidad de referencia; en general, el haz incidente.

fases#

1iio

i

fases#

1iref

LL

L·)II

ln(

Ecuación 3.3: Sistema de ecuaciones que relaciona las señales de fotometría de rayos con la proporción de las distintas fases del sistema en el paso de la radiación.

En la Figura 3.20, se esquematiza el procedimiento de las experiencias. Se muestra la disposición

del detector, de la fuente y del sistema multifásico cuyas fracciones volumétricas se desean

determinar.

Figura 3.20: Esquema del método de densitometría. La radiación debe ser colimada.

Page 57: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

48

Para obtener la distribución axial de fracciones volumétricas de gas se puede efectuar la

densitometría con el mismo arreglo experimental implementado en la técnica RPT-1D empleando

una fuente externa. Se utiliza como fuente una pastilla radiactiva de 241Am de 2 mCi de actividad,

soportada sobre una placa de metal, además de estar sellada y colimada en un vial de plomo. Es

una fuente de rayos atenuab‘es (<100 keV de energía), que ”resenta varias ‘“ngitudes de “nda

características (Figura 3.21), situándose su principal emisión a 60 keV.

Figura 3.21: Intensidad de señal (en cuentas/5min) en función de la energía de los rayos emitidos por una fuente de americio 241.

En un sistema bifásico (ej: columna de burbujeo gas-líquido), con una sola fuente monoenergética

es suficiente para obtener las fracciones volumétricas de gas y líquido. En general, en una

densitometría se requiere de (m-1) fuentes de radiación distintas, donde m es el número de fases

del sistema. En el caso de estudiar sistemas trifásicos gas-líquido-solido con fases condensadas

de coeficientes de atenuación muy similares a 60 keV (ej: carbón, alginato de calcio y agua 0,39;

0,24 y 0,21 cm-1 respectivamente), conociéndose de antemano la relación entre fases

condensadas, se puede utilizar una sola fuente de radiación considerando el mismo coeficiente

de atenuación efectivo para ambas fases condensadas, constituyendo lo que se conoce como

pseudofase.

Dado que la distribución de densidad del sistema es muy fluctuante, y despreciando la atenuación

debida a la fase gas, el contenido de fase condensada se puede obtener determinando la

atenuación media del medio multifásico como se expresa en Ecuación 3.4, en la cual g, L y s

son las fracciones volumétricas de las fases gaseosa, líquida y sólida, respectivamente. El

contenido de fase gas se puede obtener mediante aplicación del balance de materia, resultando la

Ecuación 3.5.

Espectro de emisión de radiación del 241

Am

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80

Energía (keV)

Inte

nsid

ad

(cu

en

tas/5

min

)

Page 58: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

49

ln ( II ) = (−μ · α − μL · αL − μ · α ) · X ≅ −μL · αL − μ · α · X≈ −μ · X · αL + α

Ecuación 3.4: Relación que describe la atenuación de un haz colimado de radiación incidente en un sistema trifásico donde los coeficientes de atenuación de las fases

condensadas son similares.

=> α = ln IILln IIL

Ecuación 3.5: Expresión que relaciona el contenido de fase gas con la señal fotométrica observada, y comparada con una columna llena de agua.

Donde Io e IL son, respectivamente, las intensidades de radiación en las condiciones g = 1

(columna vacía) y L = 1 (columna llena de líquido), representa las atenuaciones de medios de

distinta densidad y X es la longitud recorrida entre la fuente y el detector. Una vez determinada la

fracción volumétrica de pseudofase condensada se puede obtener, por balance de masa, los

contenidos de líquido y sólido si la distribución del contenido de sólidos es conocida, por ejemplo,

a partir de experimentos de RPT. Cabe mencionar que al escribir la Ecuación 3.4 se realiza la

aproximación de asimilar una relación de distancias con una fracción volumétrica; estrictamente el

hold up que se calcula se conoce como hold up a ‘“ ‘arg“ de ‘a cuerda ( ch“rda‘ h“‘d u” ) que

atraviesa el haz de fotones.

3.3. Equipos multifásicos en estudio

Se estudiaron dos tipos de reactores: columnas de burbujeo gas líquido (bifásica) o gas líquido

sólido (trifásica) y tanque agitado trifásico. A continuación, se describen las características de

cada equipo y detalles relacionados con la aplicación de las técnicas presentadas en las

secciones previas de este capítulo.

3.3.1. Columna de burbujeo bifásica (gas-líquido; GL)

Los experimentos han sido llevados a cabo en una columna acrílica de 1,2 m de altura y 0,1 m de

diámetro interno. Con este sistema se realizaron experimentos de RPT-1D, para determinar la

componente axial de la trayectoria del trazador.

La velocidad superficial del aire se varió entre 0,010 y 0,130 m/s. La fase gaseosa ingresa por la

base de la columna a través de un distribuidor tipo plato perforado con entrada lateral desde un

compresor, cuya presión de salida está controlada por un presostato. En la línea de aire se

Page 59: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

50

intercaló un filtro de aceite y de polvo, además de un caudalímetro con válvula reguladora de

caudal tipo aguja (Figura 3.22). El distribuidor está preparado para que puedan circular gas y

líquido, pero en este trabajo se cubrieron los orificios de entrada de líquido dado que se estudió el

equipo en operación batch con circulación continua de aire. En la Figura 3.23 se presenta la

fotografía de la columna utilizada.

Figura 3.22: Distribuidor de gas tipo plato perforado con entrada lateral (izq.). Caudalímetro de gas con válvula reguladora (der.).

Figura 3.23: Columna empleada para los experimentos de RPT1D en sistemas GL.

Page 60: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

51

Los líquidos ensayados fueron agua, glicerina 80% p/v y soluciones acuosas de

carboximetilcelulosa (CMC) en distintas concentraciones (0,5 a 2,0% p/v). Estas últimas presentan

un comportamiento reológico de fluido pseudoplástico. En la Tabla 3. 3 se detallan las

características de los liquidos utilizados. Los trazadores empleados en la columna de burbujeo

gas-líquido representan el movimiento macroscópico del líquido.

Liquido Densidad (kg/m3)(*) k(**) (mPa.sn) n(**)

Agua 1000 1 1

Glicerina 80% v/v 1220 918 1

CMC 0.75% p/v 1008 140 0.88

CMC 1.1% p/v 1011 510 0.77

CMC 1.5% p/v 1016 902 0.74

CMC 2.0% p/v 1021 4122 0.66

Tabla 3. 3: Propiedades reológicas de los líquidos utilizados en la columna GL.

(*) Método: Picnometría. Temperatura ambiente : 20ºC

(**) Método: Viscosímetría de cono y plato. Los parámetros k y n corresponden a la relación de Ostwald-de

Waele: τ = k γ

Los trazadores radiactivos utilizados constan de una esfera hueca de polietileno con una pequeña

pieza de oro, de no más de una decena de microgramos, inserta en su centro. La densidad del

polietileno es menor a la de los líquidos ensayados (~900 kg/m3) y el oro posee una densidad de

16000 kg/m3. La astilla de oro se introduce en un orificio de la bolilla de polietileno y se cubre

luego con un pegamento que gelifica y acaba por encapsular la astilla. Los pesos del polietileno, la

astilla de oro y el pegamento son manipulados de manera tal que la densidad del trazador se

acerque a la densidad de los líquidos ensayados. Para ello, se parte de una partícula de

polietileno relativamente grande que, luego de incorporar la astilla de oro, se pule eliminando parte

del polietileno hasta lograr que la partícula quede a media altura en la solución a estudiar.

Previ“ a ‘a activación, en frí“ , ‘a esfera de ”“‘ieti‘en“ se s“’etió a un trata’ient“ c“n s“‘ución

sulfocrómica, como fue propuesto por Linek et al. (1974)156, de manera tal de incrementar su

mojabilidad. Luego la partícula es activada por bombardeo de neutrones lentos a un flujo

neutrónico 6·1011 cm-2s-1 en el reactor nuclear RA1 de la Comisión Nacional de Energía Atómica

(sede Constituyentes) para dar 198Au hasta actividades del orden de decenas de Ci. Los

detectores registraron simultáneamente series temporales de intensidad de radiación a una

frecuencia de 33 y 100Hz (30 ms y 10 ms de período de muestreo) durante 1h para cada

velocidad del gas.

Complementariamente se llevaron a cabo experiencias de densitometría colocando una fuente

sellada de 241Am de 2mCi sobre la pared externa de la columna y enfrentada a cada uno de los

Page 61: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

52

detectores para así obtener un perfil axial de la distribución de fases.

3.3.2. Columna de burbujeo trifásica (gas-líquido-sólido; GLS)

La misma columna descripta en la sección 3.3.1 es utilizada para ensayos con líquido en batch

con sólidos en suspensión. Los sistemas estudiados fueron agua-alginato de calcio-aire (sistema

GLS1) y agua-carbon activado-aire (sistema GLS2). En ambos casos, la velocidad superficial del

aire que fluidiza se varió entre 0,010 y 0,130 m/s; además se realizaron experiencias de

densitometría con un procedimiento análogo a los sistemas GL, utilizando la distribución de

detectores de RPT-1D y la misma fuente sellada de 241Am. Con el sistema GLS1 se realizaron

experiencias de RPT; para ellas se dispusieron los detectores como se ve en la Figura 3.24, en

estratos de 4 detectores de a pares en las antípodas de ejes perpendiculares.

Figura 3.24: Sistema RPT con el sistema GLS1 en operación.

Page 62: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

53

En el sistema GLS1, la fase condensada es una solución acuosa de CaCl2 0.5M con un 8% p/v de

esferas de alginato de calcio de 5mm de diámetro formadas por goteo de solución de alginato de

sodio 1,5% p/v en una solución de cloruro de calcio 0,5M. El trazador consta de una esfera hueca

de polietileno de alta densidad (PEAD) de 1mm de diámetro que sella una astilla de decenas de

microgramos de oro en su interior. Dicha esfera es recubierta del gel de alginato de calcio para

que alcance el tamaño, densidad e interacciones superficiales que presenta la fase que se desea

estudiar.

Cabe resaltar que el recubrimiento final de trazador debe realizarse en en ca‘iente , ya que e‘ ge‘

de alginato de calcio se puede descomponer en las condiciones en las que se realiza la activación

del oro en el reactor nuclear. La esfera que contiene al oro activado se recubre, en dos etapas, de

un gel de alginato de calcio, generado a partir del intercambio iónico de alginato de sodio 1,5% p/v

y de CaCl2 0,5M. La primera etapa consiste en unir dos mitades de esfera de gel de alginato de

calcio, una de las cuales se forma solidaria al trazador en un molde semiesférico (Paso 1)

mientras la restante se forma in situ en un molde esférico (Paso 2). El fraguado del gel en cada

paso se logra por intercambio iónico con la solución de CaCl2 a través de un punto de contacto

con el que están provistos los moldes. La Figura 3.25 ilustra los pasos de la primera etapa de

recubrimiento del trazador con gel de alginato de calcio.

Figura 3.25: Pasos de la primera etapa de recubrimiento del trazador con gel de alginato

de calcio

En la segunda etapa, como el recubrimiento del trazador no posee forma esférica al extraerlo de la

matriz, resulta necesario recubrirlo una vez más con solución de alginato de sodio por inmersión,

adquiriendo forma esférica como se muestra en la Figura 3.26. Se deja fraguar en solución de

cloruro de calcio 0,5M durante el tiempo suficiente para asemejar su flotabilidad al resto de las

partículas del lecho en términos de densidad final (1020 kg/m3). Las experiencias se realizan

inmediatamente después del armado del trazador.

Page 63: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

54

Figura 3.26: Trazador sellado de 198Au recubierto de gel de alginato de calcio.

Con el sistema GLS 1, aire – agua - alginato de calcio, se realizaron experiencias tanto de RPT-

1D como de RPT en condiciones similares con el fin de validar la información que se extrae del

método simplificado. Para la calibración requerida en RPT, se utiliza el mismo trazador sin el

recubrimiento.

Para estudiar el sistema GLS2 se utilizó una suspensión en agua de carbón activado granular

(dp≈1’’), f‘uidizada ”“r circu‘ación de aire a través de una c“‘u’na de 0,1’ de diá’etr“ y 1,2’

de alto. El volumen de lecho en reposo es el 5% del volumen de agua. Se utilizaron 14 detectores

de NaI(Tl) alineados en la dirección axial, provistos de la electrónica asociada necesaria para

determinar el número de fotones con energías cercanas a la del fotopico de los rayos característicos del radioisótopo trazador, 198Au.

El trazador empleado es la misma esfera de polietileno con oro de los experimentos con el

sistema GLS1 sin el recubrimiento del gel de alginato de calcio, que posee una densidad e

interacciones superficiales similares a las de las partículas que conforman el lecho fluidizado. En

este experimento se utilizaron trazadores con una actividad de aproximadamente 80Ci. Los

detectores registraron simultáneamente series temporales de intensidad de radiación a una

frecuencia de 100Hz durante 1h para cada velocidad del gas. En este caso se realizaron

experimentos de RPT1D.

3.3.3. Reactor tipo tanque agitado

Estas experiencias se orientan al estudio del movimiento de un sólido voluminoso en un reactor

GLS tipo tanque agitado utilizando la técnica de RPT.

Page 64: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

55

Se empleó un reactor de vidrio agitado por una paleta semiaxial de teflón, que gira por la acción

de un motor comandado por un regulador de velocidades. En su interior, el tanque posee

deflectores cuya intención principal es disminuir la altura de los vórtices generados durante la

agitación.

En el reactor se introducen 2.3L de isooctano (densidad: 690 kg/m3 ; viscosidad 0.5 mPa.s) y entre

0 y 17g de un óxido de un metal de transición finamente dividido (densidad: 2200 kg/m3; diámetro

medio de partícula: 80m), siendo así el contenido de sólidos global entre 0 y 7g/L.

El objetivo de las experiencias fue estudiar el movimiento que tendría un agregado voluminoso de

este sólido con distintas velocidades de agitación a una velocidad de burbujeo de nitrógeno fija en

10 mL/min. En consecuencia, el trazador debe representar este agregado, el cual tendrá un

tamaño de partícula sensiblemente mayor y una menor densidad que la densidad del sólido.

El montaje del sistema de detección sobre el reactor se efectuó según los planos presentados en

la Figura 3.27 (vista superior), donde se puede ver claramente los deflectores en los bordes

internos del reactor, y en la Figura 3.28 (vista lateral).

En la Figura 3.29 se muestra la instalación empleada en operación. Las experiencias se realizaron

con circulación de N2 proveniente de un tubo y el efluente se burbujea en N2 líquido (dedo frío)

para evitar enviar iso-octano al ambiente.

Figura 3.27: Esquema de la instalación empleada para los experimentos: vista superior del reactor y de la disposición de los detectores empleados.

Page 65: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

56

Figura 3.28: Esquema de la instalación empleada para los experimentos: vista lateral del reactor y de la disposición de los detectores empleados.

Figura 3.29: Equipo experimental empleado para determinar el movimiento del sólido en

una suspensión líquido-sólido en funcionamiento.

Page 66: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

57

En la Figura 3.30 se muestra el agitador, cuyo diámetro representa 3/4 del diámetro interno del

reactor y que consta de 3 paletas de teflón dispuestas en configuración tipo cuchilla cuadrada con

una inclinación de 30° con respecto al eje vertical y cuyo vástago, de vidrio de 2 cm de diámetro,

está colocado a una distancia de 2 cm del fondo. Las paletas sobresalen 1,5 cm con respecto al

extremo del vástago.

Figura 3.30: Detalle del tipo de agitador utilizado.

Se utilizó como trazador un cristal de cloruro de sodio recubierto por una fina capa de poliacrilato

de metilo para evitar pérdidas por abrasión previamente a la activación por bombardeo de

neutrones a 24NaCl (Figura 3.31). El trazador es insoluble en iso-octano y posee una densidad

similar a los aglomerados de óxidos de metal del sistema.

Figura 3.31: Cristal de cloruro de sodio usado como trazador, luego de la activación por

bombardeo neutrónico.

Page 67: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

58

‘If it is possible to go from any state with P>0 to any other along a path of probability p>0, the

system is ergodic and the strong law of large numbers can be applied’.

Claude Shannon157

4. Procedimientos de análisis de los resultados

En este capítulo, se describen los procedimientos de análisis utilizados para extraer información

relevante para el diseño y control de la operación de equipos multifásicos, a partir de datos

obtenidos por RPT y densitometría . Como hemos visto anteriormente, la tecnología de RPT

permite obtener la trayectoria de un trazador con resoluciones espaciales del orden de 5 mm y

temporales de hasta 10 ms, pudiéndose medir continuamente por tiempos prolongados (varias

horas, incluso días). Es decir, una trayectoria extensa del trazador que posibilita la obtención de

información del movimiento de la fase condensada en estudio en el interior del equipo.

Un conocimiento preciso de la trayectoria de un trazador en el espacio-tiempo permite determinar,

por diferenciación numérica, las velocidades instantáneas en cada lugar por el que se desplaza

dicho trazador. Se puede obtener información local promedio a partir de trayectorias adquiridas

durante un período de tiempo suficiente largo como para disponer de información

estadísticamente significativa en todo el volumen de control.

4.1. Análisis del movimiento de la fase trazada en base a la teoría

estadística de la turbulencia

Uno de los marcos teóricos que se utilizan para extraer información, a partir de las trayectorias

obtenidas por RPT, sobre el movimiento de las fases presentes en un equipo multifásico tiene en

cuenta la teoría estadística de la turbulencia158. Esta teoría considera tanto la aproximación

euleriana como lagrangiana159. En el primer caso, implica la discretización del espacio en parcelas

o vóxeles a fin de establecer cómo varía la velocidad en distintas posiciones. Por otra parte, el

enfoque lagrangiano considera el comportamiento medio de un conjunto de partículas liberadas en

una determinada posición siguiendo sus respectivas trayectorias. Se requiere asumir la hipótesis

de ergodicidad que permite representar las trayectorias de distintas partículas a partir de extractos

de la trayectoria de una única partícula en tiempos diferentes; ésto implica que el promedio de

conjuntos de partículas (ensemble average) es equivalente a un promedio temporal de una larga

trayectoria.

Page 68: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

59

4.1.1. Campos de velocidades

A partir de las trayectorias del trazador pueden calcularse las series temporales de las velocidades

de varias maneras, siendo la más simple la de tomar la diferencia de posiciones sucesivas y

dividirla por el tiempo de muestreo. También puede realizarse un ajuste no lineal de varias

posiciones y luego calcular la derivada de la curva en el punto central. Generalmente, dada la

precisión de la que se dispone, se procede de la forma más sencilla, es decir, calculando

diferencias sucesivas debido a que el tiempo de muestreo es corto y no requiere la imposición de

ningún tipo de función de ajuste. Una vez calculadas las velocidades instantáneas, se puede

determinar el campo de velocidades euleriano imponiendo una discretización que cubra todo el

equipo.

A fin de calcular las velocidades medias en cada posición en las cuales se ha discretizado el

espacio, se asigna la velocidad instantánea al punto medio entre las dos posiciones sucesivas a

partir de las cuales se la calculó. Posteriormente, se promedian todas las velocidades que caen

dentro de una parcela (o voxel) definido como (x ± x; y ± y; z ± z), donde x, y, z son

coordenadas cartesianas y los i se toman del orden del tamaño del trazador, a fin de generar una

discretización que permita un número de eventos significativo en la mayoría de los vóxeles.

A partir del campo de velocidades en 3D se pueden calcular las proyecciones en los planos

horizontal (x-y) y radial-axial (r-z), y/o perfiles en las distintas direcciones; fundamentalmente se

reportan los perfiles axiales y radiales de las distintas componentes de la velocidad promedio.

Para realizar el análisis considerando el enfoque lagrangiano, a partir de una extensa trayectoria

del trazador, que típicamente tiene más de 300000 posiciones sucesivas, se toman extractos de

trayectoria que comienzan a distintos tiempos a partir de puntos dentro de un determinado voxel

determinado (Figura 4.1). Estos extractos representarían trayectorias de distintas partículas que

parten de una misma posición.

Para definir la longitud de los extractos se debe tener en cuenta la velocidad media con la que se

desplaza el trazador en relación al tamaño del voxel, a fin de permitir que recorra una longitud

apreciable desde el punto inicial. Asimismo, conviene evitar la superposición de extractos para

evitar correlación. Generalmente se establece un período de entre 5 y 10s dado que, para las

condiciones de operación examinadas, es un tiempo en el cual el trazador puede haber recorrido

completamente el equipo.

Page 69: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

60

Figura 4.1: Extracto de trayectorias que comienzan en una misma parcela o voxel.

Page 70: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

61

4.1.2. Parámetros de turbulencia

En la sección anterior se estimó la velocidad media de cada parcela como el promedio de las

ve‘“cidades de varias ”artícu‘as que c“’ienzan su trayect“ria en una deter’inada ”arce‘a de‘

espacio o voxel. Se puede utilizar la misma discretización del espacio empleada para la obtención

de los campos de velocidades para calcular otros estimadores estadísticos de relevancia

fluidodinámica a partir del estudio lagrangiano de la población de cada voxel.

La energía cinética de turbulencia y los tensores de deformación promedio de cada voxel se

pueden determinar a partir de la matriz de correlación de las componentes espaciales de las

velocidades. La Ecuación 4.1 ex”resa ‘a identidad de‘ tens“r de def“r’aci“nes ( stress tensor ) y

su adecuación dentro de la teoría estadística de la turbulencia a través de las ecuaciones de

Reynolds158,160 ( Reyn“‘ds stress tens“r ) ”ara describir ‘a turbu‘encia en re‘ación a ‘as

fluctuaciones promedio ′ = − donde ui es la componente i de una velocidad instantánea y

es la velocidad promedio asignada al centro del voxel donde también pertenece ui.

= ( ) / = ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

Ecuación 4.1: Definición del tensor de deformaciones (izq.) y su aproximación desde la

teoría de la turbulencia estadística según Reynolds (der.).

Las componentes ′ ′ son los promedios espaciales del producto de las fluctuaciones de las

proyecciones de la velocidad en las direcciones k y j respectivamente, producto asimilable a la

correlación cruzada entre dos componentes de las velocidades obtenidas de cada ocurrencia de la

trayectoria dentro de un voxel158.

La traza de la matriz, es decir la suma de los componentes de la diagonal, es conocida como la

intensidad de energía cinética de turbulencia y los elementos fuera de la diagonal representan los

esfuerzos de corte en las distintas direcciones de la parcela.

En la Figura 4.2 se muestra la idea del procedimiento para determinar los campos de velocidades

y sus proyecciones en los distintos ejes del espacio así como también los parámetros de

turbulencia, siendo posible obtener todo a partir de los mismos extractos de trayectoria que

atraviesan una determinada parcela.

Page 71: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

62

Figura 4.2: Análisis de velocidades instantáneas en una parcela del espacio que cubre la trayectoria de un trazador.

Page 72: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

63

4.1.3. Varianza y coeficientes de dispersión

El coeficiente de dispersión (D) de un sólido fluidizado y/o de elementos de líquido puede ser

estimado a partir de la relación de Einstein (Ecuación 4.2) para la divergencia de trayectorias de

moléculas161, considerando su equivalencia con un coeficiente de difusión superado el tiempo de

correlación de Lagrange158.

ⅅ = = ∑ (| − |)

Ecuación 4.2: Relación de Einstein como definición del coeficiente de dispersión

Donde es la varianza de las trayectorias con centro en el punto inicial xo al cabo de un

período de tiempo = (t-to), siendo to el tiempo inicial de cada trayectoria. En la Figura 4.3 se

representa la varianza de la proyección axial de las trayectorias en función del tiempo. El

coeficiente de dispersión axial de sólido se determina a partir de la pendiente de la zona del

gráfico de donde se encuentra una relación de tipo lineal. Posteriormente la varianza tiende

a un valor relativamente constante dado que las partículas se mueven dentro de un recinto

acotado. Se debe verificar que el número de trayectorias consideradas sea significativo para

garantizar confianza en la determinación de la varianza a cada tiempo. En forma análoga se

puede estimar el coeficiente de dispersión para las otras direcciones del espacio.

Figura 4.3: Varianza de la componente axial de trayectorias que parten del mismo punto en función del período de tiempo transcurrido.

Page 73: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

64

4.2. Análisis considerando herramientas utilizadas para la explotación de

grandes volúmenes de datos

La explotación de grandes volúmenes de datos toma cada vez más importancia para la toma de

decisiones de riesgo162. Fue tradicionalmente adoptada en el área de finanzas para la asignación

de seguros y la compra-venta de acciones. También se aplica ampliamente al monitoreo

estadístico de equipos en plantas industriales163.

4.2.1. Análisis simbólico

Ya en su época, Galileo intentaba dar con una descripción racional de los complejos movimientos

de los cuerpos celestes a través de asignación de símbolos a patrones recurrentes, con ello tuvo

éxito para demostrar la existencia de satélites alrededor del planeta Júpiter164.

En la última década, el análisis simbólico de series temporales165,166 se ha empleado para la

clasificación de estados dinámicos y para el monitoreo de procesos14,167. La serie experimental se

convierte en una sucesión de símbolos siguiendo ciertos criterios. Posteriormente, las secuencias

de símbolos se analizan para buscar patrones recurrentes15 y para obtener las huellas dactilares

del estado dinámico subyacente168. Por lo general se siguen dos enfoques: definiendo estos

símbolos desde un punto de vista estático o dinámico.

4.2.1.1. Simbolización estática

Desde el punto de vista estático, el procedimiento para definir los símbolos tiene en cuenta el

rango de valores que toma la variable de la serie temporal y asigna un símbolo subdividiendo el

rango en valores equiespaciados. Dado que las trayectorias son series temporales de posiciones,

subdivisiones del rango indican posiciones en el espacio. Este procedimiento se utilizó

fundamentalmente para analizar las trayectorias obtenidas por RPT-1D. Los símbolos se

definieron a partir de la posición axial de la partícula teniendo en cuenta el número de detectores

utilizados.

Para asignar los símbolos, se asimiló a cada posición axial reconstruida con el arreglo RPT-1D

como un bit de información, 1 si la partícula se encuentra significativamente cerca del detector y 0

en caso contrario (ej: si en un arreglo de 8 detectores la partícula se encuentra en un instante

cerca del detector 3, el símbolo correspondiente es el 00100000; si se encuentra tan cerca del

detector 5 como del 6, el símbolo correspondiente es el 00001100). Naturalmente, los símbolos

que posean más de dos bits activos se descartan dado que la partícula a lo sumo se encontrará

entre dos detectores. Si esos números binarios obtenidos se convierten en sus números

decimales asociados (por ejemplo, para 8 detectores, números entre 1 y 2⁸), los símbolos posibles

Page 74: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

65

son 2, 4, 8, 16, 32, 64, 128 y 256 (en el caso en que sólo un detector se encuentre

significativamente cerca de la partícula) y los números 3, 6, 12, 24, 48, 96, 192 y 384 (en el caso

en que el trazador esté próximo a 2 detectores). Cabe mencionar que la división es arbitraria, el

número de regiones puede ser elegido de manera diferente; en este caso, decidimos seleccionar

tantas regiones como detectores con el fin de utilizar directamente los datos crudos.

A partir de la serie temporal de coordenadas axiales del trazador se obtiene entonces una serie

temporal de símbolos y se determina la frecuencia de encontrar dichos símbolos a fin de dar con

algún indicador de la dinámica del sistema.

Otra posible asignación de símbolos estáticos a partir de los datos crudos, es decir del número de

cuentas de cada detect“r, resu‘ta de c“nsiderar ventanas te’”“ra‘es de “bservación de distinta

longitud. Esto permite identificar hue‘‘as dacti‘ares que se ”ueden re‘aci“nar c“n divers“s

comportamientos dinámicos. Esta asignación de símbolos considera nuevamente la posición de la

partícula pero en distintos instantes. Se asigna 1 al detector más cercano en cada instante

durante, por ejemplo, 3 instantes. Esto conduce a números binarios de 1 bit por cada detector del

arreglo que contienen de 1 a 3 unos y el resto ceros. Los unos se asocian a detectores que la

partícula visitó durante la ventana temporal. El tamaño de la ventana de observación está

relacionado con la escala de tiempo del movimiento del trazador. Si es demasiado corto, el

trazador rara vez se mueve de una región y si es demasiado largo, el trazador puede recircular la

columna, dificultando el análisis. En general para las velocidades características de los equipos

estudiados bajo las condiciones de operación examinadas en esta tesis, ventanas de entre 0,1 y

1s son adecuadas para monitorear el movimiento de la partícula con 8 detectores a 10 Hz.

4.2.1.2. Simbolización dinámica

Los símbolos también se pueden definir en base a un criterio dinámico, determinando frecuencias

de movimientos persistentes en una dirección dada en comparación con un movimiento fluctuante.

La simbolización dinámica es generalmente apropiada para enfatizar ciertos patrones temporales,

como las tendencias persistentes, que son evidentes en la serie temporal analizada, ya que el

patrón específico se busca directamente. Se ha sugerido que es la estrategia preferida cuando los

cambios en el tiempo son más importantes que las mediciones absolutas165.

Otra forma de simbolización dinámica es asignar directamente un símbolo a una tendencia

particular de mediciones sucesivas (Ecuación 4.3). En este caso, para definir los símbolos, cinco

situaciones han sido consideradas, teniendo en cuenta conjuntos de tres posiciones axiales

discretas del trazador, separadas por un lapso , de acuerdo con las reglas enumeradas en la

Ecuación 4.3.

Page 75: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

66

↓ ↓ zi+ < zi < zi− ⇒ tendencia decreciente, -2

(Ecuación 4.3a)

≈ ↓ ; ↓ ≈ ; ↓ ↑ zi−= zi > zi+ ó zi−> zi = zi+

ó zi− > zi < zi+ ⇒ un va‘‘e, -1 (Ecuación 4.3b)

≈ ≈ zi− = zi = zi+ ⇒ una llanura, 0 (Ecuación 4.3c)

≈ ↑ ; ↑≈ ; ↑ ↓ zi−= zi < zi+ ó zi−< zi = zi+

ó zi− < zi > zi+ ⇒ un ”ic“, +1 (Ecuación 4.3d)

↑ ↑ zi− < zi < zi+ ⇒ tendencia creciente, +2

(Ecuación 4.3e)

Ecuación 4.3: Asignación de símbolos a los distintos patrones de comportamiento

posibles de porciones de trayectoria axial.

4.3. Análisis del mezclado considerando elementos de la teoría de la

información

La teoría de la información, que surge a partir del trabajo de Claude Shannon157 en la búsqueda

de optimizar la transmisión de señales en la empresa Bell Industries, provee un marco que resulta

útil para cuantificar el mezclado de partículas sólidas en suspensión y/o elementos de líquido a

partir de los resultados de RPT.

La teoría ergódica de sistemas dinámicos ofrece un marco para estudiar la forma en que el azar

surge en sistemas deterministas. Por ejemplo, el teorema ergódico de Birkhoff establece el

comportamiento estadístico típico en una amplia variedad de sistemas, y la entropía es un

estimador muy útil a partir de ello para medir el grado de aleatoriedad (o mezclado) de un

proceso169.

4.3.1. Entropía de Shannon y tiempos de mezcla

La entropía de Shannon157, o entropía de la información, es un estadístico que está relacionado

con la homogeneidad de una distribución de probabilidad; si se aplica sobre la distribución de

probabilidad de encontrar a la partícula trazadora, que representa a los sólidos en suspensión o

elementos de líquido, en las distintas posiciones discretas puede utilizarse como un índice de

mezclado.

El grado de mezclado del sólido o del líquido puede estimarse a partir de la homogeneidad

Page 76: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

67

alcanzada170,171 definida como la diferencia entre 1 y la entropía de la información normalizada. En

este trabajo definimos el estadístico (t) relacionando la entropía instantánea de la distribución

con la máxima que se podría alcanzar para el número de bines o secciones consideradas en

la discretización171.

Ω = −∑ [ ln ]= ln

Ecuación 4.4: Definición de entropía de la información o entropía de Shannon

(normalizada por su máximo).

Donde N es el número de bines en los cuales se ha discretizado el espacio y pi(t) es la

probabilidad de la posición i-ésima (con i perteneciendo a los números naturales entre 1 y N). La

magnitud (t) toma valores reales entre 0 y 1 debido a que la entropía de Shannon está

normalizada por el valor que corresponde a la máxima entropía posible, unívocamente asociada a

la distribución equiprobable pi = 1/N, i=1;...;N.

Para calcular la entropía, se consideran los extractos de trayectorias que representarían a

distintas partículas obtenidas como se ha descripto en la sección 4.1.1. En la Figura 4.4 se

muestran extractos de trayectorias obtenidas por RPT-1D; se muestra además cómo varía a

través del tiempo el histograma de posiciones de partículas que comienzan su trayectoria en una

porción de la columna a una determinada altura. A partir de los histogramas se pueden calcular

las probabilidades de los distintos bins en los que se ha discretizado el espacio y estadísticos

asociados.

En muchos casos la distribución no se dispone homogéneamente en todo el lecho, especialmente

en el caso de que la fase trazada difiera en densidad con el resto de las fases del sistema, ej:

sólidos cuya densidad es mayor a la del fluido que lo dispersa. Sí se observa una sistemática

tendencia de las distribuciones de probabilidad a evolucionar a una forma fija, dependiente

únicamente de las condiciones de operación. Al cabo de un tiempo, dichas distribuciones no

difieren entre sí.

La Figura 4.5 muestra la evolución temporal del cuantificador (t) en relación a la dispersión de

trayectorias que parten de un mismo punto. Se observa que el cuantificador (t) alcanza un valor

asintótico menor a 1 porque está relacionado con la distribución de la fase trazada que se

establece una vez que se llega al estado pseudo-estacionario para una dada condición de

operación. Ese valor asintótico corresponde al máximo nivel de mezclado de la fase que

representa el trazador dentro del sistema.

Page 77: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

68

Figura 4.4: Manojo de trayectorias axiales que empiezan desde una altura de 0,15m

(arriba) e histogramas correspondientes a distintos tiempos: 0; 0,03; 0,15, 0,51 y 3 s

(abajo).

Figura 4.5: Entropía de Shannon normalizada () asociada a distintos tiempos posteriores

al considerado como el inicio de extracto de trayectorias.

Teniendo en cuenta que la dependencia de la entropía de Shannon con el tiempo alcanza un valor

estacionario (o plateau) inde”endiente’ente de‘ ”unt“ de inyección “ ”arce‘a desde d“nde se

iniciaran las trayectorias, pero que puede alcanzar transitoriamente una situación de

sobremezclado (cuando la entropía instantánea es mayor a la del estado estacionario), un criterio

robusto para determinar el tiempo de mezcla de sólidos es encontrar la primer porción de curva

donde el producto de la pendiente de esa porción de curva y el coeficiente de correlación por

Page 78: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

69

regresión lineal se aproxima significativamente al cero, verificando que el valor de entropía

normalizada no difiera significativamente del valor del plateau. Como ejemplo, en la Figura 4.6 se

muestra la aplicación del procedimiento para determinar el tiempo de mezcla de sólidos para tres

velocidades de gas y un mismo punto de partida del manifold de trayectorias axiales reconstruidas

por el método RPT-1D.

Figura 4.6: Criterio de determinación de tiempo de mezcla de sólido.

4.3.2. Probabilidades y distribución de fases

Dado que la partícula trazadora radiactiva fue manipulada de manera tal que imite las propiedades

de densidad e interacciones superficiales de la fase trazada y, asumiendo la condición de

ergodicidad, la distribución de la fase trazada en la columna se puede relacionar con la frecuencia

normalizada de aparición del trazador, obtenida a partir de la trayectoria determinada tanto por

RPT como por RPT-1D, un estimador insesgado de la probabilidad de encontrar a la partícula en

una determinada parcela (Ecuación 4.5). = · p

Ecuación 4.5: Estimación de la distribución de contenido de fase trazada, a partir de

trayectorias reconstruidas por RPT.

Donde es un estimador del holdup de la fase trazada en la parcela con centro i; p i es la

probabilidad determinada a partir de la frecuencia normalizada de apariciones del trazador dentro

de la parcela con centro i y es el holdup global de la fase trazada.

Page 79: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

70

La validez de la Ecuación 4.5 se verificó para líquidos comparando las estimaciones con los

resultados de densitometría. En el caso de sistemas trifásicos, combinando el análisis

densitométrico con las distribuciones de contenido de sólido obtenidas por las distintas variantes

de RPT, se pueden obtener los perfiles de hold up de fases fluídas a partir de balance de materia.

En el caso de RPT-1D, con el mismo arreglo de detectores pueden realizarse las dos medidas.

Page 80: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

71

‘Probabilities acquire an intrinsical dynamic meaning.

This knowledge has led a new kind of physics: the physics of population.’

Ilya Prigogine172

5. Resultados y discusión

Como fue explicado en la sección 3.1.3, las trayectorias de los trazadores a partir de las señales

simultáneas de los detectores se obtienen a través de algoritmos de reconstrucción que tienen en

cuenta la relación de la intensidad de la señal acusada por cada detector y la distancia del

trazador al centro del cristal. Dependiendo del arreglo geométrico del sistema de detección, la

trayectoria reconstruida puede ser tridimensional (RPT) o unidimensional (RPT-1D).

Se aprovechó la información obtenida por RPT y RPT-1D a través de los métodos explicados en el

capítulo 4 para hacer una descripción detallada del mezclado macroscópico de una columna de

burbujeo y un tanque agitado en distintas condiciones de operación, equipos descriptos en la

sección 3.3.

5.1. Columna de burbujeo trifásica con sistema GLS1

El alginato de calcio es un gel utilizado tradicionalmente para inmovilizar por retención enzimas y

organismos vivos como levaduras para fermentaciones. En la actualidad también se está

explorando su potencial uso como soporte de catalizadores inorgánicos. Conocer las

características del movimiento de partículas de alginato de calcio contribuye al diseño de

reactores de gran escala ya que, como vimos en el capítulo 2, la distribución del catalizador es

fundamental para la performance de reacciones heterogéneas. Asimismo es importante controlar

los niveles de turbulencia alrededor de las partículas de catalizador a fin de aumentar su vida

útil173.

5.1.1. Trayectorias determinadas por RPT y su análisis

En la Figura 5.1 se muestran extractos representativos de trayectorias obtenidas por RPT en el

sistema GLS1 a distintas velocidades de gas, cada extracto es de 5s de duración y contiene 166

eventos, dado que el intervalo de muestreo fue de 0,03s. Es decir, se obtiene una trayectoria

detallada del movimiento del trazador incluso a las velocidades de gas más altas entre las

condiciones examinadas.

Page 81: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

72

Figura 5.1: Porciones de trayectorias tridimensionales del trazador en el sistema aire –

agua – alginato de calcio: ug = 0,032 m/s (der.) y ug = 0,095 m/s (izq.).

Las Figuras 5.2 a 5.5 muestran, respectivamente, series temporales de las coordenadas x ; y ; r ; z

de trayectorias reconstruidas por RPT en dos condiciones de velocidad de gas. Se observa que

las trayectorias de las coordenadas x e y son muy similares, variando constantemente en todo el

rango posible. Figura 5.2 a Figura 5.5

La coordenada radial también fluctúa constantemente pero, en el caso de bajos caudales, se

observa que el trazador visita mayoritariamente la zona próxima a la pared. En la coordenada

axial se observa menor fluctuación a bajos caudales de gas, permaneciendo en estas condiciones

mayor tiempo en la zona inferior de la columna.

Page 82: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

73

Figura 5.2: Series temporales de la coordenada x de trayectorias correspondientes a dos condiciones de operación: ug = 0,032 m/s (arriba) y ug = 0,095 m/s (abajo).

Figura 5.3: Series temporales de la coordenada y de trayectorias correspondientes a dos

condiciones de operación: ug = 0,032 m/s (arriba) y ug = 0,095 m/s (abajo).

Figura 5.4: Series temporales de la coordenada radial de trayectorias correspondientes a

dos condiciones de operación: ug = 0,032 m/s (arriba) y ug = 0,095 m/s (abajo).

Page 83: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

74

Figura 5.5: Series temporales de la coordenada axial de trayectorias que corresponden a

dos condiciones de operación: ug = 0,032 m/s (arriba) y ug = 0,095 m/s (abajo).

5.1.1.1. Campo de velocidades

Partiendo del tratamiento de las trayectorias obtenidas como fue descripto en la sección 4.1.1, se

obtienen los campos tridimensionales de velocidades medias de las esferas de alginato de calcio

en el sistema GLS1 (Figura 5.6) y sus proyecciones en los planos horizontal (Figura 5.7) y sagital

(Figura 5.8), obtenidas promediando en la dirección axial y azimutal respectivamente. Se observa

una notoria tendencia convergente desde las paredes hacia el centro en todas las condiciones de

operación, mientras que alrededor del eje axial de la columna las velocidades son

mayoritariamente ascendentes.

A bajos caudales de gas en el plano sagital se observa en forma relativamente definida la

presencia de un vórtice en la zona próxima al distribuidor (z/H ~ 0-0,2) y otro más extenso en el

resto de la columna. Dentro de este último y con menos definición se puede inferir la existencia de

estructuras vorticales de menos extensión como las sugeridas por Joshi et al (2002)174. Esta

multiplicidad de celdas de circulación se desdibuja a mayores caudales de gas probablemente

porque la energía entregada por el gas impone una circulación macroscópica más definida. De

todas formas, es probable que las estructuras vorticales existan en forma transitoria.

Comparando con campos de velocidades reportados por Larachi et al (1996)7, Degaleessan et al

(2001)146 y Rados et al (2005)43, se observa mayor tendencia convergente desde la zona próxima

a la pared, lo cual podría estar relacionado con el carácter espumante del sistema.

Page 84: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

75

Figura 5.6: Campos tridimensionales de velocidades medias obtenidos a partir de una trayectoria de RPT en el sistema GLS1 (ug = 0.032 m/s, izquierda; ug = 0.095 m/s, derecha).

Page 85: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

76

Figura 5.7: Proyección del campo de velocidades en el plano xy (ug = 0.032 m/s, izquierda ; ug = 0.095 m/s, derecha).

Figura 5.8: Campo de velocidades medias a lo largo del plano sagital de la columna (ug = 0.032 m/s, izquierda ; ug = 0.095 m/s, derecha).

Page 86: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

77

En las Figuras 5.9 a 5.14 se ilustran perfiles radiales y axiales de las tres componentes de las

velocidades promedio. En particular, en la Figura 5.9 se confirma la tendencia de la velocidad

radial en el plano xy, convergente hacia el interior desde los bordes de la columna, disminuyendo

su módulo abruptamente hacia el centro. Las velocidades hacia el centro, cerca de la pared, se

incrementan para altos caudales de gas. las Figura 5.9 a Figura 5.14

Figura 5.9. Perfil radial de la velocidad radial.

En la Figura 5.10 se puede observar la tendencia netamente convergente hacia el centro a lo largo

de casi toda la columna salvo en dos puntos: claramente notable en la parte superior (zona de

disengagement), donde el gas abandona la emulsión, y a unos 150 mm de la base, donde se

establece el borde del vórtice de la zona próxima al distribuidor (Figura 5.8).

Figura 5.10: Perfil axial de la velocidad radial.

Las oscilaciones menos definidas que se observan podrían estar relacionadas con las estructuras

vorticales intermedias que en general se ha sugerido que tienen un tamaño cercano al diámetro

de la columna174,175.

Page 87: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

78

Tanto en la Figura 5.11 como en la Figura 5.12 se observa que la velocidad tangencial es muy

baja, en concordancia con el carácter irrotacional observado en los planos transversales de los

campos de velocidades vistos anteriormente. El módulo se incrementa en los extremos, donde la

partícula es atrapada en las estructuras turbulentas de la zona próxima al distribuidor, y expulsada

de la estela de las burbujas en el límite superior de la emulsión. Este resultado coincide con lo

observado por otros autores6,,45,136 para distintos tipos de reactores multifásicos de alta relación de

aspecto H/D.

Figura 5.11: Perfil radial de la velocidad tangencial.

Figura 5.12: Perfil axial de la velocidad tangencial

En la Figura 5.13 se muestra el perfil radial de la velocidad axial. Se observa una tendencia

ascendente hacia el centro de la columna y descendente hacia el anillo externo de la columna,

debida mayormente a que la zona de preferencia de la circulación del gas es el anillo central de la

columna. El punto de inflexión se encuentra aproximadamente en la misma posición radial (r/R ~

Page 88: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

79

0,65) para todas las condiciones de operación examinadas, desplazándose levemente hacia el

centro a medida que se incrementa la velocidad de gas. Esto coincide con información de

bibliografía reportada para sistemas similares142. Sin embargo, en la Figura 5.13 se observa una

leve disminución del módulo de la velocidad axial en la zona cercana a la pared. Esta diferencia

podría estar relacionada con el carácter espumante del sistema y la fuerte convergencia de las

partículas hacia el centro.

Figura 5.13: Perfil radial de la velocidad axial.

En la Figura 5.14 se presenta el perfil axial de la velocidad axial. Se encuentra que, a lo largo de la

columna, el promedio de las velocidades axiales es cercano a cero, excepto en la zona de

disengagement y en el límite del vórtice que aparece en la zona próxima al distribuidor. Cabe

mencionar que en la zona de disengagement el número de eventos es generalmente bajo,

resultando valores promedio que poseen mayor error.

Figura 5.14: Perfil axial de la velocidad axial.

Page 89: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

80

5.1.1.2. Parámetros de turbulencia

A partir del análisis de correlación de velocidades instantáneas descripto en la sección 4.1.2, se

pueden obtener campos escalares de interés en el estudio de la fluidodinámica y la interacción

entre escalas de reactores multifásicos: la energía cinética de turbulencia (ECT) y los esfuerzos de

corte (shear stress).

La Figura 5.15 permite comparar, para dos condiciones dentro del rango de operación estudiado,

la distribución de ECT en el plano frontal centrado en el eje de simetría de la columna.

Figura 5.15: Distribución de energía cinética de turbulencia a lo largo del plano sagital de la columna para dos condiciones extremas dentro del rango de operación.

Asimismo, las Figuras 5.16 y 5.17 muestran cómo se distribuye la ECT en planos a distintas

alturas de la columna para las mismas condiciones de agitación. Para bajos niveles de agitación,

se observan niveles de turbulencia más homogéneos que en condiciones con velocidad de gas

superiores. las Figura 5.16 y Figura 5.17

Page 90: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

81

Figura 5.16: Distribución de energía cinética de turbulencia en planos transversales a distintas alturas de la columna (ug=0,032 m/s).

Figura 5.17: Distribución de energía cinética de turbulencia en planos transversales a distintas alturas de la columna (ug=0,095 m/s).

La Figura 5.18 muestra la distribución de los esfuerzos de corte en la dirección radial-axial, rz.

Para bajas velocidades de gas, se observa un incremento tanto de la ECT como de r-z hacia el

segundo cuartil de la columna, que es la zona donde coinciden los dos vórtices que se observan

en el campo de velocidades (ver Figura 5.8).

Page 91: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

82

Figura 5.18: distribución del esfuerzo de corte radial-axial, rz, a lo largo del plano sagital de la columna para dos condiciones extremas dentro del rango de operación.

Para velocidades superficiales de gas altas se puede advertir una cierta homogeneidad de ECT y

r-z, si bien la intensidad se incrementa en la zona superior de la columna, fundamentalmente alrededor de r/R ~ 0.3. Coincidiendo con datos de bibliografía43,146, los resultados de este trabajo

indican que los mayores valores de r-z se dan en una zona más cercana al centro de la columna.

5.1.1.3. Distribución de fases

Las Figuras 5.19 y 5.20 muestran cortes transversales, a distintas alturas, de la distribución de

hold up de sólido del sistema GLS1 para dos condiciones dentro del rango de operación estudiado

(0,032 y 0,095 m/s de velocidad superficial de gas respectivamente). Estas distribuciones se

calculan considerando el criterio descripto en la sección 4.3.2. Se observa que la concentración de

sólidos es mayor en la zona inferior de la columna, aumentando levemente en la parte superior a

medida que se incrementa la velocidad de gas, coincidiendo asimismo con las tendencias

encontradas y predichas en bibliografía43,52. Figura 5.19 y Figura 5.20

Page 92: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

83

Figura 5.19: Distribución radial de holdup de alginato de calcio en función de la altura para el sistema GLS1 a una velocidad superficial de gas de 0,032 m/s

Figura 5.20: Distribución radial de holdup de alginato de calcio en función de la altura para el sistema GLS1 a una velocidad superficial de gas de 0,096 m/s.

En la Figura 5.21 se observa el perfil radial del contenido normalizado de esferas de alginato de

calcio a distintas velocidades superficiales de gas para distintas altura dentro de la columna. En

general, no es frecuente encontrar una disminución del hold up de sólido en la zona próxima a la

pared en columnas de burbujeo trifásicas43. Sin embargo, en los pocos trabajos que han

reportado resultados experimentales del perfil radial de hold up de sólidos en una columna de

burbujeo trifásica con líquidos espumantes176,177 se ha observado un incremento del hold up de

gas en la zona próxima a la pared, que es más notable cuanto más espumante es el líquido y

fundamentalmente en la zona próxima al distribuidor. Si el hold up de gas se incrementa en una

zona, naturalmente deberían disminuir los hold up de líquido y de sólidos en suspensión.

Page 93: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

84

Figura 5.21: Perfil radial de hold up nomalizado de alginato de calcio en función de la velocidad de gas

5.1.1.4. Coeficientes de dispersión axial y radial

En la Figura 5.22 se representa la dependencia del coeficiente de dispersión axial de sólidos,

determinado de acuerdo a lo descripto en la sección 4.1.3, con la velocidad superficial de gas.

Figura 5.22: Coeficientes de dispersión axial de sólidos en función de la velocidad de gas para el sistema trifásico aire-agua-alginato de calcio.

Como es razonable esperar, se observa un efecto positivo de la velocidad del gas sobre el

coeficiente de dispersión. Se encuentra una dependencia aproximadamente lineal del coeficiente

de dispersión axial de sólidos con la velocidad de gas dentro del rango examinado. Los valores

estimados para el coeficiente de dispersión axial de sólidos están en el mismo orden de magnitud

que datos reportados en bibliografía, determinados por RPT178 y por otras metodologías179.

Page 94: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

85

En la Figura 5.23 se observan valores de coeficientes de dispersión radial de las esferas de

alginato de calcio en el sistema GLS1 en función de la velocidad de gas. El quiebre de tendencia

entre las velocidades de gas bajas y altas pone de manifiesto la existencia de dinámicas

diferentes gobernando el fenómeno de dispersión en la dirección radial dentro del rango

estudiado.

Figura 5.23: Coeficientes de dispersión radial de sólidos en función de la velocidad de gas para el sistema trifásico aire-agua-alginato de calcio.

5.1.2. Trayectorias determinadas por RPT1D y su análisis

Con el fin de aprovechar la información obtenida por el método RPT1D y compararla con

resultados de RPT, se procede a utilizar una batería de análisis estadísticos que consisten en

análisis de tendencias de símbolos representativos de la dinámica subyacente del movimiento del

trazador.

Por otro lado, se infiere la distribución de sólidos a partir de la frecuencia en la que el trazador

visita las distintas parcelas de la columna, obteniéndose en este caso, una estimación de perfiles

axiales de hold up normalizado de fase sólida, es decir el cociente entre el hold up local y el hold

up global de sólidos en suspensión.

También se analiza la dependencia con el tiempo de la varianza y la entropía de Shannon de

extractos de trayectorias que parten de una misma parcela a fin de estimar, respectivamente, el

coeficiente de dispersión y tiempos de mezclado. Para una evaluación cualitativa, en las Figuras

5.24 a 5.26 se ’uestran, ”ara distintas ve‘“cidades de gas, trayect“rias axia‘es de 5 de duración

obtenidas por RPT1D.

Page 95: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

86

Figura 5.24: Porción de trayectoria axial del trazador, obtenida por RPT1D, en el sistema aire - agua - alginato de calcio (ug = 0,032 m/s).

Figura 5.25: Porción de trayectoria axial del trazador, obtenida por RPT1D, en el sistema aire - agua - alginato de calcio (ug = 0,074 m/s).

Figura 5.26: Porción de trayectoria axial del trazador, obtenida por RPT1D, en el sistema aire - agua - alginato de calcio (ug = 0,117 m/s).

Comparando con las series temporales obtenidas por RPT (Figura 5.5), se observa que, si bien la

resolución es menor, aún se evidencian las características macroscópicas generales del

movimiento en la dirección axial.

5.1.2.1. Análisis simbólico

Con el fin de encontrar tendencias que indiquen cambios en los patrones dinámicos del sistema,

se calculan las frecuencias normalizadas de aparición de los distintos símbolos definidos en la

sección 4.2.1, comenzando con los símbolos estáticos y siguiendo con los dinámicos.

Page 96: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

87

5.1.2.1.1. Símbolos estáticos

Se muestran los resultados de asignar símbolos considerando 8 instantes separados por distintos

intervalos de tiempo . La frecuencia relativa de los símbolos está relacionada con la intensidad

del movimiento axial del trazador. A medida que aumenta la velocidad del trazador se esperan dos

variaciones:

(i) Un au’ent“ en ‘a frecuencia de sí’b“‘“s que c“ntienen ’ás 1 c“nsecutivos,

relacionados con la posibilidad de encontrar el trazador dentro de un rango más amplio de

posiciones axiales en la columna.

(ii) La a”arición de sí’b“‘“s c“n un 1 as“ciad“ c“n ‘a ”“sición de‘ trazad“r “bservad“ ”“r e‘

detector situado en la posición axial más alta, relacionado con el nivel de líquido en la columna y,

por lo tanto, con la retención (o hold up) de gas.

Naturalmente, los símbolos superiores aumentarán su frecuencia de aparición a medida que el

gas transmita más impulso mecánico al trazador, hecho que se da a medida que la velocidad de

gas aumenta. Por otra parte, los símbolos que no correspondan a una potencia de 2 aumentarán

su frecuencia a medida que el trazador se vea involucrado en movimientos rápidos, situación que

también se intensifica al aumentar la velocidad superficial de gas. Se puede observar que, en la

Figura 5.27, los símbolos de menor valor son levemente más frecuentes que en la Figura 5.28,

que corresponde a una velocidad de gas más alta.

Figura 5.27: Histograma de símbolos estáticos para distintas ventanas de observación (sistema GLS1, ug = 0,03 m/s).

También cabe resaltar que la distribución de símbolos obtenida para cada condición de operación

depende sensiblemente de la ventana de observación utilizada para generarlos. A medida que la

ventana de observación se hace más grande, tanto más probable se vuelven los símbolos que no

corresponden a potencias de 2.

Page 97: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

88

Figura 5.28: Histograma de símbolos estáticos para distintas ventanas de observación (sistema GLS1, ug = 0,11 m/s).

Más notable es el incremento de la frecuencia de los símbolos cuyos números decimales

asignados son altos, asociados en gran medida a la expansión del lecho; es decir, al hold up de

gas. En la Figura 5.29 se muestra cómo varía con la velocidad superficial de gas la frecuencia de

aparición de un símbolo superior que no es potencia de 2, el símbolo 384, que, si bien su

frecuencia de aparición es muy baja, denota movimientos rápidos del trazador (posiblemente

descendentes dado que corresponde a la parte superior de la columna). Entre 0,05 y 0,06 m/s, se

puede observar un claro cambio en la tendencia para todas las ventanas de observación

exploradas.

Figura 5.29: Frecuencia normalizada del símbolo estático 384 en función de la velocidad superficial de gas.

Page 98: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

89

Estos quiebres de tendencia se corresponden con el cambio de régimen de flujo determinado por

observación visual: de régimen homogéneo, en el cual la distribución de tamaño de burbujas es

monomodal, a régimen heterogéneo, donde la distribución de tamaños de burbuja se convierte en

multimodal180, ya que el líquido se puede considerar newtoniano. La velocidad de transición

estimada a partir del quiebre de tendencias se encuentra dentro de rango de valores informado en

la literatura para columnas de burbujeo181,182.

La Figura 5.30 muestra boxplots generados a partir de la predicción de la velocidad de transición

al seguir la tendencia de distintos símbolos significativos en distintas ventanas de observación. Si

bien todos los valores medios están entre 0,04 y 0,06 m/s, se encuentra que la tendencia de

algunos símbolos prácticamente no depende de la ventana de observación, constituyendo en

consecuencia una forma más robusta de calcular el estimador de la velocidad de transición de

flujo.

Figura 5.30: Velocidad crítica de transición de régimen de flujo determinada a partir del

estudio de distintos símbolos estáticos. Sistema GLS1.

5.1.2.1.2. Símbolos dinámicos

La transmisión de impulso mecánico entre una burbuja y el trazador, en un sistema donde entre

ellos intercede un líquido, depende de la posición relativa de la burbuja al trazador y del tamaño

de la burbuja. La Figura 5.31 muestra la estructura de una burbuja que posee un gran impulso,

que la deforma y genera dos zonas típicas donde transmite energía mecánica a las partículas

circundantes:

(i) Un vórtice toroidal en la parte inferior, del lado del líquido, cuyo centro de simetría posee

una velocidad neta ascendente. Esta zona se denomina estela.183

(ii) Una línea de flujo externa, cuya dirección es netamente descendente, lo cual es de esperar

dado el principio de acción y reacción.

Page 99: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

90

Figura 5.31: Diagrama esquemático de la estructura dinámica de una burbuja ascendente a través de un líquido183.

Al igual que los símbolos estáticos, los símbolos dinámicos resultan ser indicadores de la

presencia de burbujas grandes pero preservando el sentido del movimiento del trazador. Los

símbolos dinámicos definidos en la sección 4.2.1.2 se asocian a eventos relacionados con la

interacción entre el trazador y burbujas grandes. El símbolo positivo +2, que corresponde a un

ascenso persistente, se da generalmente cuando el trazador se encuentra en la estela de una

burbuja grande, mientras que el símbolo negativo -2 se da cuando el trazador se encuentra cerca

del borde externo de las burbujas que ascienden a gran velocidad.

Los símbolos +1 y -1 pueden asociarse a fluctuaciones elásticas que se dan colectivamente en las

inmediaciones del trazador. Aunque estas fluctuaciones pueden confundirse con errores de

reconstrucción, la probabilidad de error de clasificación disminuye a medida que disminuye la

granularidad con la que se subdivide el espacio y son regulados por el período de tiempo de la

ventana de observación.

En las Figuras 5.32 y 5.33 se puede inferir una débil fractura en las tendencias de las frecuencias

de símbolos descendentes y de movimiento moderado respectivamente, que acusan un cambio

de régimen de flujo dentro del dominio de las condiciones de operación exploradas.

Page 100: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

91

Figura 5.32: Tendencias del símbolo dinámico 1 en función de la velocidad superficial de gas para distintas ventanas de observación.

Sin embargo, en el caso del símbolo 2, mostrado en la Figura 5.34, es notable la ausencia de

tendencias definidas a lo largo del rango de operación dado que las intersecciones entre las

regresiones paso a paso realizadas en los extremos del rango de operación indican valores muy

distintos, e incluso negativos, entre las distintas ventanas exploradas. Es posible que la presencia

de espuma desacelere el ascenso de burbujas debido a que la espuma posee una densidad

media menor a la del líquido, disminuyendo en consecuencia el empuje sobre una burbuja

formada en los dominios de esa pseudofase. Otra razón posible es que la espuma excluya a las

partículas de las estelas de burbujas rápidas, ocultando así la tendencia esperada.

.

Figura 5.33: Tendencias del símbolo dinámico -2 en función de la velocidad superficial de gas para distintas ventanas de observación.

Page 101: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

92

Figura 5.34: Tendencias del símbolo dinámico 2 en función de la velocidad superficial de gas para distintas ventanas de observación.

En la Figura 5.35 se muestran las velocidades de transición determinadas a partir de distintos

símbolos dinámicos representativos, descartándose el símbolo 2, se observa una diferencia en

defecto con respecto a los resultados obtenidos por análisis simbólico estático, pero una mayor

precisión. En base a los resultados y a la comparación con información de blbliografía181, en este

caso, aparentemente sería más confiable la estimación del cambio de régimen a partir de la

tendencia de símbolos estáticos.

Figura 5.35: Velocidad crítica de transición de régimen de flujo determinada a partir del estudio de distintos símbolos dinámicos. Sistema GLS1.

Page 102: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

93

5.1.2.2. Entropía y mezclado macroscópico

La entropía de Shannon normalizada () es una propiedad de cualquier distribución de

probabilidad , donde N es el número de bines en los que se divide el rango de validez de la

distribución. En el contexto de RPT, el rango de validez de la distribución de probabilidad será el

espacio que alcance la trayectoria del trazador y los bines serán resultado de la granularidad con

la que se divida ese espacio.

Independientemente del orden de los bines, es un número entre 0 y 1 que describe la

homogeneidad de esa distribución de probabilidad. Una tendiente a cero será una distribución

de mayor desigualdad de probabilidades entre los bines, tendiendo toda la probabilidad a

concentrarse en un solo bin, mientras que una cercana a 1 significará que las probabilidades

asignadas a cada bin son similares o, dicho en términos de mezclado, un sistema está más

mezclado si su entropía de Shannon normalizada está más cerca de 1.

En una determinada condición de operación se observa que, independientemente del punto de

partida, al cabo de un determinado tiempo, la entropía calculada utilizando conjuntos de extractos

de trayectoria alcanza, a partir de un momento, un valor cuasi-invariante en el tiempo, denotando

la presencia de un estado pseudo-estacionario, indicando que el sistema, si bien está fuera del

equilibrio, es un sistema termodinámicamente estable en el sentido de Lyapunov184 ya que

alcanza una entropía* constante a partir de un determinado momento. La forma que toma la

dependencia de la entropía de Shannon obtenida a partir de las trayectorias determinadas por la

técnica RPT1D resulta entonces en un excelente indicador para la estimación cuantitativa de

tiempos de mezcla y, como veremos a continuación, de la posición más adecuada de carga de

sólidos.

Al operar como fue descripto en la sección 4.3 sobre extractos de trayectorias, obtenidas por

RPT1D, que parten de distintas alturas, se observa una diferencia de más del 100% entre los

valores de tiempo de mezcla axial obtenidos, lo cual es un indicio de que existen posiciones

preferenciales para la carga de sólidos en la columna. Con el fin de una evaluación cualitativa, en

las Figuras 5.36 a 5.38 se muestran, para distintas velocidades de gas, extractos de trayectorias

de 10s que parten desde el mismo punto de inyección y en la Figura 5.39 se remarca la

convergencia del estadístico vs t hacia el mismo valor asintótico de .

De la observación de los perfiles axiales de tiempo de mezcla del sistema, como los expuestos en

la Figura 5.40, resulta que el segundo cuartil de la columna es la mejor opción para el ingreso de

sólidos, en todas las condiciones, en el caso de que se quiera maximizar la rapidez del mezclado

macroscópico.

* Asociada a una función de estado como ser la energía potencial gravitatoria debida a la altura.

Page 103: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

94

Figura 5.36: Extractos de trayectorias de RPT1D del sistema GLS1 (ug=0,032 m/s).

Figura 5.37: Extractos de trayectorias de RPT1D del sistema GLS1 (ug=0,074 m/s).

Figura 5.38: Extractos de trayectorias de RPT1D del sistema GLS1 (ug=0,117 m/s).

Figura 5.39: Tiempos de mezcla de sólido determinados considerando distintas posiciones

axiales de inicio de trayectorias.

Page 104: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

95

Generalmente, se observa un descenso del tiempo de mezclado para todas las alturas a medida

que aumenta la velocidad superficial de gas. A su vez, existe un ligero corrimiento de la altura

donde se registra el tiempo mínimo de mezclado, aumentando con la velocidad de gas.

Figura 5.40: Tiempos de mezcla de sólido determinados considerando distintas posiciones

axiales de inicio de trayectorias.

En la Figura 5.41, luego de un aumento inicial para bajas velocidades de gas, se observa un

descenso, de aspecto aproximadamente lineal, del tiempo de mezclado promedio del sistema

GLS1 en función de la velocidad de gas, constatándose que, en este sistema, agitaciones más

intensas aumentan la velocidad del mezclado macroscópico. La influencia de la velocidad del gas

sobre los tiempos de mezclado en el GLS1 es similar a la que se reporta en bibliografía para el

mezclado de líquido en columas de burbujeo185,186; esto podría estar relacionado con que la

densidad de las partículas del GLS1 es similar a la del líquido.

Figura 5.41: Tiempo de mezcla promedio en función de la velocidad superficial de gas, sistema aire - agua - alginato de calcio.

Page 105: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

96

En la Figura 5.42, se puede ver el perfil axial del cambio de entropía macroscópica al alcanzarse

el tiempo de mezclado. Se observa que el perfil adopta un pico pronunciado en una altura similar a

la que se registró el menor tiempo de mezclado. Además, el cambio entrópico durante el tiempo

de mezclado aumenta monótonamente al aumentar la intensidad de agitación.

Figura 5.42: Producción de entropía macroscópica en función de la altura de la columna para el sistema GLS1 a distintas condiciones de agitación.

5.1.2.3. Distribución de fases

En la Figura 5.43 se presentan los perfiles axiales de hold up normalizado de esferas de alginato

de calcio determinados por RPT1D y por RPT para distintos caudales de gas.

El perfil axial de hold up normalizado del sistema GLS1 indica un leve gradiente de concentración

de sólidos entre la base y el límite de la emulsión, que no depende significativamente de la

velocidad superficial de gas.

De la comparación entre los perfiles axiales de hold up de sólidos obtenidos tanto por proyección

de los datos de RPT en el eje axial y de los que surgen del análisis de las trayectorias

reconstruidas con el método RPT1D, tanto cualitativa como cuantitativamente, se observa una

significativa similitud entre dichos perfiles. Este resultado remarca la capacidad del método

simplificado para extraer información relevante que coincide con la inferida a partir de RPT.

Page 106: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

97

Figura 5.43: Perfil axial de hold up normalizado de partículas de alginato de calcio del sistema GLS1, obtenidas por RPT1D (izquierda) y por RPT (derecha) para varias

condiciones de agitación.

Finalmente, se determinó el perfil axial de las fracciones volumétricas de fases fluidas

mediante densitometría, corrigiendo por balance de materia el contenido de líquido a partir

del perfil axial de contenido de alginato de calcio determinado por RPT. En la Figura 5.44

pueden compararse los perfiles de hold up de las tres fases en dos condiciones de

velocidad de gas. Se observa que que las fracciones volumétricas de las tres fases no

varían significativamente a lo largo de la columna, excepto una leve disminución del hold

up de gas en la zona inferior y la adopción de valores erráticos al acercarse a la zona de

disengagement que no se muetra en los gráficos porque no llegó a escanearse esa zona

por densitometría.

En la Figura 5.45 se muestra el hold up de gas medido con detectores a media altura de

la columna en función de la velocidad de aire.

También se observa un quiebre en la tendencia alrededor de 0,066 m/s (ver boxplot a la

derecha de la Figura 5.45) tomándose este valor como estimador de la velocidad de

transición de flujo.

Page 107: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

98

Figura 5.44: Perfil axial de hold up de las tres fases que componen el sistema GLS1, para dos velocidades de gas: 0,032 m/s (izquierda) y 0,095 (derecha).

Figura 5.45: Hold up global de aire en función de la velocidad de gas en el sistema GLS1

(izquierda) y boxplot de estimadores de velocidad de transición de flujo asociados al quiebre de tendencias del hold up vs ug (derecha).

Page 108: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

99

5.2. Columna de burbujeo trifásica con sistema GLS2

El carbón activado granulado se emplea en variadas actividades humanas; en la industria

generalmente se utiliza para la clarificación de líquidos de proceso, como en la fabricación de

cerveza y jarabe de maíz, para la descontaminación por adsorción de efluentes líquidos y

gaseosos y, en algunos casos, como soporte de catalizadores. La ventaja que tiene este material

es que puede producirse a partir de materias primas renovables.

5.2.1. Trayectorias determinadas por RPT1D y su análisis

En las Figuras 5.46 y 5.47 se muestran conjuntos de trayectorias que parten desde el mismo

punto de inyección para dos velocidades de gas. Se puede observar una tendencia del trazador a

permanecer en la zona de la base de la columna, debido naturalmente a la diferencia de

densidades entre el trazador que representa al carbón (~2200 kg/m3) y las fases fluidas.

Figura 5.46: Manojo de trayectorias de RPT1D del sistema GLS2 (ug=0,04 m/s).

Figura 5.47: Extractos de trayectorias de RPT1D del sistema GLS2 (ug=0,11 m/s).

5.2.1.1. Coeficientes de dispersión axial

En la Figura 5.48 se representa la dependencia con la velocidad del gas de los coeficientes de

dispersión axial de sólidos determinados de acuerdo a lo descripto en la sección 4.1.3 utilizando

Page 109: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

100

trayectorias obtenidas por RPT1D. Como es razonable esperar, se observa un efecto positivo de

la velocidad del gas sobre el coeficiente de dispersión axial de sólidos.

Figura 5.48: Coeficientes de dispersión axial de sólidos en función de la velocidad de gas para el sistema trifásico aire- agua- carbón.

Se encuentra una aparente dependencia lineal del coeficiente de dispersión con respecto a la

velocidad de gas dentro del rango de operación examinada. Naturalmente, la diversidad en los

intervalos de confianza revela cambios de estructura en la dinámica del movimiento en cada

condición de operación. El coeficiente de dispersión axial obtenido en este caso es bastante

inferior que el de las esferas de alginato de calcio probablemente debido a la mayor densidad del

carbón.

5.2.1.2. Análisis simbólico estático

En las Figuras 5.49 y 5.50 se muestran histogramas que corresponden a dos condiciones de

operación representativas. Se observa que las distribuciones se acumulan en la zona de símbolos

inferiores, de acuerdo con la tendencia del carbón activado a decantar.

Page 110: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

101

Figura 5.49: Histograma de símbolos estáticos del sistema GLS2 para ug = 0,03 m/s.

Figura 5.50: Histograma de símbolos estáticos del sistema GLS2 para ug = 0,11 m/s .

Al evaluar la dependencia de las frecuencias normalizadas en función de la velocidad de gas, se

encuentra que los símbolos 6 (Figura 5.51), 12, 24 y 48 son los que presentan tendencias con una

mayor definición e independencia de la ventana de observación. Este hecho, en combinación con

la tendencia del sistema GLS2 a adoptar símbolos estáticos inferiores, hace que los mencionados

símbolos se consideren representativos de la dinámica del sistema.

Page 111: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

102

Figura 5.51: Tendencias del símbolo 6 en función de la velocidad de gas para el sistema GLS2, utilizando diversas ventanas de observación.

Al estudiar las tendencias de los símbolos representativos, se obtiene la Figura 5.52 que

representa las velocidades de gas críticas de transición de régimen de burbuja a régimen

heterogéneo. El valor medio de los boxplot ronda los 0,051 m/s, lo cual está de acuerdo con la

observación visual y con los valores típicamente informados en bibliografía para columnas de

burbujeo181, con un intervalo de confianza menor al 10%. Resulta entonces un método alternativo

que permite cuantificar la velocidad de transición de flujo en forma objetiva.

Figura 5.52: Boxplot de velocidades críticas obtenidas del estudio de tendencia de los símbolos estáticos significativos a distintas ventanas de observación.

5.2.1.3. Análisis simbólico dinámico

Las tendencias de los símbolos dinámicos correspondientes a movimientos axiales

rápidos (±2, Figura 5.53 y 5.54) poseen un quiebre sistemático similar a sus pares

estáticos, resultando en un gran acuerdo entre la velocidad de transición de régimen de

Page 112: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

103

burbuja a régimen turbulento entre las dos variantes de símbolos, coincidiendo a su vez

con lo determinado por observación visual y en sistemas similares de bibliografía14.

Figura 5.53: Tendencias de la probabilidad del símbolo dinámico 2 en función de la velocidad de gas.

Figura 5.54: Tendencias de la probabilidad del símbolo dinámico -2 en función de la velocidad de gas.

En la Figura 5.55 se pueden encontrar velocidades de transición determinadas a partir de distintos

símbolos dinámicos representativos; se observa una ligera diferencia en defecto con respecto a

los resultados obtenidos por análisis simbólico estático, pero una mayor precisión (<5% con

respecto a 10% en el caso estático). En este caso, la diferencia entre la velocidad de transición

estimada a partir de tendencias de símbolos estáticos y dinámicos son más similares entre sí que

para el sistema GLS1.

Page 113: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

104

Figura 5.55: Velocidad crítica de transición de régimen de flujo determinada a partir del estudio de distintos símbolos dinámicos. Sistema GLS2.

5.2.2. Entropía y mezclado macroscópico

En el caso del sistema GLS2, no sólo se pueden determinar tiempos de mezcla y estimar una

posición óptima de carga de sólidos, sino que fue posible determinar la velocidad de gas donde

ocurre una transición entre regímenes de flujo.

La tendencia del carbón a decantar, es decir no acompañar al movimiento de las fases fluidas

debido a que su densidad es sensiblemente mayor a la de la mezcla aire-agua, en conjunto con el

cambio brusco de la distribución de tamaño de burbujas al cambiar el régimen de flujo, se

manifiesta como un quiebre de tendencia de la entropía de Shannon asintótica, o de estado

pseudo-estacionario, en función de la velocidad superficial de entrada de gas al lecho.

5.2.2.1. Identificación de cambios en regímenes de flujo mediante el uso

de teoría de la información

Visualmente, en el sistema GLS2 a bajas velocidades de gas, la tendencia del carbón a decantar

prácticamente no se ve afectada por el flujo de gas. El comportamiento resultante es el régimen

de burbuja con una alta concentración de sólido en la parte inferior de la columna; el valor

asintótico de la entropía de Shannon que corresponde al estado pseudo estacionario es

consecuentemente bajo. En el intervalo estudiado de velocidades de gas se observa una

transición a un régimen de fluidización turbulenta187.

El valor asintótico de la entropía asociado al régimen de fluidización turbulenta es bastante

superior y estable en comparación con el observado en régimen de burbuja. En la Figura 5.56 se

observa que, independientemente de la posición inicial del conjunto de trayectorias utilizadas para

estimar la entropía, la velocidad de gas crítica donde existe el cambio de régimen de flujo es

similar.

Page 114: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

105

Figura 5.56: Entropía de Shannon asintótica en función de la velocidad de gas para el sistema GLS2, calculado a partir de distintos extractos de trayectorias.

El valor obtenido de punto crítico de transición entre el régimen de burbuja y fluidización turbulenta

se corresponde satisfactoriamente con el determinado por observación visual y por los otros

métodos propuestos. Asimismo se encuentra dentro del rango reportado en la bibliografía13.

5.2.2.2. Tiempos de mezcla

A partir de las funciones (z,t), se obtuvieron los tiempos de mezcla que corresponden a

inyecci“nes en distintas a‘turas de ‘a c“‘u’na ”ara diversas c“ndici“nes de ve‘“cidad su”erficia‘

de gas (Figura 5.57). Nuevamente se observa que una determinada posición de la columna es

privilegiada en términos de rapidez del mezclado macroscópico.

En la Figura 5.58 se muestra el resultado de promediar los tiempos de mezcla a partir del análisis

en distintos puntos a lo largo de la columna para el rango de velocidad superficial de gas

examinado.

Se observa que los tiempos medios de mezcla no dependen significativamente de la velocidad de

gas, posiblemente debido al gradiente de concentración de sólido que también sería responsable

del incremento en los tiempos de mezcla cuando el ingreso es por la base. En la Figura 5.59 se

muestra cómo cambia, en promedio, la entropía macroscópica del sistema durante el tiempo de

mezcla.

Page 115: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

106

Figura 5.57: Perfil axial de tiempos de mezcla del sólido en el sistema GLS2 a distintas velocidades superficiales de gas.

Figura 5.58: Tiempo medio de mezclado del sólido en función de la velocidad de gas para el sistema GLS2.

Figura 5.59: Producción de entropía macroscópica en función de la altura de la columna para el sistema GLS2 a distintas condiciones de agitación.

Page 116: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

107

Los valores de cambio de entropía cuando se alcanza el tiempo de mezclado macroscópico

poseen el mismo orden de magnitud que los observados en el caso del GLS1, sin embargo, cabe

recordar que el sistema GLS2 alcanza un grado de homogeneidad menor.

5.2.3. Distribución de fases

En la Figura 5.60, se observa que el perfil axial de hold up de carbón en el sistema GLS2 presenta

una dependencia tipo Weibull. El contenido de sólidos en la base de la columna desciende

monótonamente al aumentar la velocidad de gas. Esta tendencia coincide con información de

bibliografía para reactores trifásicos de lecho fluidizado43.

Figura 5.60: Perfil axial de hold up de partículas de carbón activado de 1mm diámetro suspendidas en agua para distintas velocidades de gas.

En la Figura 5.61 se presentan los perfiles axiales de fracciones volumétricas de cada una de las

fases presentes en la columna trifásica aire – agua - carbón, obtenidos mediante densitometría y

corregidos como fue explicado en la sección 3.2 considerando la distribución axial de fracciones

volumétricas de sólido para distintas velocidades de gas.

Figura 5.61: Perfiles axiales de fracciones volumétricas de fases líquida, gaseosa y sólida para distintas velocidades de gas. Sistema aire--agua- carbón.

Page 117: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

108

En coincidencia con los resultados de literatura para columnas de burbujeo trifásicas188, se

observa que el hold up de gas aumenta al aumentar la velocidad de gas y que la variación axial es

leve y se circunscribe fundamentalmente a la zona superior cercana al límite de la emulsión

trifásica (“ z“na de disengagement ). E‘ h“‘d u” de só‘id“s es significativa’ente ’en“r que e‘ de

las otras dos fases a lo largo de toda la columna.

En la Figura 5.62 se muestra la tendencia del hold up de gas promedio dentro del rango de

operación estudiado. El quiebre de tendencia se da a 0,042 m/s, tomándose como estimador

insesgado de cambio de régimen de flujo de régimen de burbuja a fluidización turbulenta, estando

de acuerdo con los estimadores anteriormente propuestos.

Figura 5.62: Perfiles axiales de fracciones volumétricas de fases líquida, gaseosa y sólida para distintas velocidades de gas. Sistema aire-agua- carbón.

5.3. Columna de burbujeo bifásica GL

En esta sección se presentan resultados del movimiento de un trazador de densidad cercana a la

del líquido, obtenidos mediante RPT1D con una configuración de 8 detectores. Se estudian un

total de 6 líquidos diferentes a distintas velocidades superficiales de gas.

5.3.1. Trayectorias determinadas por RPT1D y su análisis

En las Figuras 5.63 a 5.65 se muestran porciones de trayectorias del trazador en distintos

sistemas gas líquido para la misma velocidad de gas. Dado que en este caso se trabajó con un

Page 118: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

109

menor número de detectores, la reconstrucción tiene menor resolución.

Figura 5.63: Porción de trayectoria axial del trazador en el sistema aire - agua

(ug = 0,064m/s).

Figura 5.64: Porción de trayectoria axial del trazador en el sistema aire - CMC 0,75%

(ug = 0,064m/s).

Figura 5.65: Porción de trayectoria axial del trazador en el sistema aire - CMC 1,5% (ug = 0,064m/s).

5.3.1.1. Distribución de tiempos de residencia

Teniendo en cuenta la trayectoria axial del trazador obtenida por el método de RPT-1D, se

procedieron a calcular distribuciones de tiempo de residencia (Residence Time Distribution -

RTD) del trazador en diferentes regiones de la columna. Estas RTD se han obtenido a partir de

evaluar el tiempo que permanece el trazador en cada región cada vez que entra desde cualquier

dirección. Algunos ejemplos típicos de RTD del trazador, que en este caso representa al líquido,

se muestran en las Figuras 5.66 a 5.69, para el agua y para una solución acuosa de CMC 1,5%

w / w, en cuatro regiones a lo largo de la columna y dos velocidades de gas.

Page 119: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

110

Figura 5.66: Tiempos de residencia del trazador en distintas zonas de la columna.

Líquido: Agua ; ug = 0,032 m/s.

Figura 5.67: Tiempos de residencia del trazador en distintas zonas de la columna. Líquido: Agua ; ug = 0,106 m/s

Como se observa en las Figuras 5.66 a 5.69, las distribuciones de tiempo de residencia no

están fuertemente influenciadas por la velocidad del gas, siendo ligeramente más estrecha sólo la

distribución que corresponde a la condición de velocidad del gas más alta examinada. Para la

solución más viscosa, la frecuencia de tiempos de residencia muy cortos aumenta con respecto al

agua pero los tiempos medios de residencia son similares, excepto en el caso de la velocidad de

gas más baja. Para esta condición, los tiempos medios de residencia son más altos en el agua

que en la solución viscosa.

Page 120: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

111

Figura 5.68: Tiempos de residencia del trazador en distintas zonas de la columna. Líquido: CMC 1,5% ; ug = 0,032 m/s.

Figura 5.69: Tiempos de residencia del trazador en distintas zonas de la columna. Líquido: CMC 1.5% ; ug = 0,106 m/s

El trazador permanece períodos relativamente más largos en la parte inferior de la columna en

comparación a las demás regiones, probablemente debido a que queda capturado en vórtices que

surgen por la entrada de gas. Como consecuencia, el tiempo medio de residencia del trazador en

la región de entrada es casi dos veces el valor determinado en otras regiones a lo largo de la

columna, que generalmente ronda los 0,07 s.

La influencia de la viscosidad del líquido está probablemente relacionada con el aumento

de la coalescencia de las burbujas para líquidos más viscosos, dando lugar a burbujas

más grandes. Además puede existir cierta influencia de la fricción del líquido en la pared.

Page 121: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

112

5.3.1.2. Velocidades de movimientos persistentes

En la Figura 5.70 se presentan distribuciones de velocidades del trazador calculadas a partir de

las trayectorias obtenidas por RPT1D considerando partes de la traza donde se observa un

movimiento persistente ascendente o descendente. Los movimientos persistentes corresponden a

situaciones en las cuales el trazador asciende / desciende continuamente durante un período de

tiempo actotado. Estas situaciones son asimilables a los símbolos ±2 del análisis simbólico

dinámico dado que se corresponden con encontrar al trazador ascendiendo / descendiendo

continuamente, lo cual se muestra como ejemplo en offset en la Figura 5.70. En la bibliografía se

ha propuesto que los movimientos ascendentes persistentes son ocasionados por burbujas de

gran tamaño que capturan al trazador en su estela7,Error! Bookmark not defined. .

Figura 5.70: Distribuciones de velocidades axiales descendentes (izquierda) y ascendentes (derecha) para 0,032 m/s de velocidad de gas (arriba) y 0,106 m/s (abajo).

Las distribuciones de velocidades ascendentes y descendentes se corren hacia valores absolutos

mayores al incrementar la velocidad de gas para todos los líquidos. A medida que aumenta la

viscosidad del líquido, la distribución de velocidad ascendente se vuelve ligeramente más amplia,

Page 122: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

113

mientras que la distribución de velocidad descendente muestra el comportamiento opuesto. En

consecuencia, aumenta significativamente la velocidad ascendente del trazador con la velocidad

del gas y con el aumento de la viscosidad del líquido. Un resultado similar fue reportado para la

velocidad de burbujas en una columna de burbujeo con líquidos no newtonianos medidos con

celdas de conductividad189.

En la Figura 5.71 se presentan velocidades medias de los ascensos y descensos persistentes que

presumiblemente están asociados a la presencia de burbujas de gran tamaño. Con fines

comparativos, en la misma figura, se ha representado la correlación de Wilkinson et al190 para

estimar velocidades de burbujas de pequeño y gran tamaño en columnas de burbujeo

considerando el sistema aire-agua. Se observa que las velocidades del trazador estimadas a partir

de desplazamientos persistentes toman un valor intermedio entre las predichas por la correlación

para ambos tipos de burbujas.

La tendencia es similar y bastante próxima a la predicha para burbujas grandes a bajos caudales

de gas y se aleja progresivamente en el caso de caudales altos. Esto sugeriría que los

movimientos ascendentes persistentes no responden solamente al trazador asociado a una estela

sino también a estructuras vorticales que se forman en la emulsión gas líquido como fue

propuesto por Joshi et al (2002)174. Además, muchas de las velocidades ascendentes

determinadas a partir de ascensos rápidos en la trayectoria obtenida por RPT1D para fluidos más

viscosos son menores que las de agua, mientras que generalmente se informa que la velocidad

de las burbujas en fluidos viscosos es mayor que en agua189. Esto refuerza la idea de que los

ascensos rápidos no están únicamente relacionados con las burbujas de gran tamaño.

Figura 5.71: Tendencias de las velocidades medias ascendentes (izquierda) y descendentes (derecha) con la velocidad de de gas.

5.3.2. Distribución de fases y transiciones de flujo

En esta sección se presentan otros resultados relevantes del estudio de la dinámica de los

Page 123: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

114

sistemas gas-líquido en el campo del diseño de reactores tubulares: la distribución de fases y

transiciones de régimen de flujo.

5.3.2.1. Distribución de fases

En las Figuras 5.72 a 5.74 se muestran los perfiles axiales de hold up de líquido y gas de los

sistemas GL Aire - CMC 1% ; Aire - CMC 2% y Aire - Glicerina 80%, determinados mediante

densitometría . Se observa en todos los casos que el hold up de aire se incrementa en la zona

próxima al borde de la emulsión y que aumenta con la velocidad con la velocidad de gas,

tendencias que coinciden con información de bibliografía para sistemas similares181,188. Figura

5.72 a Figura 5.74

Figura 5.72: Perfiles axiales de hold up de fases líquida y gaseosa para distintas velocidades de gas, obtenidos mediante densitometría. Sistema aire - CMC 1%.

Figura 5.73: Perfiles axiales de hold up de fases líquida y gaseosa para distintas velocidades de gas, obtenidos mediante densitometría. Sistema aire - CMC 2%

Page 124: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

115

Figura 5.74: Perfiles axiales de hold up de fases líquida y gaseosa para distintas

velocidades de gas, obtenidos mediante densitometría. Sistema aire - glicerina 80%.

En general en todos los sistemas, el hold up de gas aumenta a lo largo de la columna por la

disminución de presión. Asimismo, se incrementa cuando aumenta la velocidad del gas. A

continuación, en la Figura 5.75, se muestra como varía el hold up a una determinada altura de la

columna GL en función de la velocidad de gas para líquidos de distinta reología. Se observa que,

la dependencia del hold up de gas con la viscosidad no resulta sencilla. Para bajas

concentraciones de CMC, el hold up disminuye al aumentar la viscosidad. Esto coincide con

resultados informados en bibliografía189. Sin embargo, para concentraciones de CMC por encima

de 1%, el hold up de gas se incrementa al aumentar la viscosidad.

Figura 5.75: Hold up de aire a media altura de los sistemas GL en función de la velocidad superficial de gas.

Page 125: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

116

En soluciones viscosas coexisten dos efectos que influyen sobre el hold up:

- Un incremento de la coalescencia que lleva a la formación de burbujas de mayor tamaño,

con la consecuente disminución de hold up asociada a la disminución de area interfacial

gas-líquido.

- La aparición de burbujas de muy pequeño tamaño que incrementan el area interfacial y el

hold up. Estas burbujas se observan mucho menos en soluciones de baja viscosidad y su

número se incrementa fuertemente al aumentar la viscosidad191.

Los resultados obtenidos en este trabajo indican que el hold up de gas disminuye al aumentar la

viscosidad para soluciones de CMC con concentraciones de hasta 1% p/p (ver características en

la Tabla 3.3 del Capítulo 3). Posteriormente, el hold up aumenta con un aumento de la

concentración de CMC y, en consecuencia, de la viscosidad y del carácter pseudoplástico del

fluido.

Para glicerina 80%, fluido muy viscoso pero newtoneano, también se obtiene un elevado valor de

hold up, por encima del registrado para el agua. Cabe hacer notar que en las soluciones muy

viscosas se observan burbujas muy pequeñas y estables que permanecen incluso luego de

suspender la circulación de gas. Esto fue observado por Fransolet et al (2005) quienes midieron la

población de burbujas de distinto tamaño en soluciones viscosas de xantano en agua191.

La presencia de estas microburbujas muy estables que se forman incluso a pequeños caudales

cuando se emplean soluciones de elevada viscosidad podría ser responsable del alto valor

registrado de hold up de aire a muy bajas velocidades de gas. Estas burbujas permanecen para

todo el rango y el incremento de caudal de gas se traduce en la formación de grandes burbujas

ti”“ s‘ugs que circu‘an atravesando la columna a gran velocidad.

Otro objetivo de las medidas de densitometría fue comparar los resultados de perfiles axiales de

hold up con los inferidos a partir de experimentos de RPT 1D. Para ello, se determinó la fracción

de eventos de los trazadores que representan al líquido en distintas parcelas axiales en

condiciones similares a las empleadas en los experimentos de densitometría; estas fracciones se

multiplicaron por el hold up global de líquido obtenido de densitometría como la diferencia a 1 de

los valores de hold up de gas mostrados en la Figura 5.75. En las Figuras 5.76 y 5.77 se

muestran los perfiles de hold up de gas determinados por este método y por densitometría.

Se encuentra una coincidencia satisfactoria en los perfiles axiales de hold up gaseoso inferido por

los dos métodos. Los perfiles obtenidos no dependen fuertemente de la velocidad del gas ni de la

viscosidad del líquido.

Page 126: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

117

Figura 5.76: Perfiles axiales de hold up de fase gaseosa para el sistema aire-agua,

determinados por densitometría y RPT1D en dos condiciones de operación.

(a) ug =0,032 m/s ; (b) ug =0,106 m/s

Figura 5.77: Perfiles axiales de hold up de fase gaseosa para el sistema aire - CMC 1,1%,

determinados por densitometría y RPT1D en dos condiciones de operación.

(a) ug =0,032 m/s ; (b) ug =0,106 m/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

z (m)

Hold up de gas

(a) agua

ug = 0.032 m/s

scanning

tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

z (m)

Hold up de gas

(b) agua

ug = 0.106 m/s

scanning

tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

z (m)

Hold up de gas

(a) CMC 1.1%

ug = 0.032 m/s

scanning

tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

z (m)

Hold up de gas

(b) CMC 1.1%

ug = 0.106 m/s

scanning

tracking

Page 127: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

118

5.3.2.2. Cambio de régimen de flujo en columna bifásica identificado por

análisis simbólico

Como el sistema de detección de RPT1D consta de 8 detectores, los eventos registrados son

traducidos a símbolos de 8 bits bajo la metodología descripta en la sección 4.2.1.1.1 y 4.2.1.1.2.

A partir de la serie temporal de símbolos, se procede a calcular las frecuencias de aparición de los

distintos símbolos a fin de dar con patrones que correspondan a distintos motivos dinámicos

característicos de cada condición de operación, principalmente movimientos rápidos que se

adjudican a burbujas de gran tamaño; éstos pueden ser ascendentes o descendentes en función

de la posición relativa trazador-burbuja. Las tendencias en frecuencias de símbolos se examinan a

continuación.

5.3.2.2.1. Análisis estático

En el caso de la aplicación del análisis simbólico estático, se observa una ruptura evidente en la

tendencia de las frecuencias de aparición de determinados símbolos para todos los líquidos

examinados. Se presentan figuras que incluyen las frecuencias de símbolos característicos con

líneas de tendencia que surgen de los valores dentro de las distintas zonas esperadas

contemplando los regímenes de flujo antes descriptos y se compara con el valor diagnosticado por

otros procedimientos.

Se ha argumentado en la literatura que no hay transición entre los regímenes de flujo homogéneo

y heterogéneo para líquidos no newtonianos como las soluciones de CMC192, que es

probablemente un resultado que surge de la dificultad en la observación de emulsiones gas-

líquido operando a altas velocidades de gas185.

A partir de estos experimentos, los cambios significativos encontrados en las tendencias de las

frecuencias de símbolos con la velocidad del gas se pueden interpretar como índices relacionados

con el nivel de líquido (por lo tanto, de manera indirecta a la acumulación de gas) y con la

velocidad del líquido. Para las soluciones acuosas de CMC no newtonianas, la transición entre

regímenes estimada a partir de las variaciones de tendencias aparecen a velocidades de gas más

altas que en el agua.

Las Figuras 5.78 y 5.79 muestran, a modo de ejemplo, histogramas de símbolos estáticos a

distintas extensiones de la ventana de observación para dos condiciones extremas de intensidad

de agitación, determinados a partir de la trayectoria del trazador obtenida por RPT1D con uno de

los fluidos modelo empleados. Figura 5.78 y Figura 5.79

Page 128: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

119

Figura 5.78: Histogramas de símbolos estáticos para distintas ventanas de observación (aire-CMC 1,5%-ug = .053 m/s).

Figura 5.79: Histogramas de símbolos estáticos para distintas ventanas de observación (aire-CMC 1,5%-ug = .106 m/s).

En las Figuras 5.80 a 5.85 se muestran las tendencias de uno de los símbolos más sensibles al

cambio de régimen de flujo en los sistemas GL (el símbolo 384) en conjunto con boxplots que se

obtienen a partir de analizar los quiebres de tendencias de los distintos símbolos estáticos que

c“rres”“nden a d“s 1 c“ntigu“s, que se traducen a su’as de ”ares c“nsecutiv“s de ”“tencias

de 2 (6; 12; 24; 48; 96; 192 y 384). Figura 5.80 a 5.85

Page 129: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

120

Figura 5.80: Tendencias de la frecuencia del símbolo 384 en función de la velocidad superficial de gas para distintas ventanas de observación. Sistema: aire-agua.

Del análisis de los símbolos de mayor frecuencia, se observa que los símbolos superiores dan

como resultado velocidades críticas de menor dispersión, como se observa en las Figuras 5.81,

5.83 y 5.85. Figura 5.81

Figura 5.81: Boxplot de velocidades críticas determinadas a partir de tendencias de símbolos estáticos. Sistema: aire-agua.

Page 130: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

121

Figura 5.82: Tendencias de la frecuencia del símbolo 384 en función de la velocidad de gas para distintas ventanas de observación. Sistema: aire-CMC 0,75%.

Figura 5.83: Boxplot de velocidades críticas determinadas a partir de tendencias de símbolos estáticos. Sistema: aire-CMC 0,75%.

Page 131: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

122

Figura 5.84: Tendencias de la frecuencia del símbolo 384 en función de la velocidad superficial de gas para distintas ventanas de observación. Sistema: aire-CMC 1,5%.

Figura 5.85: Boxplot de velocidades críticas determinadas a partir de tendencias de símbolos estáticos. Sistema: aire-CMC 1,5 %.

En la Figura 5.86 se muestra un gráfico de barras del promedio de las velocidades críticas de

transición de régimen de flujo. Se pondera por la inversa de la distancia intercuartil para eliminar

Page 132: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

123

outliers dados por errores de clasificación del método de regresión paso a paso realizado para

estimar los quiebres de tendencia.

Figura 5.86: Boxplot de velocidades de cambio de régimen de flujo, determinadas por análisis estático, para los sistemas GL.

En base a estos resultados, la velocidad crítica de transición entre régimen homogéneo y régimen

heterogéneo, identificada para los líquidos newtonianos (glicerina y agua), indica que la transición

tiende a ocurrir a velocidades menores al aumentar la viscosidad. En el caso de las soluciones de

CMC, el cambio de régimen de flujo diagnosticado por el quiebre de tendencias de símbolos

estáticos aparece a mayores caudales y, comparando con la observación visual estaría asociado

a un cambio entre régimen heterogéneo, de burbujas de tamaño mixto, a régimen slug,

observándose también una disminución de la velocidad de transición a medida que aumenta la

viscosidad. Cabe destacar que el diagnóstico de transiciones de flujo en fluidos muy viscosos y

particularmente no newtonianos no es un tema en el cual hay acuerdo en la bibliografía dado que

se han encontrado tendencias contrapuestas debido probablemente a la aparición de poblaciones

de burbujas de distinto tamaño y que tienen una dinámica de movimiento y forma diferente186,

193,194.

5.3.2.2.2. Análisis dinámico

Los símbolos dinámicos que indican una llanura, un valle o un pico no son fuertemente

dependientes de la velocidad del gas y por lo tanto del régimen de flujo subyacente, ya que están

relacionadas con el ruido instrumental y, fundamentalmente, con las fluctuaciones locales

hidrodinámicas.

Por el contrario, los símbolos de -2 y 2 respectivamente, que apuntan a una persistente tendencia

decreciente y creciente, dependen fuertemente de la velocidad del gas. Esto es especialmente

Page 133: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

124

evidente en el caso de las tendencias descendentes en las soluciones no newtonianas viscosas,

probablemente relacionadas con el movimiento hacia arriba más lineal de las burbujas en fluidos

no newtonianos, y las características de las estelas que expulsan el líquido en la dirección

opuesta, la llamada "estela negativa"195.

En el análisis dinámico, si el intervalo entre las observaciones es muy pequeño, la recurrencia

más frecuente corresponde a una llanura; es decir, las tres observaciones que están en la misma

región. Esto también está relacionado con la resolución del método, que depende del número de

detectores utilizados. En consecuencia, la selección de una adecuada ventana de observación es

importante cuando se utilizan pocos detectores.

La frecuencia de un símbolo persistente (-2) y su dependencia con la velocidad de gas se muestra

en las Figuras 5.87 y 5.88 para los fluidos newtonianos agua y glicerina 80% y para soluciones

acuosas de CMC de 1,5 y 2,0 % en las Figuras 5.89 y 5.90 respectivamente. Se estudiaron las

tendencias mediante regresión lineal escalonada, conservándose las porciones sucesivas

extremas que se ajustan significativamente a una tendencia lineal, utilizando la intersección de las

dos rectas como estimador insesgado de la velocidad crítica de cambio de tendencia.

Figura 5.87: Tendencias de la frecuencia del símbolo -2 en función de la velocidad superficial de gas para distintas ventanas de observación. Sistema: aire-agua.

Page 134: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

125

Figura 5.88: Tendencias de la frecuencia del símbolo -2 en función de la velocidad de gas para distintas ventanas de observación. Sistema: aire-Glicerina 80%.

Figura 5.89: Tendencias de la frecuencia del símbolo -2 en función de la velocidad superficial de gas para distintas ventanas de observación. Sistema: aire-CMC 1,5%.

Tomándose como válidas las velocidades críticas determinadas a partir de intersecciones que

estén incluidas en el rango de operación, se construyen boxplots para cada sistema con todas las

ventanas de observación ז de 0-1 s que aporten una intersección válida.

Page 135: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

126

Figura 5.90: Tendencias de la frecuencia del símbolo -2 en función de la velocidad superficial de gas para distintas ventanas de observación. Sistema: aire-CMC 2%.

En función de la reología del sistema, en un mismo rango de condiciones de operación, pueden

desarrollarse distintas transiciones entre los regímenes de flujo descriptos en el capítulo 2.

Fundamentalmente, en el caso de fluidos viscosos, es más factible la aparición del régimen slug.

En las Figuras 5.91 y 5.92 se muestran diagramas tipo boxplot que resumen velocidades críticas

determinadas a partir de tendencias de símbolos dinámicos para dos fluidos newtonianos de

distinta viscosidad (agua y glicerina 80%) y fluidos no-newtonianos de la misma naturaleza pero

diversa composición (CMC1,5 y 2,0%). Figura 5.91 y 5.92

Figura 5.91: Boxplot de velocidades críticas determinadas a partir de tendencias de símbolos dinámicos. Sistemas: aire-agua (izquierda) ; aire-glicerina 80% (derecha).

Page 136: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

127

Figura 5.92: Boxplot de velocidades críticas determinadas a partir de tendencias de símbolos dinámicos. Sistema: aire - CMC 1,5% (izquierda).

En resumen, a partir del análisis simbólico dinámico, se han encontrado quiebres significativos en

las tendencias con la velocidad del gas que pueden servir como índices de un cambio en la

dinámica del sistema.

En la Figura 5.93 se muestra un gráfico de barras del promedio ponderado, por la inversa de la

distancia intercuartil, de las velocidades críticas de transición de régimen de flujo.

Figura 5.93: Velocidades de transición de flujo obtenidas por análisis simbólico dinámico en los sistemas GL.

Si bien este método sobreestima el valor de la velocidad de transición respecto del empleo de

símbolos estáticos y de otros métodos clásicos los valores estimados para fluidos newtonianos, al

Page 137: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

128

comparar los valores estimados para glicerina 80% y agua, indican corrimientos claros hacia

valores menores de velocidad de transición de régimen de flujo en la solución viscosa, debido

probablemente a las características geométricas de los regímenes de flujo en juego, un aumento

de las propiedades intensivas como densidad, tensión superficial o la viscosidad harán tender al

sistema relajar a través de la minimización de su superficie de contacto a caudales de gas

menores.

Entre las soluciones acuosas de CMC, la velocidad de transición estimada a partir del análisis

simbólico dinámico tiende a descender a medida que la viscosidad de la solución aumenta. Sin

embargo, en el caso de fluidos no newtonianos, se encuentra otro tipo de geometría de burbujas

que llevan a pensar en la necesidad de modelos diferenciados de distribución de tamaño de

burbuja en función de tipo de fluído condensado que se emplee. Para fluidos no newtonianos, la

velocidad de transición depende de la elasticidad del líquido196, mientras que también se ha

argumentado que puede no haber transición alguna entre los regímenes de flujo homogéneos y

heterogéneos de soluciones no newtonianas muy viscosas.

Como mencionamos previamente, todavía no hay un acuerdo sobre el efecto de las

características de los líquidos no newtonianos sobre la transición de régimen de flujo entre

condiciones homogéneas y heterogéneas en una columna de burbujeo ya que la información

experimental disponible es limitada y debido a las complejas características del fenómeno. Se ha

encontrado que un aumento en la viscosidad del líquido puede desestabilizar el régimen

homogéneo y conduce la transición a velocidades de gas más bajas para fluidos newtonianos

moderadamente viscosos, mientras que para viscosidades por debajo de un valor crítico, el

régimen homogéneo se estabiliza185.

Es curioso remarcar que la tensión superficial disminuye con la concentración de CMC hasta

menos de la mitad de la del agua197, incluso así se favorece la coalescencia a burbujas grandes,

aunque de mayor elongación. Esta aparente discrepancia con lo esperado desde la

termodinámica de fenómenos de superficie puede aclararse a partir de la observación de

microburbujas estables. Para fluidos no newtonianos moderadamente viscosos, la variación

experimental de retención de gas con la velocidad del gas reportado por Fransolet et al191 podría

sugerir que las condiciones de transición no son en gran medida afectadas por el carácter viscoso

del líquido, aunque la retención de gas disminuye. Por el contrario, Yang et al198 reporta una

disminución de las velocidades de transición a medida que aumenta la viscosidad del líquido.

Por otra parte, Olivieri et al196 ha encontrado una compleja dependencia de la transición con la

viscosidad del líquido, que muestra un máximo en la velocidad de transición vs viscosidad del

líquido y un efecto del tiempo de relajación. De los resultados experimentales presentados en este

trabajo, la velocidad del gas que indica el final del régimen homogéneo disminuye a medida que

aumenta la viscosidad del líquido.

Page 138: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

129

5.4. Comparación entre sistemas

En esta sección se discutirán algunas relaciones que han surgido a partir del cruce entre los

resultados del estudio de los sistemas GL y GLS y sus vinculaciones a la naturaleza de los

componentes de cada fase.

5.4.1. Trayectorias determinadas por RPT y su análisis

Hemos visto la vasta información que hemos podido extraer a partir de los métodos RPT y

RPT1D. Sin embargo, dependiendo de los patrones de flujo de cada sistema y su comportamiento

dentro del rango de operación estudiado, los estadísticos utilizados respondieron de la misma

manera. Esto indicaría que la información que se extrae de ambas técnicas es consistente y

soporta la utilidad de la técnica simplificada. Sin embargo, es importante revisar la influencia del

método sobre la estimación de algunos de los parámetros físicos determinados.

5.4.1.1. Coeficientes de dispersión

Cuando se compararan los coeficientes de dispersión axial (Dz) y radial (Dr) obtenidos para el

sistema GLS1 con la técnica RPT, se observa que entre ellos existe una relación de

aproximadamente un orden de magnitud, como se aprecia en el boxplot calculado a partir de

todas las condiciones examinadas, qué se muestra en la Figura 5.94.

Figura 5.94: Boxplot de cocientes entre coeficientes de dispersión axial y radial obtenidos por RPT y determinación del coeficiente de dispersión axial resultados del estudio del

sistema GLS1.

Con el fin de saber cómo influye la granularidad del sistema de reconstrucción, es decir el número

de parcelas con la que se puede subdividir el volumen de control, sobre el cálculo del coeficiente

Page 139: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

130

de dispersión axial, se calcula nuevamente el coeficiente de dispersión para posibles precisiones

que pueden alcanzarse entre el método RPT1D (menos granularidad) y RPT (mayor

granularidad). El resultado, para RPT1D y RPT colapsado en granularidades inferiores, se

muestra en la Figura 5.95.

Se ve una discrepancia de no más del 20% entre estimadores calculados con granularidades de

entre 2 y 100, obtenibles por RPT1D (2n-1, con n el número de detectores), y por RPT (del orden

de 1 a 5 mm). Al cotejar los coeficientes de dispersión axial obtenidos por la técnica RPT y la

técnica RPT1D aplicadas al movimiento de la fase sólida en el sistema GLS1 en distintas

condiciones de operación, a partir de una granularidad crítica, el coeficiente de dispersión axial es

estadísticamente invariante, ya que a medida que se vuelve más preciso, su intervalo de

confianza queda incluido significativamente en los intervalos de confianza dándole un sustento

estadístico inicial a ésta hipótesis si se utiliza el criterio de Mahalanobis199.

Figura 5.95: Determinación del coeficiente de dispersión axial (Dz) promedio para cada condición de operación a partir resultados del estudio del sistema GLS1 colapsados en

distinta granularidad.

Comparando los coeficientes de dispersión axial determinados para los sistemas GLS1 y 2, en la

Figura 5.96 se observa una fuerte proporcionalidad entre los valores de coeficiente de dispersión

axial. En las distintas condiciones de operación exploradas, y utilizando la misma granularidad en

el análisis, el cociente del coeficiente de dispersión axial de sólidos del sistema aire-agua-alginato

de calcio y del sistema aire-agua-carbón activado posee un valor de 3,6 +/- 0,2, más de un 50%

mayor que la inversa de la relación de las densidades de los sólidos, indicando una influencia de

las interacciones superficiales entre alginato de calcio y agua, sin duda más intensas que las que

se establecen entre carbón activado y agua.

Page 140: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

131

Figura 5.96: Boxplot del cociente de los coeficientes de dispersión axial de los sistemas GLS1 y 2, obtenidos por RPT1D.

5.4.1.2. Entropía y mezclado macroscópico

Como se ha visto en varias secciones anteriores, la entropía de Shannon es un indicador de cuán

mezclado está un sistema de partículas. Dependiendo de la naturaleza del sistema, éste

responderá de manera diferente para el mismo estímulo. Cuanto más parecidos sean dos

sistemas entre sí, se alcanzarán mezclados parecidos. Tal es el caso del agua y el alginato de

calcio, cuyas entropías de Shannon asintóticas son casi indistinguibles ya que se utilizaron

trazadores de densidad muy similar.

5.4.1.2.1. Influencia del caudal de gas sobre la

entropía de Shannon asintótica

Cabe mencionar que el valor asintótico que puede alcanzar la entropía de la información está

relacionado con la distribución axial de sólido que se establece una vez que se llega el estado

pseudo-estacionario para una dada condición de operación. En el caso del sistema GLS2, el

sólido no se distribuye homogéneamente en todo el lecho pues su densidad es de 2200 kg/m3 y

se está fluidizando con aire que suspende las partículas en agua, ambos fluidos de densidad

menor. En la Figura 5.97 se han representado los valores asintóticos del cuantificador (t)

calculados para los sistemas GL agua-aire, GLS1 y GLS2 a todas las velocidades de gas

empleadas.

Se incluye además en la Figura 5.98 el valor de este cuantificador estimado a partir de trayectorias

de un trazador cuya densidad es similar a la del agua en un fluido newtoniano (agua) y dos fluidos

no newtonianos (CMC 0,75 y CMC 1,5), donde se observa una gran independencia en el valor de

entropía asintótica (o de equilibrio de Lyapunov184) con respecto a la reología del sistema. Cabe

pensar que la entropía axial macroscópica del movimiento dependa en mayor medida de la

Page 141: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

132

densidad relativa entre sólidos y fluidos que en características del fluido.

Se observa en el caso del trazador de densidad similar al líquido, que el valor de la asíntota es

insensible a las condiciones de operación mientras que en el caso de los trazadores sólidos más

densos se ve un cambio de tendencia en el rango de velocidades esperados por lo reportado por

Park & Fan187.

Figura 5.97: Comparación de las entropías de Shannon asintótica de los sistemas GL agua-aire, GLS1y2.

Figura 5.98: Comparación de las entropías de Shannon asintótica de los sistemas GL.

Page 142: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

133

5.4.1.2.2. Entropía y análisis simbólico para determinación de

cambios en regímenes de flujo

Comparando los resultados de las secciones 5.2.1.2, 5.2.1.3, y 5.2.2.1, se ha encontrado una

significativa coincidencia en la determinación de velocidades críticas de cambio de régimen de

flujo en el sistema GLS2, que es donde se pudo aplicar satisfactoriamente los análisis simbólicos y

el análisis basado en entropía de la información. En las Figuras 5.98 y 5.99 se observa claramente

que, tanto en los sistemas GLS1 como en todos los sistemas GL, la entropía de Shannon

asintótica es prácticamente constante a lo largo del rango de operación estudiado, no

encontrándose quiebre significativo de tendencias. Figura 5.97 y Figura 5.98

En cambio, utilizando análisis simbólico estático y dinámico (Figuras 5.99 y 5.100), pudieron

extraerse estimadores de las velocidades de transición entre regímenes de flujo en todos los

experimentos que están de acuerdo con lo determinado por observación visual y por resultados

reportados en bibliografía que estudian sistemas similares178.

Figura 5.99: Boxplot comparativo de la velocidad de cambio de régimen de flujo estimada por análisis simbólico estático. Sistemas GL agua-aire, GLS1 y GLS2.

Figura 5.100: Boxplot comparativo de la velocidad de cambio de régimen de flujo estimada por análisis simbólico dinámico. Sistemas GL agua-aire, GLS1 y GLS2.

Page 143: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

134

5.4.1.3. Hold up de fases en columna trifásica

En la Figura 5.101 se muestran las tendencias del hold up de aire en función de la velocidad de de

aire, determinados por densitometría, se observa una sutil diferencia en defecto en la zona de

menor caudal en el caso del sistema GLS1, igualándose en la zona posterior a las dos

transiciones de flujo. Los quiebres de las dos tendencias coinciden satisfactoriamente con los

estimadores propuestos en la tesis.

Figura 5.101: Perfiles axiales de hold up normalizado de los sistemas GLS1 y 2 a distintas velocidades superficiales de gas.

A fin de visualizar la diferencia entre comportamientos de las distintas fases sólidas de los perfiles

axiales de contenido de sólidos en los sistemas GLS1 y 2, que se muestra la Figura 5.102 y donde

se observa un notable contraste en la funcionalidad que toma la dependencia del hold up axial con

la densidad de la partícula en relación a la densidad del líquido. Cuando la densidad de las

partículas es similar a la del líquido, la distribución axial de hold up es mucho más homogénea en

coincidencia con lo sugerido por la función entropía presentada en las secciones previas.

Figura 5.102: Perfiles axiales de hold up normalizado de los sistemas GLS1 y 2 a distintas velocidades superficiales de gas.

Page 144: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

135

En el sistema GLS1, la densidad del trazador es muy similar a la del líquido mientras que la

densidad de la fase sólida del sistema GLS2 es casi el doble que la de la fase líquida. En el

sistema GLS1 se observa una dependencia prácticamente lineal del hold up en la dirección axial

mientras que en el sistema GLS2 la tendencia ajusta mejor a una función biexponencial o una

función tipo Weibull.

5.5. Tanque agitado trifásico (nitrógeno-isooctano-óxido de metal)

La dinámica del tanque agitado trifásico, descripto en la sección 3.3.3, se estudió por RPT a 3

condiciones de agitación diferentes y contenidos de sólido que van de 0,1 g/L a 7 g/L, a una

velocidad de burbujeo de nitrógeno de 10 mL/min.

5.5.1. Trayectorias determinadas por RPT y su análisis

En las Figuras 5.103 y 5.104 se muestran ejemplos de trayectorias obtenidos por el método RPT

en los experimentos de tanque agitado, descripto en la sección 3.3.3, para un contenido global de

sólidos de 1,3 g/L y a 120 y 200 rpm de frecuencia de rotación del agitador, respectivamente.

Figura 5.103: Porción de 100 posiciones de una trayectoria tridimensional obtenida por RPT en tanque agitado (1,3g/L – 120 rpm).

Page 145: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

136

Se observa que a 200 rpm, en el mismo período, el trazador adopta un impulso axial superior al de

la trayectoria a 120 rpm, indicando que una mayor velocidad de agitación azimutal favorece la

suspensión en el eje axial.

Figura 5.104: Porción de 100 posiciones de una trayectoria tridimensional obtenida por RPT en tanque agitado (1,3g/L – 200 rpm).

5.5.2. Campo de velocidades

La Figura 5.105 muestra el campo de velocidades tridimensional, obtenido a partir de promedios

de velocidades del trazador en distintas parcelas del volumen de control. Se observa nítidamente

el vórtice principal inducido por el movimiento de las paletas del agitador y que el movimiento

ascendente del trazador es de tipo helicoidal.

Las Figuras 5.106 a 5.108 muestran distintos aspectos del campo de velocidades promedio del

sistema; se observa un fuerte vórtice en la sección transversal del equipo, impuesto por el

movimiento del forzante, que en este caso es el agitador en movimiento de rotación con centro en

el eje axial del sistema. En la figura se aprecia el efecto de los deflectores internos del reactor, que

afectan la dirección e intensidad de las líneas de corriente del trazador en la zona cercana a la

pared. Cabe remarcar que las figuras son un promedio axial y los bafles no ocupan toda la altura

del equipo, no llegan a la base.

Page 146: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

137

Figura 5.105: Campo de velocidades promedio obtenido a partir de trayectorias de 3h de

duración en el tanque agitado (1,3g/L - 150 rpm).

Figura 5.106: Proyección en el plano transversal (XY) del campo de velocidades del trazador en el reactor agitado para un contenido de sólidos de 7g/L a 150 rpm(izquierda) y

200 rpm (derecha).

Page 147: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

138

Figura 5.107: Proyección en el plano frontal (Z-r promedio azimutal considerando

axisimetría) del campo de velocidades del reactor agitado (7g/L - 150 rpm).

Figura 5.108: Proyección en el plano frontal (Z-r promedio azimutal) del campo de

velocidades del reactor agitado (7g/L - 200 rpm).

Page 148: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

139

Se observa un aumento de intensidad global de las velocidades y del espacio ocupado por la

trayectoria del trazador al aumentar la velocidad de agitación. Cabe resaltar que el método de

reconstrucción es capaz de demarcar las zonas ocupadas por el agitador y los bafles sin necesidad

de incluir restricciones ni indicar esta información al programar la reconstrucción.

En la Figura 5.109 se muestran perfiles axiales de velocidad axial para un contenido global de

1g/L en función de la condición de agitación. Se observa un aumento de velocidad ascendente a

medida que aumenta la intensidad de agitación y que la velocidad axial solo es importante en la

parte inferior del reactor, debajo y alrededor de la paleta de agitación.

Figura 5.109: Perfil axial de velocidad axial en función de la velocidad de agitación para

un contenido global de sólidos de 1g/L

En la Figura 5.110 se muestran perfiles radiales de velocidad tangencial para un contenido global

de 1g/L en función de la condición de agitación. Se observa un aumento de la velocidad en la

dirección azimutal al aumentar la velocidad de agitación. En todas las condiciones, a la altura del

extremo de las paletas, se observa que la velocidad tangencial es máxima.

Figura 5.110: Perfil radial de velocidad tangencial en función de la velocidad de agitación para un contenido global de sólidos de 1g/L.

Page 149: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

140

En la Figura 5.111 se muestran perfiles radiales de velocidad radial para la misma condición de

contenido de sólidos, en función de la condición de agitación. Se observa un cambio de sentido de

divergente a convergente en la velocidad radial entre 120 rpm y 150 rpm, acentuándose el

carácter convergente de la velocidad media radial al aumentar la intensidad de agitación. Cabe

remarcar que, por debajo de 10 mm de radio, son muy ocasionales los eventos que se registran

en la zona dado que es muy próxima al agitador.

Figura 5.111: Perfil radial de velocidad radial en función de la velocidad de agitación para un contenido global de sólidos de 1g/L.

5.5.3. Parámetros de turbulencia

Las Figuras 5.112 y 5.113 muestran cómo se distribuye la ECT en planos a distintas alturas de la

columna para dos condiciones de agitación y un mismo contenido de sólidos.

Figura 5.112: Distribución de la energía cinética de turbulencia a distintas alturas en el tanque agitado (120 rpm, 1,3 g/L de sólido) a partir de los datos de RPT.

Page 150: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

141

Figura 5.113: Distribución de la energía cinética de turbulencia a distintas alturas en el tanque agitado (200 rpm, 1,3 g/L de sólido) a partir de los datos de RPT.

Se observa que los valores más elevados de ECT se encuentran en al zona cercana a la paleta

del agitador, y se incrementan hacia la parte superior del reactor al aumentar la velocidad de

agitación.

La Figura 5.114 permite comparar, para la misma condición de contenido de sólidos, la

distribución de ECT en el plano frontal centrado en el eje de simetría de la columna.

Figura 5.114: Corte sagital de la energía cinética de turbulencia a distintas condiciones de agitación (120 rpm, izquierda ; 200 rpm, derecha). Contenido de sólidos: 1,3 g/L.

Page 151: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

142

Las Figuras 5.115 y 5.116 muestran la influencia de la condición de agitación sobre el esfuerzo de

corte en el plano transversal a distintas alturas de la columna para el sistema con 1,3 g/L de

contenido de sólidos. A diferencia de la ECT, los esfuerzos x-y presentan máximos más

localizados en la dirección radial y azimutal, probablemente debido a la posición del agitador y de

los deflectores internos. Se ve que en la zona cercana a la paleta, el esfuerzo de corte máximo se

corre a alturas mayores a medida que aumenta la intensidad de agitación.

Figura 5.115: Distribución del esfuerzo de corte transversal (xy) a 6 distintas alturas en el

tanque agitado para un s global de 1,3 g/L a 120 rpm.

Figura 5.116: Distribución del esfuerzo de corte transversal (xy) a 6 distintas alturas en el tanque agitado para un s global de 1,3 g/L a 200 rpm.

Page 152: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

143

5.5.4. Distribución de fases

A partir de las series temporales de posición (trayectorias) se pueden estimar las distribuciones de

la frecuencia normalizada de encontrar la partícula trazadora en distintas parcelas del reactor. En

las Figuras 5.117 y 5.118 se muestran cortes transversales a distintas alturas de los mapas de

distribución, determinados a 120 rpm y 200 rpm respectivamente. Figura 5.118

Figura 5.117: Distribución de probabilidad a 6 alturas en el tanque agitado para un contenido global de sólidos de 1,3 g/L a 120 rpm.

Cabe remarcar que en este caso las probabilidades no estarían asociadas estrictamente al hold

up normalizado de sólidos debido a que el trazador representa un agregado voluminoso de

partículas; indicarían estrictamente la probabilidad de encontrar dicho agregado u otros similares,

en distintas zonas del reactor.

Figura 5.118: Distribución de probabilidad a 6 alturas en el tanque agitado para un contenido global de sólidos de 1,3 g/L a 200 rpm.

Page 153: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

144

Se observa que la probabilidad de encontrar al trazador es máxima en la zona inferior del reactor,

fundamentalmente debajo de las paletas del agitador y en la zona cercana a la pared. La

probabilidad de encontrar al trazador en posiciones axiales superiores se incrementa al aumentar

la intensidad de agitación.

En las Figuras 5.119 y 5.120 se presentan, a modo de ejemplo, perfiles axiales y radiales de la

probabilidad de encontrar al trazador dentro del tanque agitado trifásico para tres distintas

velocidades de agitación a un dado contenido de sólidos de 1 g/L.

El perfil axial de distribución es función de la diferencia de densidades entre el trazador y las fases

fluidas y del balance de energía mecánica entre el arrastre dado por las corrientes de fluido en la

dirección axial del sistema, cuya intensidad aumenta al aumentar la velocidad azimutal del

agitador. Se observa una distribución menos heterogénea en la dirección axial a medida que

aumenta la velocidad de agitación. En la dirección radial generalmente se observa una distribución

relativamente homogénea tendiendo a subir bruscamente en las paredes del equipo

prácticamente independientemente de la velocidad de agitación.

Los resultados obtenidos tanto del campo de velocidades como los mapas de distribución de

probabilidades coinciden con información obtenida por PEPT en un ractor agitado bifásico (agua –

partículas de vidrio)200.

Figura 5.119: Perfiles axiales de hold up de sólidos normalizados en tanque agitado trifásico para un s global de 1 g/L para tres distintas condiciones de agitación.

Page 154: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

145

Figura 5.120: Perfiles radiales de hold up de sólidos normalizados en tanque agitado

trifásico para un s global de 1 g/L para tres distintas condiciones de agitación.

Page 155: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

146

‘If I have seen further, it is

by standing on the shoulders of giants’

Sir Isaac Newton

6. Conclusiones

El mezclado de precisión en sistemas multifásicos tradicionalmente contribuye a la reducción de

costos de procesos ya instalados y al incremento de márgenes de seguridad y competitividad de

procesos por venir21. En la actualidad poseemos grandes volúmenes de información que nos

permiten entender en mayor detalle la interacción entre las variables que comunmente se toman

en consideración al caracterizar la operación de un equipo y sus figuras de mérito (fallas en

conductos201, eficiencias para equipos de transferencia de calor202 y materia64, rendimientos y

selectividades de reacción203 para un reactor, etcétera). En el diseño de reactores es deseable

conocer aspectos del mezclado que conduzcan a performances más reproducibles204.

Uno de los factores de riesgo principales en emprendimientos biotecnológicos es la falta de un

conocimiento preciso de las variables de proceso que lleven a la máxima rentabilidad204. Conocer

la dinámica subyacente de un equipo industrial es clave para disminuir los riesgos asociados con

su funcionamiento y para la intensificación de procesos, actividad que inexorablemente se ve

perfilada como uno de los caminos que debe recorrer la ingeniería en la industria de procesos

actual205.

En el presente trabajo, se explicó cómo la técnica de RPT conduce a deterninar trayectorias de

trazadores radiactivos de manera no invasiva para luego presentar modos de tratamiento de la

vasta información obtenida a fin de dar con descripciones más detalladas de la dinámica

macroscópica de columnas de burbujeo GL con líquidos newtonianos y pseudoplásticos de

distinta viscosidad, columnas de burbujeo trifásicas GLS aire-agua-alginato de calcio y aire agua

carbón activado y de un tanque agitado GLS nitrógeno-isooctano-óxido de metal de transición.

A partir del tratamiento del gran volumen de datos obtenidos por la técnica RPT se logró extraer

información relevante en el diseño de procesos tales como tiempos de mezclado, coeficientes de

dispersión y distribución de parámetros de turbulencia. Además se exploró la posibilidad de

simplificar el montaje de RPT para convertirlo en una técnica versátil para su uso en la industria.

Page 156: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

147

6.1. Alcance de las técnicas RPT y RPT1D

Radioactive Particle Tracking es la técnica de velocimetría más precisa y de menor costo dentro

de las aplicables en campo del estudio de sistemas multifásicos de escala industrial.

Como fue explicado en la sección 3.1.3, dependiendo de la configuración geométrica del arreglo

de detectores, puede obtenerse información de una o más dimensiones de la trayectoria del

trazador. Se comparó la cantidad de información obtenida en función de la complejidad necesaria

para realizar la reconstrucción en los casos unidimensional (RPT-1D) y tridimensional (RPT).

Resulta más económico y rápido computacionalmente el procedimiento unidimensional aunque

brinda información más limitada, de granularidad mayor a la obtenida por RPT.

En la actualidad, una tendencia marcada en el análisis de medios multifásicos es encontrar

maneras de validar, con técnicas de alta precisión, hipótesis que se manifiestan al estudiar dichos

sistemas con técnicas simples. Tal es el caso de la relación que se establece entre RPT1D y RPT,

si se encuentra una manera de correlacionar un dato obtenido por RPT1D, más simple de

implementar, con el mismo dato obtenido por RPT, se puede estandarizar una metodología de

análisis validada ex situ.

Es de esperar la asignación de un mayor grado de confianza sobre resultados obtenidos por

técnicas de mayor precisión. En cualquier industria, sin embargo, se prefieren las técnicas de

mayor robustez y facilidad de operación aunque la información extraída pueda ser más imprecisa.

Un diagnóstico rápido y no invasivo del mezclado macroscópico, de potencial uso en el monitoreo

de la performance de un reactor funcionando de manera continua puede resolverse

satisfactoriamente asociando la información rápida pero limitada de RPT-1D a distintos

indicadores de performance más difíciles de obtener mediante ensayos de rutina.

A pesar de la baja granularidad espacial de la información de RPT-1D, es decir la mayor incerteza

de la posición del trazador, en relación a RPT, se pueden realizar experimentos de distribución de

tiempos de residencia sin efectuar el ensayo de estímulo respuesta. Además, cabe mencionar que

los ensayos de estímulo respuesta rara vez proveen información local y son muy difíciles de

realizar sobre sólidos en suspensión en condiciones batch. En los casos donde la componente

principal de la trayectoria es una dimensión dominante en el espacio, como es el caso de una

columna de burbujeo de relación de aspecto ancho:alto 1:10 como la estudiada en el presente

trabajo, la obtención del perfil axial de distribución de fase sólida, tiempos de mezclado y

coeficiente de dispersión en función de las condiciones de operación posee gran relevancia en el

campo de la ingeniería de reactores tubulares y se obtiene de manera rápida y no invasiva.

La reconstrucción aproximada de la trayectoria axial del movimiento de un trazador de sólidos,

utilizando un sistema de detectores alineados verticalmente junto a la columna de burbujeo con

Page 157: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

148

sólidos en suspensión, permite extraer de manera no invasiva información útil para el diseño y

control de la operación de estos equipos. Dado que no requiere una etapa de calibración, este

sistema puede ser empleado para monitoreo y diagnóstico de la operación de un equipo industrial

en tiempo real. Una ventaja adicional del sistema RPT-1D es la posibilidad de obtener, utilizando

una fuente externa de radiac

el sistema, también de manera no invasiva.

Un análisis profundo del mezclado macroscópico en relación a la reología del sistema tendiente a

la prevención desde el diseño de tradicionales problemáticas, tales como puntos estancos en

sistemas que requieren rápida transferencia de calor y de masa o turbulencia inadecuada en

reactores biotecnológicos o con catalizadores frágiles en general, es más tendiente a requerir

información de mayor glanularidad. Por ende, a fin de precisar cuestiones de ingeniería de detalle

que relacionan la geometría de un equipo con parámetros de transferencia de cantidad de

movimiento, calor y masa, posiblemente la información que brinda la técnica de RPT-1D no sea

suficiente y se deba recurrir a largas trayectorias obtenidas por RPT.

Del estudio del sistema GLS1 mediante RPT y RP1D todos los estadísticos calculados según las

secciones 4.1.3; 4.2 y 4.3 a partir de datos en la dirección axial, no difieren significativamente. En

la sección 5.1, tuvimos la oportunidad de contrastar la técnica de RPT1D con RPT al estudiar el

sistema GLS1 con ambas técnicas; en particular, se vio como el coeficiente de dispersión axial

obtenido por RPT1D es similar al obtenido con RPT, difiriendo en no más del 20% en exceso ya

que el coeficiente de dispersión es una función directamente proporcional a la varianza de

extractos de trayectorias y, por ende, de los intervalos de confianza con que están medidas las

posiciones de cada trayectoria.

6.2. Mezclado macroscópico: distribución de fases, dispersión, entropía y

tiempos de mezcla macroscópicos en columnas de burbujeo bifásicas y

trifásicas.

A fin de darle un mayor valor a la información obtenida por RPT1D, se exploraron diversos

métodos estadísticos para estimar velocidades críticas de cambio de régimen de flujo en los

sistemas tipo columna de burbujeo. Asimismo, con la ayuda de densitometría (que puede

hacerse con el mismo arreglo experimental), se lograron obtener perfiles axiales de contenido de

fases, con los que se pudieron además determinar cambios de régimen de flujo de una manera

más clásica, constatándose que los estimadores de velocidad de cambio de flujo determinados

por análisis simbólico estático y dinámico, son precisos siempre y cuando se controle el período

de observación con el que se construyen dichos símbolos, cuya metodología fue explicada en la

sección 4.2.1. A partir de estos símbolos, considerando los que corresponden a tendencias

persistentes, han podido obtenerse características asociadas a burbujas de ascenso rápido y

Page 158: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

149

estructuras vorticales cuya tendencia de frecuencias cambia abruptamente en velocidades de gas

donde la observación visual y la literatura han determinado que se encuentra la transición de flujo

de homogéneo a heterogéneo (en el caso de fluidos newtonianos) y de heterogéneo a slug (en el

caso de fluidos no newtonianos).

Los coeficientes de dispersión axial obtenidos en los sistemas GLS1 y GLS2 dependen de la

velocidad del gas en forma aproximadamente lineal dentro del rango de operación, más marcado

en el caso del sistema GLS2.

Se encuentra sistemáticamente que la relación con el tiempo de la entropía de Shannon calculada

a partir de extractos de trayectoria posee una curvatura cóncava hacia abajo y converge a un valor

preciso que depende de la densidad del trazador y la velocidad de gas. Para todos los sistemas, a

mayor velocidad de gas, el sistema responde con un incremento de la entropía de Shannon

asintótica, más notable cuando la densidad del trazador difiere de la del líquido. La entropía de

Shannon obtenida a partir de las trayectorias determinadas por la técnica propuesta resulta una

excelente herramienta para la determinación cuantitativa de tiempos de mezcla, de la posición

más adecuada de carga de sólidos y de la velocidad de gas donde ocurre una transición entre

regímenes de flujo en el sistema GLS2. Asimismo, con RPT y RPT1D, se pueden determinar

perfiles axiales de fracciones volumétricas de sólido y, asistidos por densitometría , la de las otras

fases presentes.

Los perfiles axiales de tiempo de mezcla de sólidos para los sistemas GLS1 y GLS2 indican un

mínimo en la zona del segundo cuartil de la columna, revelando que dicha posición puede ser la

privilegiada si el objetivo es maximizar la rapidez de mezcla de una hipotética carga de sólidos. El

tiempo promedio de mezclado de sólidos en el sistema GLS1 aumenta levemente para muy bajos

caudales de gas y luego disminuye con el caudal de gas. En el caso del sistema GLS2, la

influencia del caudal de gas es menor.

6.3. Campos de velocidades y parámetros de turbulencia en columna de

burbujeo trifásica GLS y tanque agitado trifásico GLS

Tanto en la columna de burbujeo con el sistema GLS1 como el tanque agitado trifásico fueron

estudiados mediante RPT. Utilizando los conceptos de fluido-dinámica estadística explicados en la

sección 4.1, se pudieron construir campos de velocidades promedio y mapas de turbulencia que

proveen un panorama completo del movimiento del trazador en el equipo.

Las velocidades ascendentes del trazador en la columna de burbujeo con sistema GLS1 se dan

fundamentalmente en el anillo central de la columna y aumentan con la velocidad del gas. Las

velocidades descendentes del trazador están probablemente relacionadas con la velocidad

descendente de líquido, que recircula en la región de espacio anular cerca de la pared;

Page 159: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

150

disminuyen en valor absoluto cuando la velocidad del gas disminuye. Este hecho se debe

posiblemente a que esa zona de la columna se pueble más de partículas, volviendo más tortuoso

el camino del trazador. En toda la columna se encuentran velocidades radiales convergentes

desde la pared hacia el centro, probablemente relacionado con la existencia de espuma. A bajos

caudales de gas se observa en forma definida la presencia de dos vórtices, uno en la zona

próxima al distribuidor de una extensión aproximadamente igual al diámetro de la columna y otro

que ocupa el resto de la emulsión. Para altos caudales, se desdibuja el vórtice de la zona de

distribución.

Los parámetros de turbulencia del sistema GLS1 son más altos en promedio a medida que

aumenta la velocidad de gas pero, a medida que el flujo de gas disminuye, la turbulencia se

localiza más en la zona donde se encuentran los vórtices inferior y superior, coincidiendo también

con la zona donde el tiempo de mezcla es mínimo y la velocidad de producción de entropía tiene

su máximo.

En la sección 5.5 se muestran los resultados del estudio del movimiento de una partícula dentro

de un reactor tipo tanque agitado trifásico nitrógeno-isooctano-óxido de metal. El comportamiento

general de las trayectorias se encuentra fuertemente afectada por la velocidad de agitación y

también está influenciada por la proporción de sólidos en la suspensión. En particular, la

probabilidad que la partícula tiene de permanecer en el fondo del recipiente disminuye con la

velocidad de agitación. Este hecho también se ve reflejado en el corrimiento de los perfiles axiales

de velocidad axial hacia mayores velocidades a medida que la velocidad de agitación aumenta.

Las velocidades radiales cambian de dirección de netamente divergentes a netamente

convergentes a medida que aumenta la velocidad de agitación. Los mapas de turbulencia indican

mayor intensidad de energía cinética por unidad de masa en las inmediaciones de las paletas y un

incremento generalizado con la velocidad de agitación.

Page 160: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

151

‘My apologies for the somewhat banal expression,

if I say that those who imagine they have got rid of atomism

by means of differential equations fail to see the wood for the trees.’

Ludwig Boltzmann206

7. Perspectivas del presente cercano

Poco más de una centuria luego del trabajo de Boltzmann, tenemos certeza de que algunos

sistemas de leyes en ciencias naturales son correctos debido a su constante confirmación con la

experiencia; pero la decisión última acerca de si es correcta la descripción de un determinado

sistema radica no sólo en la capacidad de reproducir resultados experimentales sino también en la

consistencia entre las distintas predicciones que provee el conjunto de leyes utilizado207. Aún en la

actualidad, la dinámica de fluidos es un conjunto de preguntas, muchas de las cuales están

todavía abiertas208,209. Una fundamental, que hasta el momento no se ha podido elucidar, es la

determinación de la unicidad y derivabilidad del conjunto de soluciones de la ecuación de Navier-

Stokes en todas sus condiciones de clausura210.

Si bien en sistemas monofásicos de baja viscosidad y geometrías simples se han encontrado

soluciones particulares satisfactorias211, la complejidad de estos sistemas no deja de crecer a

medida que aumenta el número de fases que lo componen. La presencia de sólidos en

suspensión hace extremadamente compleja la descripción contínua del flujo multifásico ya que

significa un cambio brusco y sistemático de las condiciones de contorno de las ecuaciones de

Navier-Stokes. El recurso de la utilización de pseudofases está restringido a situaciones donde la

dispersión de las fases es pseudoestacionaria. En sistemas donde la superficie de contacto fluctúa

erráticamente por ciclos de coalescencia y ruptura de clusters de fase dispersa (burbujas, gotas,

coágulos, aglomeración o ruptura de partículas sólidas), la hipótesis contínua fracasa212.

El enfoque discreto, o flujo granular213, ha sido durante años soslayado por la comunidad debido a

que es mucho más costoso computacionalmente que el enfoque continuo. En las últimas décadas,

se han reportado metodologías novedosas214,215 que se avocan a resolver las problemáticas de

ambos enfoques, aprovechando también que la potencia de cálculo, por fortuna, creció como lo

predicho por Moore216 hace 4 décadas. Sin embargo, ese ritmo de crecimiento computacional está

limitado a los materiales que puedan construirse de manera masiva, recordar que Moore planteó

su ley a partir de computadoras basadas en silicio dopado.

Estamos en una época afortunada para enfrentarnos a la complejidad. Dada la capacidad de

computación que se posee en la actualidad, podemos aventurarnos a generar modelos más

ambiciosos que puedan conectar las distintas escalas involucradas en la dinámica de los

Page 161: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

152

procesos, incluso volviéndose más accesibles debido al advenimiento de la computación de alta

performance con código abierto217,218. Pero al aumentar la complejidad de dichos modelos, se

deben procesar grandes volúmenes de información empírica a fin de dar con una validación

estadísticamente significativa con costos computacionalmente moderados que mejoren la

capacidad predictiva requerida para reducir el riesgo de tomar decisiones en base a modelos

teóricos219.

Una multiplicidad de técnicas no invasivas han tenido un efecto sinérgico en la construcción de

nuevos modelos de mejor capacidad predictiva, en los ultimos años. De acuerdo con lo descripto

en la sección 2.2, las tecnicas de imagenología220 permitirían seleccionar aquellos modelos que

reproducen mejor la distribución de fases en el espacio, mientras que las velocimetrías nos

proporcionarían el resultado del balance de fuerzas instantáneo sobre partículas discretas en

distintas zonas del sistema en estudio. De entre todas las técnicas de estudio dinámico en

sistemas multifásicos, aquellas que usan radiación de alta energía son las que mayor nivel de

información pueden obtener del interior de un sistema multifásico de gran envergadura,

eminentemete opacos, permitiendo así la corrección por escalado de modelos validados a escalas

banco o piloto o validación directa de modelos de equipos de gran escala.

RPT, en combinación con densitometría o X, permiten un panorama completo del movimiento de

fases. Me atrevo a pensar, dadas las experiencias que han compartido conmigo expertos (tanto

por asistencia a simposios como por seguir sus publicaciones) en el tema específico de mi

doctorado y otras técnicas de estudio no invasivo de medios multifásicos, que la densitometría

puede mejorarse aún más con el uso de explotación de datos221222, tal es el caso de la tomografía

de rayos X de alta velocidad y su posibilidad de inferir con mayor detalle la influencia del

movimiento macroscópico con el comportamiento de las interfases223, donde residen los

verdaderos factores geométricos que afectan la eficiencia de la transferencia de masa22. La

técnica de tomografía ultra rápida de rayos X es varios ordenes de magnitud más barata que fMRI

y puede responder las mismas preguntas en relación a la distribución de interfases en sistemas

multifásicos, con la ventaja adicional que puede aplicarse a cualquier volúmen de control.

Por último quisiera resaltar el aspecto de la aplicación de técnicas novedosas de estudio de

sistemas multifásicos en ambientes industriales reales de forma rutinaria: el instrumental común

en las plantas industriales son sensores de presión, temperatura, caudal, corriente y potencial

eléctricos, y, en algunos casos, especies como protón acuoso y componentes gaseosos (H2O, O2,

CO, CO2, NOx, SOx, etc.). Quizás el rol de éstas técnicas sea habilitar a las simulaciones para

hacer un mapa que pueda conectar los emergentes dinámicos con el espacio de operación

registrado, a fin de darle a la ingeniería de procesos una mejor capacidad predictiva.

A eso vamos.

Page 162: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

153

Referencias

1 Dudukovic, M.P. (2009) Frontiers in Reactor Engineering. Science, 325, 698–701 2 Godfroy, L., Larachi, F., Kennedy, G., Grandjean, B. P. A., & Chaouki, J. (1997). On-line flow visualization in multiphase reactorsusing neural networks. Appllied Radiation and Isotopes, 48, 225-235. 3 Chaouki, J., Larachi, F., Dudukovic, M.P. (Eds.): Non-Invasive Monitoring of Multiphase Flows (1997) Elsevier, Amsterdam. 4 Heindel, T.J.A. (2011) Review of X-ray flow visualization with applications to multiphase flows. J. Fluids Eng.133,074001-1–074001-16. 5 Dudukovic, M. P. (2002) Opaque multiphase flows: experiments and modeling. Experimental, Thermal and Fluid Science, 26, 747–761. 6 Doucet, J.; Bertrand, F.; Chaouki, J.: A measure of mixing from Lagrangian tracking and its application to granular and fluid flow systems. Chemical Engineering Research & Design, 86, 1313-1321 (2008) 7 Larachi, F., Cassanello, M., Chaouki, J., Guy, C. (1996) Flow structure of the Solids in a Three-Dimensional Gas-Liquid-Solid Fluidized Bed, AIChE J., 42, 2439–2452. 8 Cassanello, M.; Larachi, F.; Kemoun, A.; Al-Dahhan, M.H.; Dudukovic, M.P: Inferring liquid chaotic dynamics in bubble columns using CARPT Chemical Engineering Science, Volume 56, Issues 21–22, November 2001, Pages 6125-6134 9 Cassanello, M.; Larachi,F.; Guy,C.; Chaouki, J. (1996): Solids mixing in gas–liquid–solid fluidization: experiments and modeling , Chem. Eng. Sci. , 51, 2011–2020. 10 Esmaeili, A., Guy, C., Chaouki, J., The effects of liquid phase rheology on the hydrodynamics of a gas–liquid bubble column reactor, Chemical Engineering Science, 129, 193–207 (2015) 11 Dusting, J., Sheridan, J., Hourigan, K. (2006) A Fluid Dynamics Approach to Bioreactor Design for Cell and Tissue Culture. Biotechnology and Bioengineering, 94, 1196–1208 12 Weyand, B., Israelowitz, M., von Schroeder, H., Vogt, P. (2009) Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach. Advances in Biochemical Engineering / Biotechnology, 112, 251–268 13 Fraguío, M.S., Cassanello, M.C., Larachi, F., Limtrakul, S., Dudukovic. M.P. (2007) Classifying Flow Regimes in Three-Phase Fluidized Beds from CARPT Experiments, Chemical Engineering Science, 62, 7523–7529 14 Fraguío M.S. Cassanello M., Larachi F., Chaouki J. (2005) Flow regime transitions pointers in three phase fluidized beds inferred from a solid tracer trayectory, Chem. Eng. Proc., 45, 350-358 15 Bhusarapu, S., Cassanello, M.C., Al-Dahhan, M., Duduk“vic, M.P., Truji‘‘“, S., O Hern, T. (2007) Dynamical Features of the Solid Motion in Gas-Solid Risers. International Journal of Multiphase Flow, 33, 164–181 16 Vesvikar, M.S.; Al-Dahhan, M.: Hydrodynamics investigation of laboratory-scale Internal Gas-lift loop anaerobic digester using non-invasive CAPRT technique. Biomass and Bioenergy 84 (2016) 98-106 17 Dudukovic, M.P: Reaction engineering: Status and future challenges, Chemical engineering science, 65 (2010) 3-11. 18 Chen, S.; Chen, B.: Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation. Applied Energy 115 (2014) 151–163 19 Agrawal, R.; Sikdar, S.K.: Energy, environment and sustainability challenges and opportunities for chemical engineers. Current Opinion in Chemical Engineering 2012, 1:201–203 20 IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental

Page 163: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

154

Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J.Savolainen, S. Schlomer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 21 A. Pandey, C. Larroche, S. C. Ricke, C.-G. Dussap,E. Gnansounou, Biofuels: alternative feedstocks and conversionprocesses, Oxford UK: Academic Press, 2013. 22 Dudukovic, M.P.; Mills, P.L.: Scale-up and multiphase reaction engineering. Current opinion in Chemical Engineering, 2015, 9:49-58. 23 Jiang, J.; Wu, J., Zhang, J., Poncin, S.; Li, H.Z.: Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors. Bioresourse Technology, 155, (2014), 1-7. 24 Pangarkar, V.G: Design of Multiphase Reactors. John Wiley & Sons, Inc, (2015) Hoboken, N.J. 25 Dudukovic, M.P., Larachi, F., Mills, P.L. (2002) Multiphase Catalytic Reactors: A Perspective on Current Knowledge and Future Trends. Catalysis Reviews, 44, 123–246 26 Van Gerven, T., Stankiewicz, A. (2009) Structure, Energy, Synergy, Times: The Fundamentals of Process Intensification, Ind. Eng. Chem. Res., 48, 2465–2474 27 Shaikh, A., Al-Dahhan, M. (2013) Scale-up of Bubble Column Reactors: A Review of Current State-of-the-Art, Ind. Eng. Chem. Res., 52, 8091–8108 28 Arjunwadkar, S.J., Sarvanan, K., Pandit, A.B., Kulkarni, P.R., 1998. Optimizing impeller combination for maximum hold-up with minimum power consumption. Biochemical Engineering Journal 1 (1). 29 Eş, I.; G“nҫalves Vieira, J.D.; Corrêa Amaral, A.: Principles, techniques, and applications of biocatalysts immobilization for industrial application. Applied Microbiological Biotechnology (2015) 99:2065-2082. 30 Milivojevic, M., Pavlou, S., Bugarski, B. (2012) Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor, J. Chem. Technol. Biotechnol., 87, 1529–1540 31 Cheres’isin“ff, N. P.: Mixed-Flow Hydrodynamics (Advances in engineering fluid mechanics series) Gu‘f Pub‘ishing C“’”any (USA, 1996). 32 Parulekar, S.J.; Shertukde, P.V.; Joshi, J.B.: Underuti‘izati“n “f bubb‘e c“‘u’n react“rs due t“ des“r”ti“n ; Che’ica‘ Engineering Science, V“‘. 44, N“. 3, pp. 543-558, 1989 -2509/89 33 Collignon, M-L.; Delafosse, A.; Crine, M.; Toye, D. (2010): Axial impeller selection for anchorage dependent animal cell culture in stirred bioreactors: Methodology based on the impeller comparison at just-suspended speed of rotation. 34 T. Juhasz, Z. Szengyel, N. Szijarto, K. Reczey, Effect of pH on cellulase production of Trichoderma reesei RUT C30, Appl. Biochem. Biotechnol. 113 (2004) 201–211. 35 M. Dashtban, H. Schraft, W. Qin, Fungal bioconversion of lignocellulosic residues; opportunities and perspectives, Int. J. Biol. Sci. 5 (2009) 578–595. 36 T.P. Gunjikar, S.B. Sawant, J.B. Joshi, Shear deactivation of cellulase, exoglucanase, endoglucanase and -glucosidase in a mechanically agitated reactor, Biotechnol. Prog. 17 (2001) 1166–1168. 37 Novel approaches of producing bioenergies from microalgae: Biotechnology Advances 33 (2015) 1219–1227: A recent review Chung Hong Tan, Pau Loke Show , Jo-Shu Chang, Tau Chuan Ling, John Chi-Wei Lan 38 Gill, N.K.,Appleton,M., et al., 2008. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnology and Bioengineering 100 (6), 1144–1155. 39 Xia, J.Y., Wang, Y.H., et al., 2009. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochemical Engineering Journal 43 (3), 252–260.

Page 164: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

155

40 A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production Yiming Yang, Jianye Xia, Jianhua Li, Ju Chu, Liang Li, Yonghong Wang, Yingping Zhuang, Siliang Zhang. Journal of Biotechnology 161 (2012) 250–256 41 Saa, P.A; Perez-Correa, J.R.; Celentano, D.; Agosin, E.: Impact of carbon dioxide injection on oxygen dissolution rate during oxygen additions in a bubble column. Chemical Engineering Journal 232 (2013) 157–166 42 J. Lindmark, E. Thorin, R. Bel Fdhila, E. Dahlquist, Effects of mixing on the result of anaerobic digestion: Review.Renewable and Sustainable Energy Reviews, vol 40, pp 1030-1047, 2014. 43 Rados, N.; Shaikh, A.; Al-Dahhan, M.H.: Solids flow mapping in a high pressure slurry bubble column. Chemical Engineering Science 60 (2005) 6067-6072. 44 Martínez, J.; Sánchez, J.L.; Ancheita, J.; Ruiz, R.S.: A review of process aspects and modelling of ebullated bed reactors for hydrocracking of heavy oils. Catalysis reviews, 52, (2010), 60-105. 45 Rollbusch, P.; Bothe, M.; Beckr, M.; Ludwig, M.; Grünewald, M.; Schlütter, M.; Franke, R.: Bubble columns operated under industrially relevant conditions – Current understanding of design parameters. Chemical Engineering science, 126, 2015, 660-678. 46 Branco, R.F.; Santos, J.C.; Murakami, L.Y.; Mussatto, S.I.; Dragone, G.; Silva, S.S.: Xylitol production in a bubble column bioreactor: Influence of the aereation rate and immobilized system concentration. Process Biochemistry, 42 (2007) 258-262. 47 Santos, J.C.; Silva, S.S.; Mussatto, S.I.; Carvalho, W.; Cunha, M.A.A.: Immobilized cells cultivated in semi- continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. Word journal of microbiology & Biotechnology (20015) 21: 53-535. 48 Weyer K.M.; Bush D.R.; Darzins A.; Wi‘‘s“n, B. D.: The“retica‘ ’axi’u’ a‘ga‘ “i‘ ”r“ducti“n . Bioenergy Research, 3(2), 2010, 204–213 49 Y. Ghasemi; S. Rasoul-Amini; A. T. Naseri; N. Montazeri_Najafabady; M. A. Mobasher; F. Dabbagh: Micr“a‘gae Bi“fue‘ P“tentia‘s (Review) Applied Biochemistry and Microbiology, 2012, Vol. 48, No. 2, pp. 126–144. 50 Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor Aftab Ahamed, Patrick Vermette. Biochemical Engineering Journal 49 (2010) 379–387 51 Hamidipour, M., Chen, J., Larachi, F. (2012) CFD study on hydrodynamics in three-phase fluidized beds: Application of turbulence models and experimental validation. Chemical Engineering Science, 78, 167–180 52 Iliuta, I., Larachi, F. (2012) Prediction of Solids Accumulation in Slurry Bubble Columns with Polydispersed Solid Loadings, Industrial & Engineering Chemistry Research, 51, 13100–13112 53 Jia, X.; Wang, X., Wen, J.; Feng, W.; Jiang, Y.: CFD modelling of phenol biodegradation by immobilized Candida tropicalis in gas-liquid-solid three-phase bubble column. Chemical engineering journal, 157 (2010) 451-465. 54 Wang, C; Zhu, J.; Barghi, S.; Li, C.: Axial and radial development of solids hold up in a high flux/density gas–solids circulating fluidized bed. Chemical Engineering Science108(2014)233–243 55 Froment, G.F.: Chemical reactor analysis and design. John Wiley & Sons. Inc. © 1979 56 Liu, M.; Wang, T.; Yu, W.; Wang, J.: Hydrodynamics of a slurry airlift reactor at high solid concentrations. Chemical Engineering Science 62 (2007) 7098 – 7106. 57 Parasu Veera, U.; Kataria, K.L.; Joshi, J.B.: Gas hold-up in foaming liquids in bubble columns. Chemical Engineering Journal 84 (2001) 247-256. 58 Youssef, A.A.; Al-Dahhan, M.H.; Dudukovic, M.P: Bubble Columns with Internals: A Review - International Journal of Chemical Reactor Engineering 2013; 11(1): 169–223 59 Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press 2005

Page 165: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

156

60 Wang, T., Wang, J., Jin, Y. (2007) Slurry Reactors for Gas-to-Liquid Processes: A Review, I&ECR, 46, 5824-5847 61 Nasr-El-Din, H. A.; Mac Taggart, R. S.; Masliyah, J. H.: Local solids concentration measurement in a slurry mixing tank. Chemical Engineering Science, Vol. 51, No. 8, pp. 1209 1220, 1996 62 Baldi, G.; Conti, R.; Gianetto, A.: Concentration profiles for solids suspended in a continuous agitated reactor. A.I.Ch.E.J. 27 (1981) 1017-1020. 63 Chapman, C. M.; Nienow, A. W.; Cooke, M.; Middleton, J. C.: Particle-gas-liquid mixing in stirred vessels. Chemical Engineering Research & Design 61 (1983) 71-81. 64 Gianetto, A.; Silverston, P.L.: Multiphase chemical reactors: Theory, design & scale-up. Springer Verlag (1986) 65 Guha, D., Ramachandran, P. A., Dudukovic, M. P., Derksen, J. J. (2008) Evaluation of large Eddy simulation and Euler-Euler CFD models for solids flow dynamics in a stirred tank reactor. AIChE Journal, 54, 766–778 66 McCabe, W.L.; Smith, J.C.: Operaciones básicas de ingeniería química. Editorial Reverté 1973. 67 Bashiri, H.; Alizadeh, E.; Bertrand, F.; Chaouki, J.: Investigation of turbulent fluid flows in stirred tanks using a non-intrusive particle tracking technique. Chemical Engineering Science 140 (2016) 233–251 68 Kunii, D., O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann (1992) 69 Mavros, P. (2001) Flow Visualization in Stirred Vessels. A Review of Experimental Techniques. Trans IChemE, 79, 113-127. 70 Tamburini, A., Cipollina, A., Micale, G., Ciofalo, M., Brucato, A. (2009) Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment. Chemical engineering research and design, 87, 587–597 71 Wang, M. (ed.): Industrial Tomography Systems and Applications. Woodhead Publishing Series in Electronic and Optical Materials: Number 71 (2015). 72 Panneerselvam, R., Savithri, S., Surender, G.D. (2009) Computational Fluid Dynamics Simulation of Solid Suspension in a Gas-Liquid-Solid Mechanically Agitated Contactor Ind. Eng. Chem. Res., 48, 1608–1620 73 Panneerselvam, R., Savithri, S., Surender, G.D. (2008) CFD modeling of gas–liquid–solid mechanically agitated contactor. Chemical engineering research and design, 86, 1331–1344 74 Hutmacher, D.W., Singh, H. (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends in Biotechnology, 26, 166–172 75 Yang, W-Ch. (2003) Handbook of Fluidization and Fluid-Particle Systems, Marcel Dekker Inc. USA 76 Rautenbach, C.; Mudde, R.F.; Yang, X.; Melaaen, M.C.; Halvorsen, BM.: A comparative study between electrical capacitance tomography and time-resolved X-ray tomography. Flow Measurement and Instrumentation 30 (2013) 34–44 77 B.Tayler, A.B.; Holland, D.J., Sederman, A.J.; Gladden, L.F.: Applications of ultra-fast MRI to high voidage bubbly flow: Measurement of bubble size distributions, interfacial area and hydrodynamics. Chemical Engineering Science 71 (2012) 468–483 78 Barigou, M.: Particle tracking in opaque mixing systems: An Overview of the Capabilities of PET and PEPT. Chemical Engineering Research and Design, 82(A9): 1258–1267 79 Chen, J.; Kemoun, A.; Al-Dahhan, M.H.; Dudukovic, M.P.; Lee, D.J.; Fan, L-S.: Comparative hydrodynamics study in a bubble column using computer-automated radioactive particle tracking (CARPT)/computer tomography (CT) and particle image velocimetry (PIV). Chemical engineering science, 54 (1999) 2199-2207. 80 Boyer, C.; Duquenne, A-M.; Wi‘d, G.: Measuring techniques in gas-liquid and gas-liquid-solid react“rs . Che’ica‘ Engineering Science 57 (2002) 3185-3215

Page 166: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

157

81 Muzen, A., Cassanello, M. Flow regime transition in a trickle bed with structured packing examined with conductimetric probes, Chemical Engineering Science, 62, 1494–1503 (2007) 82 Muzen, A., Cassanello, M. Flow regime transition in a trickle bed with structured packing examined with conductimetric probes, Chemical Engineering Science, 62, 1494–1503 (2007) 83 Sheikhi, A., Sotudeh-Gharebagh, R., Mostoufi, N., Zarghami, R. Experimental investigation on the hydrodynamics of a gas–liquid–solid fluidized bed using vibration signature and pressure fluctuation analyses, International Journal of Heat and Fluid Flow, 42, 190–199 (2013) 84 Mudde, R.F.: Advanced techniques f“r GLS react“rs . The Canadian J“urna‘ “f Che’ica‘ Engineering vol. 88 issue 4 (2010) 85 M.S. Gandhi, J.B. Joshi, P.K. Vijayan, Study of two phase thermal stratification in cylindrical vessels: CFD simulations and PIV measurement. Chem. Eng. Sci. 98 (2013) 125-151. 86 Gan, Z.W. Holdup and velocity profiles of monosized spherical solids in a three-phase bubble column. Chemical Engineering Science. 94 (2013) 291–301 87 Abbiss, J.B.; Chubb, T.W.; Pike, E.R.: Laser D“””‘er Ane’“’etry O”tics and Laser Technology, vol. 6, issue 6, December 1974, 249-261. 88 Kumara, W.A.S.; Elseth, G.; Halvorsen, B.M.; Melaaen, M.C.: Comparison of Particle Image Velocimetry and Laser Doppler Anemometry measurement methods applied to the oil-water flow in horizontal pipe. Flow Measurement and Instrumentation 21 (2010) 105_117 89 Rajesh K. Upadhyay, R.K.;Harish J. Pant, H.J.; Roy, S.: Liquid flow patterns in rectangular air-water bubble column investigated with Radioactive Particle Tracking. Volume 96, 7 June 2013, Pages 152–164 90 Huang, Z., Xie, D., Zhang, H., Li, H. (2005) Gas–oil two-phase flow measurement using an electrical capacitance tomography system and a Venturi meter. Flow Measurement and Instrumentation, 16, 177–182 91 Rautenbach, C.; Mudde, R.F.; Yang, X.; Me‘aaen, M.C.; Ha‘v“rsen, B.M.: A c“’”arative study between electrical capacitance tomography and time-resolved X-ray t“’“gra”hy F‘“w Measurement and Instrumentation 30 (2013) 34–44. 92 H“sseini, S.: Study “f s“‘id–liquid mixing in agitated tanks through electrical resistance t“’“gra”hy . Che’ica‘ Engineering Science 65 (2010) 1374–1384 93 Rzasa, M.R. (2009) The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography. Nuclear Engineering and Design, 239, 699–707 94 Tay‘er, A.B.; H“‘‘and, D.J.; Seder’an, A.J.; G‘adden, L.F.: A””‘icati“ns “f u‘tra-fast MRI to high v“idage bubb‘y f‘“w: Measure’ent “f bubb‘e size distributi“ns, interfacia‘ area and hydr“dyna’ics Chemical Engineering Science 71 (2012) 468–483 95 Tayler, A. B.; Holland, D. J.; Sederman, A. J.; Gladden, L. F: Exploring the Origins of Turbulence in Multiphase Flow Using Compressed Sensing MRI. Physical Review Letters 108, 264505 (2012) 96 T. Pavlin et al., Noninvasive Measurements of Gas Exchange in a Three-Dimensional Fluidized Bed by Hyperpolarized 129Xe NMR. Appl. Magn. Reson. 32, 93–112 (2007). 97 Tayler, A. B.; Holland, D. J.; Sederman, A. J.; Gladden, L. F: Applications of ultra-fast MRI to high voidage bubbly flow: measurement of bubble size distributions, interfacial area and hydrodynamics. Chemical Engineering Science, 71 (2012) 468-483 98 Sederman, A. J., & Gladden, L. F. (2001). Magnetic resonance visualisation of single- and two-phase flow in porous media. Magnetic Resonance Imagenología, 19(3-4), 339-343. 99 Blythe, T.W.; Sederman, A.J.; Mitchell, J.; Stitt, E.H.; York, A.P.E.; Gladden, L.F.: Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis. Journal of Magnetic Resonance 255 (2015) 122–131

Page 167: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

158

100 C. M. Boyce, D. J. Holland, S. A. Scott, J. S. Dennis, Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed. Ind. Eng. Chem. Res. 52, 18085–18094 (2013). 101 Wilkinson, S.K.; McManus, I.; Daly, H.; Thompson, J.M.; Hardacre, C.; Sedaie Bonab, N.; ten Da’, J.; Si’’“ns, M.J.H.; D Ag“stin“, C.; McGreg“r, J.; G‘adden, L.F.; Stitt, EH.: A kinetic analysis methodology to elucidate the roles of metal, support and solvent for the hydrogenation of 4-phenyl-2-butanone over Pt/TiO2 102 Honkanen, M., Eloranta, H., Saarenrinne, P. (2010) Digital imagenología measurement of dense multiphase flows in industrial processes. Flow Measurement and Instrumentation, 21, 25–32 103 Heindel, T.J., Gray, J.N., Jensen, T.C. (2008) An X-ray system for visualizing fluid flows. Flow Meas. Inst., 19, 67–78 104 Abdullah, J., Cassanello, M., Dudukovic, M., Dyakowski, T., Hamada, M., Jin, J., Johansen, G., Kim, J., Legoupil, S., Maad, R., Mesquita, C., Nowakowski, J., Ramírez-García, F., Sankowski, D., Sipaun, S., Thyn, J., IAEA-TECDOC-1589 Industrial Process Gamma-Tomography, IAEA, Austria, Mayo 2008. ISBN: 978-920-0-104508-9. ISSN: 1011-4289. 105 Alami, R.; Airey, P.L.; Bandeira, V.J.; Brisset, P.; Hughes, C.; Jin, J.H.; Jung, S.H.; Khan, H.I.; Klein, M.; Marsh, J.; Moreira, R.; Pant, J.H.; Quang, N.H.; Thereska, J.: Radiotracer and Sealed Source Applications in Sediment Transport Studies. International Atomic Energy Agency training course series 59 (Viena, 2014). 106 Mohd Salleh, K.A.; Koo Lee, H.; Al-Dahhan, M.A.: Local liquid velocity measurement in trickle bed reactors (TBRs) using the X-ray digital industrial radiography (DIR) technique. Measurement Science and Technology. 25 (2014) 075401 (12pp) 107 Toye, D., Crine, M., & Marchot, P. (2005). Imagenología of liquid distribution in reactive distillation packings with a new high-energy X-ray tomograph. Measurement Science and Technology, 16, 2213-2220. 108 Harding, G., & Harding, E.: Compton scatter imagenología: a tool for historical exploration. Applied Radiation and Isotopes, 68, (2010) 993-1005. 109 Cassanello, M., Larachi, F., Marie, M.N., Chaouki, J., Guy, C. (1995) Experimental Characterization of the Solid Phase Chaotic Dynamics in Three-Phase Fluidization., Ind. Eng. Chem. Research, 34, 2971–2980. 110 Bhusarapu, S., Cassanello, M.C., Al-Dahhan, M., Duduk“vic, M.P., Truji‘‘“, S., O Hern, T. (2007) Dynamical Features of the Solid Motion in Gas-Solid Risers. International Journal of Multiphase Flow, 33, 164–181 111 Fraguío, M.S., Cassanello, M.C., Degaleesan, S., Dudukovic, M.P. (2009) Flow Regime Diagnosis in Bubble Columns Using the S Statistics Applied to Pressure Fluctuations and CARPT Measurements, I&ECR, 48, 1072–1080 112 dos Reis, E., Goldstein Jr., L. (2008) On the measurement of the mass flow rate of horizontal two-phase flows in the proximity of the transition lines which separates flow patterns. Flow Measurement and Instrumentation, 19, 269–282 113 Zheng, G., Jin, N., Jia, X., Lv, P., Liu X. (2008) Gas–liquid two phase flow measurement method based on combination instrument of turbine flowmeter and conductance sensor. Int. J. of Multiphase Flow, 34, 1031–1047 114 Spedding, P. L., Donnelly G. F., Cole, J. S. (2005) Three phase oil–water–gas horizontal co-current flow. I. Experimental and Regime Map. Chemical Engineering Research and Design, 83, 401–411 115 Blaney, S., Yeung, H. Investigation of the exploitation of a fast-sampling single gamma densitometer and pattern recognition to resolve the superficial phase velocities and liquid phase water cut of vertically upward multiphase flows. Flow Measurement and Instrumentation, 19,

Page 168: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

159

(2008) 57–66 116 Mudde, R. F. Bubbles in a fluidized bed: a fast X-ray scanner. AIChE Journal, 57, (2011) 2684-2690. 117 Kuzeljevic, Z.; Dudukovic, M.; Stitt H.: From Laboratory to Field Tomography: Data Collection and Performance Assessment. Ind. Eng. Chem. Res. 2011, 50, 9890–9900 118 Gómez-Hernández, J.; van Ommen, J.R.; Wagner, E.; Mudde, R.F.: A fast reconstruction algorithm for time-resolved X-ray tomography in bubbling fluidized beds. Powder Technology 290 (2016) 33–44 119 R.B. Firestones et al, Table of Isotopes, 8th edition, Wiley, 1996. 120 Das, A.; Ferbe‘, T.: Intr“ducti“n t“ Nuc‘ear and Partic‘e Physics W“r‘d Scientific Pub‘ishing C“. Ltd. (2003) 121 Bai‘ey, D.L.; T“wnsend, D.W.; Va‘k, P.E.; Maisey M.N.: P“sitr“n E’issi“n T“’“gra”hy: Basic Sciences S”ringer (2005) 122 Leadbeater, T.W.; Parker, D.J.; Gargiu‘i, J.: P“sitr“n imagenología systems for studying ”articu‘ate, granu‘ar and ’u‘ti”hase f‘“ws Particu“‘ogy 10 (2012) 146– 153 123 Parker, D. J., Leadbeater, T. W., Fan, X., Hausard, M. N., Ingram, A., & Yang, Z. (2008). Positron imagenología techniques for process engineering: recent developments at Birmingham. Measurement Science and Technology, 19, 094004. 124 Kornilaev A.N.; Kondukov, N.B.: Investigation of the parameters of a motion of particles in a fluidized bed using radioactive isotopes. Inzhenerno-Fizicheskii Zhurnal, Vol. 10, No. 6, pp. 764-770, 1966 125 Prokhorenko, N.N.; and Kondukov, N.B.: Probability analysis of the motion of particles in a fluidized bed. Inzhenerno-Fizicheskii Zhurnal, Vol. 12, No.1, pp. 62-67, 1967 126 Devanathan N., Moslemian, D., Dudukovic, M.P. Flow Mapping in Bubble Columns Using CARPT, Chem. Engng. Science, 45(8), 2285–2291 (1990) 127 Moslemian, D.; Devanathan, N.; Dudukovic, M. P.: Radioactive particle tracking technique for investigation of phase recirculation and turbulence in multiphase systems. Review of Scientific Instruments, 63, (1992) 4361-4372. 128 http://crelonweb.eec.wustl.edu/ 129 Cassanello, M.C.; Chaouki, J.; Roy, S.; Parker, D.J.; Al-Dahhan, M.H.: Radioactive particle tracking techniques for investigation of industrial reactors. Re”“rt “f the C“nsu‘tants Meeting, Viena, Austria, 22-25 Octubre 2007 130 Fraguío, M-S.: ESTUDIO FLUIDODINÁMICO DE REACTORES MULTIFÁSICOS MEDIANTE TÉCNICAS DE ANÁLISIS NO – INVASIVAS. PhD Tesis; Universidad de Buenos Aires; área Química Industrial 131 Larachi, F., Chaouki, J., & Kennedy, G. (1995). 3-D mapping of solids flow fields in multiphase reactors with RPT. AIChE Journal, 41, 439-443. 132 Larachi, F.,Kennedy,G.,Chaouki,J.,1994.A -ray detection system for 3-D particle tracking in multiphase reactors. Nucl. Instrum. Methods Phys. Res. Sect. A 338, 568–576 133 Fraguío, M.S., Cassanello, M.C., Larachi, F., Limtrakul, S., Dudukovic. M.P. (2007) Classifying Flow Regimes in Three-Phase Fluidized Beds from CARPT Experiments, Chemical Engineering Science, 62, 7523–7529 134 Hu-Ping Lu“, Muthanna H. A.; L“ca‘ characteristics “f hydr“dyna’ics in draft tube air‘ift bi“react“r , Che’ica‘ Engineering Science 63 (2008) 3057 – 3068. 135 Lin, J. Chen, S.M., Chao, B.T. A Novel Radioactive Particle Tracking Facility for Measurement of Solids Motion in Gas Fluidized Beds, AIChE J., 31(2), 465–473 (1985) 136 Godfroy, L., Larachi, F., Chaouki, J., Position and velocity of a large particle in a gas/solid riser using the radioactive particle tracking technique, Canadian Journal of Chemical Engineering, 77(2),

Page 169: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

160

253-261 (1999) 137 Mostoufi, N., Chaouki, J. Flow structure of the solids in gas–solid fluidized beds, Chemical Engineering Science 59 (2004) 4217–4227 138 Bhusarapu, S., Al-Dahhan, M.H., Dudukovic, M.P. Solids Flow Mapping in a Gas-Solids Riser: Mean Holdup and Velocity Fields, Powder Technol., 163, 98–123 (2006) 139 Sanaei, S., Mostoufi, N., Radmanesh, R., Sotudeh, R., Gharebagh, R., Guy, C., Chaouki, J. Hydrodynamic Characteristics of Gas–Solid Fluidization at High Temperature, Can. J. Chem. Eng., 88(1), 1-11 (2010) 140 Roy, S., Kemoun, A., Al-Dahhan, M.H., Dudukovic, M.P. Experimental Investigation of the Hydrodynamics in a Liquid-Solid Riser, AIChE J., 51, 802-835 (2005) 141 Limtrakul, S., Chen, J., Ramachandran, P.A., Dudukovic, M.P. Solids Motion and Holdup Profiles in Liquid Fluidized Beds, Chem. Engng. Science, 60, 1889-1900 (2005) 142 Degalessan, S.; Dudukovic, M.; Pan, Y.: Experimental study of gas induced liquid flow structures in bubble columns. AIChE Journal. September 2001 Vol. 47, No. 9. 143 Melling, A., Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol., 8, 1406–141 (1997) 144 Mostoufi, N., Chaouki, J., Local solid mixing in gas–solid fluidized beds, Powder Technology, 114, 23–31 (2001) 145 Rammohan, A., Kemoun, A., Al-Dahhan, M.H., Dudukovic, M.P. A Lagrangian Description of Flows in Stirred Tanks via Computer Automated Radioactive Particle Tracking (CARPT), Chem. Engng. Science, 56, 2629-2639 (2001) 146 Doucet, J., Bertrand, F., Chaouki, J. An Extended Radioactive Particle Tracking Method for Systems with Irregular Moving Boundaries, Powder Technol., 181, 195-204 (2008) 147 Bashiri, H.; Alizadeh, E.; Bertrand, F.; Chaouki, J.: Investigation of turbulent fluid flows in stirred tanks using a non-intrusive particle tracking technique. Chemical Engineering Science 140 (2016) 233–251 148 Cebeci, T.: Turbulent Models and Their Application. © Horizons Publishing Inc. (California - USA) 2004. 149 http://www.cfd-online.com/Wiki 150 http://www.feynmanlectures.caltech.edu/II_25.html 151 E.M.Baum, H.D.Knox, and T.R.Miller, Nuclides and Isotopes, 16th Edition (2002), Knolls Atomic Power Laboratory 152 J“hansen, G.A.; Jacks“n, P.: Radi“is“t“”e gauges f“r industria‘ ”r“cess ’easure’ents . J“hn Wiley & Sons, Ltd. © 2004 153 Rajesh Kumar Upadhyay: INVESTIGATION OF MULTIPHASE REACTORS USING RADIOACTIVE PARTICLE TRACKING PhD thesis Indian Institute of Technology Dehli 154 Ts“u‘fanidis N, Measurement and Detection of Radiati“n , McGraw Hill, New York (1983). 155 Introduction to Nuclear Particle Physics 2nd Ed; A. Das, T. Ferbel. 156 Linek, V.; Stoy, V.; Machon, V.; Krivstky, Z.: Increasing the effective interfacial area in plastic packed bed absorption columns. Chemical Engineering Science, 29, 1955-1960 (1974). 157 Shann“n, C.E.: A ’athe’atica‘ the“ry “f c“’’unicati“n . The Bell system Technical Journal. Vol. XXVII, July 1948, No. 3 158 Monin, A.S.; Yaglom, A.M.: ¨Statistical Fluid Mechanics: Mechanics of Turbulence¨ MIT Press, 1975. 159 Balachandar, S.; Eaton, J.K.: Turbulent Dispersed Multiphase Flow. Annual Review of Fluid Mechanics 2010.42:111-133 160 Nikolay Ivanov Kolev, N.I.: Multiphase Flow Dynamics 1: Fundamentals. Springer International

Page 170: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

161

Publishing AG Switzerland (2015). 161 Feder, J.: Fracta‘s . 1988 P‘enu’ Press, New Y“rk. 162 Andrea Ahlemeyer-Stubbe, A.; Coleman, S.: A Practical Guide to Data Mining for Business and Industry. © 2014 John Wiley & Sons, Ltd 163 Maestri, M.; Ziella, D.; Cassanello, M.; Horowitz, G.: Automatic qualitative trend simulation method for diagnosing faults in industrial processes. Computers and Chemical Engineering 64 (2014) 55–62 164 Boltzmann, L.: On the fundamental principles and equations of mechanics II. Populäre Schriften, Essay 16. 165 C.S. Daw, C.E.A. Finney, E.R. Tracy, A review of symbolic analysis of experimental data, Rev. Sci. Instrum. 74 (2003) 915–930. 166 V. Rajagopalan, A. Ray, R.R. Samsi, J. Mayer, Pattern identification in dynamical systems via symbolic time series analysis, Pattern Recogn. 40 (2007) 2897–2907. 167 S. Gupta, A. Ray, E. Keller, Symbolic time series analysis of ultrasonic signals for fatigue damage monitoring in polycrystalline alloys, Meas. Sci. Technol. 17 (2006) 1963–1973. 168 J.G. Brida, L.F. Punzo, Symbolic time series analysis and dynamic regimes, Struct. Change Econ. Dyn. 14 (2003) 159–183 169 Ga‘at“‘“, S.; H“yru”, M.; R“jas, C: Effective sy’b“‘ic dyna’ics, rand“’ ”“ints, statistica‘ behavi“r, c“’”‘exity and entr“”y . Inf“r’ati“n and C“’”utati“n 208 (2010) 23–41 170 Manish, P; Kumar Majumder, S.: Quality of mixing in a downflow bubble column based on information entropy theory - Chemical Engineering Science 64 (2009) 1798 -- 1805 171 Guida, A.; Nien“w, A.W.; Barig“u, M.: Shann“n entr“”y f“r ‘“ca‘ and g‘“ba‘ descri”ti“n “f mixing by Lagrangian ”artic‘e tracking - Chemical Engineering Science 65 (2010) 2865–2883 172 Prig“gine, I.: The end of certainty. The Free Press (New York) 1997 173 Chalmers, J.J.: Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Current Opinion in Chemical Engineering 2015, 10:94–102 174 Joshi, J. B., Vitankar, V. S., Kulkarni, A. A., Dhotre, M. T., Ekambara, K., Review Paper: Coherent flow structures in bubble column reactors, Chemical Engineering Science, 57, 3157–3183 (2002) 175 Mudde, R.F., Gravity-Driven Bubbly Flows, Annu. Rev. Fluid Mech., 37, 393–423 (2005) 176 Xu, M.; Finch, J.A.; Huls, B.J.: Measurement of radial hold-up profiles in a flotation column. International Journal of Mineral Processing. 36 (1992) 229. 177 Parasu Veera, U., Kataria, K.L., Joshi, J.B., Gas hold-up profiles in foaming liquids in bubble columns, Chemical Engineering Journal, 84, 247–256 (2001) 178 Kiared, K.; Larachi, F.; Chaouki, J.; Guy, C.: Mean & turbulent particle velocity in the fully developed region of a three-phase fluidized bed. Chemical Engineering and Technology Volume 22, Issue 8, August 1999, Pages 683-689 179 Lim, H.O., Seo, M.J., Kang, Y., Jun, K.W., Particle fluctuations and dispersion in three-phase fluidized beds with viscous and low surface tension media, Chemical Engineering Science, 66, 3234–3242 (2011) 180 Krishna, R.; Sie, S.T.: Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Processing Technology 64 _2000. 73–105 181 Shaikh, A., Al-Dahhan, M., Characterization of the hydrodynamic flow regime in bubble columns via computed tomography, Flow Measurement and Instrumentation 16, 91–98 (2005) 182 Jin, H.; Yang, S.; Guo, Z.; He, G.; Tong, Z.: The axial distribution of holdups in an industrial-scale bubble column with evaluated pressure using -ray attenuation approach. Chemical Engineering Journal 115 (2005) 45-50.

Page 171: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

162

183 C‘ift, R.; Grace, J.R.; Weber, M.E.: Bubb‘es, dr“”s and ”artic‘es . Acade’ic Press Inc. (New York) 1978. 184 Nicolis, G.; Prigogine, I.: Self-organization in non-equilibrium systems. John Wiley & Sons, 1977. 185 Haque, M.W., Nigam, K.D.P., Srivastava, V.K., Joshi, J.B., Viswanathan, K., Studies on Mixing Time in Bubble Columns with Pseudoplastic (Carboxymethyl)cellulose Solutions, Ind. Eng. Chem. Res., 26, 82–86 (1987) 186 Rampure, M.R., Kulkarni, A.A., Ranade, V.V., Hydrodynamics of Bubble Column Reactors at High Gas Velocity: Experiments and Computational Fluid Dynamics (CFD) Simulations, Ind. Eng. Chem. Res., 46, 8431–8447 (2007) 187 Park, A.-H., Fan, L.-S. (2007) Fluidization. Encyclopedia of Chemical Processing. Taylor and Francis. 188 Jin, H., Yang, S., He, G., Guo, Z., Tong, Z., An experimental study of holdups in large-scale p-xylene oxidation reactors using the -ray attenuation approach, Chemical Engineering Science, 60, 5955–5961 (2005) 189 Deng, Z., Wang, T., Zhang, N., Wang, Z., Gas holdup, bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-Newtonian fluid, Chemical Engineering Journal, 160, 729–737 (2010) 190 Wilkinson, P.M.; Spek, A.P., van Dierendonck, L.L.:Design parameters estimation for scale-up of high pressure bubble columns. AIChE Journal 38 (1992) 544–554. 191 E. Fransolet, M. Crine, P. Marchot, D. Toye, Analysis of gas holdup in bubble columns with non-Newtonian fluid using electrical resistance tomography and dynamic gas disengagement technique, Chem. Eng. Science 60 (2005) 6118–6123 192 Yang, J.H., Yang, J.I. Kim, H.J., Chun, D.H., Lee, H.T., Jung, H., Two regime transitions to pseudo-homogeneous and heterogeneous bubble flow for various liquid viscosities, Chemical Engineering and Processing: Process Intensification, 49, 1044–1050 (2010) 193 J.R. Herrera-Velarde, R. Zenit, D. Chehata, B. Mena, The flow of non-Newtonian fluids around bubbles and its connection to the jump discontinuity, J. Non-Newtonian Fluid Mech. 111 (2003) 199–209 194 Sada, E.; Kumazawa, H.; Lee, C.; Iguchl, T.: Gas Holdup and Mass-Transfer characteristics in a Three-phase Bubble Column. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 472-476 195 Kemiha, M., Frank, X., Poncin, S., Li, H.Z., Origin of the negative wake behind a bubble rising in non-Newtonian fluids, Chemical Engineering Science, 61, 4041–4047 (2006) 196 G. Olivieri, M. E. Russo, M. Simeone, A. Marzocchella, P. Salatino, Effects of viscosity and relaxation time on the hydrodynamics of gas–liquid systems, Chem. Eng. Science 66 (2011) 3392–3399 197 Chhabra, R.P.: Bubbles, Drops, and Particles in Non-Newtonian Fluids. Taylor & Francis (2007) 198 J.H. Yang, J.-I. Yang, H.-J. Kim, D.H. Chun, H.-T. Lee, H. Jung, Two regime transitions to pseudo-homogeneous and heterogeneous bubble flow for various liquid viscosities, Chem. Eng. Process., 49 (2010) 1044–1050. 199 Mahalanobis, P.C.; Rao, C.R..: Contributions to statistics. Statistical Publishing Society (Calcutta, 1963). 200 Guida, A., Nienow, A.W., Barigou, M., Mixing of Dense Binary Suspensions: Multicomponent Hydrodynamics and Spatial Phase Distribution by PEPT, AIChE J., 57, 2302–2314 (2011) 201 Han, C.; Zahid, U.; An, J.; Kim, K.; Kim, C.: CO2 transport: design considerations and project outlook. Current Opinion in Chemical Engineering 2015, 10:42–48 202 Kantarci, N.; Borak, F.; Ulgen, K.O.: Bubble column reactors Process Biochemistry 40 (2005) 2263–2283

Page 172: Caracterización de equipos y medios multifásicos …...IV Índice 1 - Introducción y objetivos 1 2 - Estado del arte 4 2.1 - Los sistemas multifásicos en química industrial 5

163

203 Nauman, E.B.: Chemical Reactor Design, Optimization, and Scaleup, Second Edition. John Wiley & Sons, Inc (2008). 204 Chalmers, J.J.: Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Current opinion in Chemical Engineering, 2015, 10:94–102 205 Van Gerven, T.; Stankiewicz, A.: Structure, Energy, Synergy, Ti’es: The Fundamentals of Pr“cess Intensificati“n Ind. Eng. Chem. Res. 2009, 48, 2465–2474 206 Boltzmann, L: Annalen der Physik und chemie 60 (1897) 231. 207 B“‘tz’ann, L.: On the funda’enta‘ ”rinci”‘es and equati“ns “f ’echanics I Populiire Schriften 16 208 P. Constantin, Some open problems and research directions in the mathematical study of fluid dynamics, in Mathematics Unlimited–2001 and Beyond, Springer Verlag, Berlin, 2001, 353–360. 209 Smith, J. M.: Large multiphase reactors: Some Open Questions. Chemical Engineering Research and Design, 84(A4): 265–271 210 http://www.claymath.org/millennium-problems/navier-stokes-equation 211 Caffarelli, L.; Salsa, S.: A geometric approach to free boundary problems. Graduate studies in mathematics 68 American Mathematical Society (2005) 212 Masood, R.M.A.; Delgado, A.: Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns. Chemical Engineering Science 108 (2014) 154–168 213 Gidaspow, D.: Multiphase Flow and Fluidization, Academic Press Inc., San Diego, US, 1994. 214 Verma, V.; Deen, N.G.; Padding, J.T.; Kuipers J.A.M.: Two-fluid modeling of three-dimensional cylindrical gas–solid fluidized beds using the kinetic theory of granular flow. Chemical Engineering Science 102 (2013) 227–245 215 van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M.: Numerical simulation of gas–liquid–solid flows using a combined front tracking and discrete particle method Chemical Engineering Science 60 (2005) 6188 – 6198 216 http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html 217 http://www.cfdem.com/ 218 http://www.palabos.org/ 219 Ratkovich, N., Horn, W., Helmus, F.P., Rosenberger, S., Naessens, W., Nopens, I.,Bentzen, T.R. 2013. Activated sludge rheology: A critical review on data collection and modeling. Water Research 47, 463-482. 220 C. R. Müller et al., Granular temperature: Comparison of Magnetic Resonance measurements with Discrete Element Model simulations. Powder Technol. 184, 241–253 (2008). 221 Makkawi, Y.T.; Wright, P.C.: Tomographic analysis of dry and semi-wet bed fluidization: the effect of small liquid loading and particle size on the bubbling behavior. Chemical Engineering Science 59 (2004) 201-213. 222 Tsutsumi, A.; Kikuchi, R.: Design and scale-up methodology for multi-phase reactors based on non-linear dynamics. Applied Energy 67 (2000) 195-219 223 Fischer, F. and Hampel, U. Ultra-fast electron beam X-ray computed tomography for two-phase flow measurement. Nuclear Engineering and Design 240 (9), 2254–2259, 2010.