bombas centrifugas en serie y paralelo

14
Universidad Técnica Federico Santa María Departamento de Industrias 1 ILN222 Gestión Energética I Informe de Laboratorio Comportamiento de una bomba y su funcionamiento en serie y paralelo. Grupo: Mónica Rodríguez Joaquín Sánchez Esteban Vera María Jimena Zapata Profesor: María Pilar Garate Ayudante: Miguel Lecaros 2010

Upload: monica-rodriguez

Post on 13-Jul-2015

8.961 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

1

ILN222 – Gestión Energética I

Informe de Laboratorio

Comportamiento de una bomba y su funcionamiento en

serie y paralelo.

Grupo:

Mónica Rodríguez

Joaquín Sánchez

Esteban Vera

María Jimena Zapata

Profesor:

María Pilar Garate

Ayudante:

Miguel Lecaros

2010

Page 2: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

2

Introducción

Este último informe corresponde al análisis del funcionamiento físico y mecánico de las

bombas centrífugas conectadas tanto en serie como en paralelo. Estos equipos son turbomáquinas

de flujo radial, caracterizadas por alterar el movimiento del fluido, transmitiendo potencia desde

un eje hasta el fluido (mediante el rotor).

Se explicará su funcionamiento, eficiencia alcanzada y relación entre presiones de entrada y

salida, todo esto en base a los resultados obtenidos mediante la utilización de diferentes sensores

y equipos que permitieron obtener datos como las presiones y el caudal. Además, se analizará el

comportamiento del caudal frente a diversas variables en las distintas situaciones (conexión

simple, en serie, en paralelo) así como también la altura de elevación alcanzada por el fluido.

Este tipo de bombas son esenciales en instalaciones hidráulicas del tipo doméstica o industrial,

por lo que su estudio ayudará a complementar los conocimientos básicos y facilitará su aplicación

a casos reales.

Objetivos

Los objetivos que se pretenden cumplir en el siguiente laboratorio son:

- Analizar el comportamiento entre el caudal y la altura del fluido, y también entre el

caudal y la eficiencia de la bomba.

- Comprobar si la ley de semejanza tiene relación empírica y teórica.

- Determinar cuándo se obtiene la mejor eficiencia entre las bombas en serie, o paralelo o

solamente una de ellas.

- Estudiar el comportamiento de las bombas.

Metodología Experimental

En la experiencia del laboratorio se procedió a utilizar el equipo de bomba de demostración

“HM284”, la cual consiste en 2 bombas que succionan agua desde un estanque y que están en un

sistema cerrado con válvulas y sensores de presión.

Este equipo de puede adecuar para que las bombas puedan trabajar en serie, paralelo o

solamente una bomba en funcionamiento, y todo esto se puede lograr abriendo o cerrando las

válvulas que están en el sistema. Toda la toma de datos que se obtienen, las capta el registro de

datos en PC, mediante el software del computador.

Page 3: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

3

El equipo esquemáticamente es de la siguiente manera:

Para la primera parte de la experiencia se trabaja con una sola bomba, para esto se debe

cerrar la válvula 2 y 3, y abrir la válvula 1, 4 y 5.

Se debe hacer variar el caudal (que lo mide el flujometro) con una cierta cantidad de

revoluciones (aproximadamente 2500 rpm) y con esto se consigue diferencias de presiones (las

que se captan con los sensores), potencias, y rendimientos mediante el software del PC, los cuales

después se tienen que pasar a gráficos para analizarlos. Cabe destacar que al aumentar el caudal

del sistema, se debe ir corrigiendo las revoluciones, pues estas también irán aumentando.

A continuación, se hace el mismo procedimiento que la actividad anterior, pero ahora se

trabaja con las bombas en serie, y para esta parte se tiene que cerrar las válvulas 2 y 4 y abrir las

válvulas 1, 3 y 5, además de trabajar a 2500 rpm y gracias a esto se toman los datos para hacer los

gráficos correspondientes. También se debe corregir las revoluciones pues acá también varía el

caudal.

Page 4: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

4

Después de eso, se hace lo mismo pero con las bombas en paralelo, cerrando la válvula 3, y el

resto de ellas abiertas, y el resto de esto es de la misma manera que los anteriores.

Para finalizar, se procede a trabajar con una sola bomba, pero ahora se variara la abertura de

la válvula 1 en una cierta cantidad de ángulos (entre 10º a 65º). Se debe dejar al máximo el caudal

y al ir variando la válvula esta irá cambiando su caudal, además de su presión y su rendimiento,

para después analizar su funcionamiento.

Resultados y Análisis

1) Curvas características (H vs Q y η vs Q) para la bomba 1 a N ≈ 2500 rpm.

El software de la bomba entregaba los datos del caudal, las presiones y la potencia eléctrica,

con lo cual se pudo construir las Tablas 2 y 3 (ver Anexos). Para obtener los demás datos

necesarios, tales como potencia hidráulica, eficiencia y altura de elevación se emplearon las

siguientes ecuaciones:

A partir de la Tabla 1 en Anexos, se obtuvieron los siguientes gráficos:

Page 5: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

5

Gráfico 1: Comportamiento de la altura de elevación del fluido al variar el caudal.

Del primer gráfico, basado en la relación H v/s Q, se obtuvo la ecuación de segundo grado:

H = 0,0234Q2 - 1,654Q + 30,139

De donde se puede observar que la altura máxima se obtendrá a partir de un caudal mínimo,

lo cual representa el funcionamiento de una bomba. Lo anterior debido a que a medida que pase

menor caudal por los álabes de la bomba, menos costoso será desplazarlo a una mayor altura y

más fácil será entregarle energía al fluido. Además, en base al índice de correlación (R) (el cual

resultó cercano a 1), se confirma esta relación entre el caudal y la altura.

Gráfico 2: Eficiencia de la bomba en relación al caudal

H = 0,0234Q2 - 1,654Q + 30,139R² = 0,995

-3,000

2,000

7,000

12,000

17,000

22,000

27,000

32,000

0 5 10 15 20 25

Alt

ura

[m

]

Caudal [L/min]

Variación de la altura del fluido en función del caudal

η = -0,0402Q2 + 1,263Q - 0,261R² = 0,986

-2

0

2

4

6

8

10

0 5 10 15 20 25

Efic

ien

cia

[%]

Caudal [L/min]

Eficiencia de una bomba en función del caudal

Page 6: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

6

De este gráfico de obtuvo la ecuación:

η = -0,0402Q2 + 1,263Q - 0,261

La cual muestra una relación polinomial entre ambas variables. A medida que aumenta el

caudal de operación, lo hace también la eficiencia, hasta llegar a la eficiencia máxima de la bomba

(9,7% en este caso) desde donde comienza a disminuir proporcionalmente al aumento inicial. Para

caudales mínimos o máximos la eficiencia será nula.

Para esta primera parte, si bien las ecuaciones obtenidas fueron relativamente exactas (R≈1),

el número de revoluciones de la bomba no se logró mantener constante en 2500, y fue variando

aproximadamente en ±50, lo cual produjo desviaciones en la toma de datos. Además, existen

errores porcentuales relacionados con el manejo de la bomba y la utilización del software, ya que

no era muy preciso al arrojar los datos de las mediciones.

2) Comparación de rendimientos de bombas conectadas en serie y paralelo.

Conexión en Serie:

Gráfico 3: Relación entre la variación de la presión y el caudal para dos bombas conectadas en serie.

La ecuación empírica obtenida del gráfico que relaciona la diferencia de presión con el

caudal es , la cual representa una relación polinomial entre

estas dos variables. Como se puede apreciar la altura de elevación cuando se conectan dos

bombas en serie es mayor que al utilizar solo una bomba, esto es porque las bombas le entregan

una mayor energía al fluido. Las alturas se pueden cuantificar de también como las diferencias de

presiones. Al utilizar solo una bomba la máxima presión obtenida fue de 3 [bar], mientras que en

la conexión en serie fue de 6 [bar], es decir, la altura de elevación aumento al doble. Esto indica

∆P = 0,0068Q2 - 0,3971Q + 6,075R² = 0,9979

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Diferencia de presión vs Caudal (serie)

∆P

*b

ar+

Q [L/min]

Page 7: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

7

que si se requiere transportar agua a grandes alturas es más conveniente usar dos bombas

conectadas en serie, ya que permite además optimizar los costos de implementación, puesto que

estos son menores que al utilizar solo una bomba de mayor potencia.

Gráfico 4: Relación entre el rendimiento y el caudal para dos bombas conectadas en serie.

Se puede apreciar en este gráfico que la eficiencia va aumentando a medida que aumenta

el caudal, pero una vez que llega a cierto caudal, en este caso 15 [L/min] aproximadamente, la

eficiencia comienza a decaer. El rendimiento máximo obtenido es de aproximadamente 16 %.

η = -0,0734Q2 + 2,1888Q + 0,1876R² = 0,9924

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

0 5 10 15 20 25 30

Rendimiento vs Caudal (serie)

η(%

)

Page 8: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

8

Conexión en Paralelo:

Gráfico 5: Relación entre la variación de presión y el caudal para dos bombas conectadas en paralelo.

Para el gráfico anterior se obtuvo la ecuación empírica ,

la cual también representa una relación polinomial entre la variación de presión y el caudal. En

este caso la altura de elevación (equivalente a ∆P), es la misma que al conectar solo una bomba, ya

que el propósito de conectar dos bombas en paralelo, no es obtener una mayor altura, sino mas

bien operar con un mayor caudal, que como se puede apreciar en este caso es de

aproximadamente el doble que en el de una bomba simple o de dos bombas conectadas en serie.

Gráfico 6: Relación entre el rendimiento y el caudal para dos bombas conectadas en paralelo.

∆ P = 0,0006Q2 - 0,0723Q + 2,8863R² = 0,9941

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50 60

Diferencia de presión vs Caudal (paralelo)

∆P

*b

ar+

η = -0,0078Q2 + 0,9825Q + 0,072R² = 0,9986

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

0 10 20 30 40 50 60

Rendimiento vs Caudal (paralelo)

η(%

)

Page 9: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

9

Se puede observar en el gráfico que el rendimiento obtenido al usar una conexión en paralelo

de 2 bombas es mayor que al usar la conexión en serie, siendo el rendimiento en serie de 16 % y

en paralelo de 30 %. Con esto se deduce que dos bombas en paralelo pueden ser mucho más

eficientes energéticamente que dos bombas en serie, puesto que entregarle energía a un menor

caudal es mucho más sencillo que entregarle energía a un caudal mayor.

3) Leyes de semejanza para calcular curva característica de una bomba similar a otra.

Con respecto a la utilización de una bomba 3 semejante a las del sistema experimental, que

funcionará a n’=3500 rpm y el diámetro del rodete será D3=2D1, mediante las leyes de semejanza

de bombas se sabe que:

Bombas perfectamente idénticas

Bombas Geométricamente idénticas

Además se cumple que:

Luego se obtienen las siguientes relaciones para la bomba 3:

De esta forma la curva característica de la bomba 3, a partir de los datos para la bomba

semejante (Tabla 4 ver anexo), será:

Page 10: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

10

Gráfico7: Relación entre la diferencia de presión y el caudal para una bomba semejante.

Por las leyes de semejanza aplicadas se sabe que la eficiencia de la bomba semejante será la

misma para cada nivel de caudal. Y es observable que es capaz de dar mayor energía al fluido y

trabajar con mayores caudales, debido al aumento en el diámetro del rodete (D) y el número de

revoluciones (n).

4) Rendimiento de la bomba 1 en función de la presión 1.

Luego se analizó como era el rendimiento de la bomba 1 en función de P1, variando el ángulo

de cierre de la válvula V1, obteniéndose los datos presentados en la Tabla 4 (ver Anexos) y de la

cual se obtuvieron los siguientes gráficos:

ΔP = 0,0001Q2 - 0,081Q + 11,814R² = 0,9954

0

2

4

6

8

10

12

14

0 50 100 150 200

ΔP

[b

ar]

Q [L/min]

Curva Caracteristica Bomba 3

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

η%

α°

Relación entre la eficiencia y ángulo de cierre

Page 11: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

11

Gráfico 8. Variación de la eficiencia de la bomba 1 en función del ángulo de cierre de la válvula.

Gráfico 9. Variación de la diferencia de presión en la bomba uno en función del ángulo de cierre de la válvula 1.

Como se puede apreciar en los gráficos la máxima eficiencia de la bomba 1 se logra al

alcanzar el ángulo α= 50°, esto se debe a que al cambiar el ángulo de apertura de la válvula, la

presión en la succión decae, por lo que la bomba es capaz de entregar una mayor diferencia de

presión utilizando la misma energía por lo que aumenta la eficiencia, además que el caudal

también decae al cerrar gradualmente la válvula. Esto ocurre hasta lograr el máximo en α= 50°, en

donde el caudal cae bruscamente al igual que la eficiencia, y la diferencia de presión se mantiene

constante. Este fenómeno se explica por el NPSH dado por el fabricante, ya que mediante el

experimento se logró simular este escenario de cavitación en la tubería de succión de la bomba.

5) Estimación del costo de la pérdida en la bomba 1.

Para realizar este cálculo se necesita primero que nada la máxima potencia de la bomba y

saber cuánto es lo que se va a utilizar en un mes.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 10 20 30 40 50 60 70

ΔP

[b

ar]

α°

Relación entre ΔP y ángulo de cierre de válvula

Page 12: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

12

Luego al tener ese dato, con la máxima eficiencia que se obtiene, que en este caso es de

, y con eso se obtiene la perdida generada.

Luego de tener estos valores, se procede a calcular el costo total de la pérdida, con el valor

actual del costo de energía del kW el que es de $103,293; lo que da un valor de:

El valor final de la pérdida es de $15580,42 por mes.

Conclusiones

A partir de los datos obtenidos y del análisis de resultados se concluye lo siguiente:

Los datos obtenidos a lo largo de la experiencia no son los más precisos debido al software y

los equipos utilizados, produciéndose que las revoluciones por minuto no siempre fueran las

precisas, que el flujo variara y no fuera el exacto y que se generaran turbulencias al interior de las

cañerías debido a que el caudal no es unidireccional, lo cual genera mayores pérdidas de carga y

baja el rendimiento de la bomba.

En cuanto a la conexión en serie y en paralelo, se comprobó experimentalmente que las

bombas son más eficientes colocadas en paralelo, ya que el caudal aumenta casi al doble,

logrando transportar más fluido en menos tiempo. Por otra parte, la conexión en serie entrega

una altura de elevación del fluido mucho mayor a la que entrega una conexión en paralelo.

Un sistema hidráulico con caudales produce diferencias de presión, las cuales a su vez podrían

provocar cavitación, es decir, el rendimiento de la bomba caería drásticamente, deteriorándose

ella también. Por lo anterior, se debe considerar este factor y tener precaución en la construcción

de estos sistemas.

Page 13: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

13

En cuanto a los costos, es importante una buena elección de la bomba y con esto, conocer su

eficiencia o bien la potencia consumida, ya que al utilizar mejor los recursos, se aumenta el

rendimiento y se reducen los costos.

Anexos

Mediciones Q [L/min] H [m] η [%] ∆P [bar] Pot. Hidráulica [W] Pot. Eléctrica [W]

1 0 30,6 0 3 0,0 461

2 5 21,4 4,7 2,1 17,5 389

3 10,2 16,3 8,3 1,6 27,2 327

4 15 10,2 9,5 1 25,0 272

5 19,9 7,1 9,7 0,7 23,2 232

6 25 3,1 5,8 0,3 12,5 183 Tabla 1: Datos obtenidos al medir con una bomba simple.

Mediciones Q [L/min] H [m] η (%) ∆P [bar] Pot. Hidráulica [W] Pot. Eléctrica [W]

1 0 61,2 0,0 6 0,0 457

2 5 44,9 9,4 4,4 36,7 390

3 10 28,6 15,5 2,8 46,7 302

4 15 15,3 15,6 1,5 37,5 240

5 20 9,2 14,8 0,9 30,0 203

6 25 4,1 9,2 0,4 16,7 182 Tabla 2: Datos obtenidos al medir con dos bombas conectadas en serie.

Mediciones Q [L/min] H [m] η (%) ∆P [bar] Pot. Hidráulica [W] Pot. Eléctrica [W]

1 0 29,59 0,0 2,9 0,0 461

2 5,1 26,53 5,2 2,6 22,1 425

3 10,2 21,43 9,2 2,1 35,7 387

4 15 19,39 13,0 1,9 47,5 365

5 20 17,35 16,4 1,7 56,7 346

6 25 15,31 19,3 1,5 62,5 324

7 35 11,22 25,7 1,1 64,2 250

8 50 7,65 29,5 0,8 62,5 212 Tabla 3: Datos obtenidos al medir con dos bombas conectadas en paralelo.

Page 14: Bombas centrifugas en serie y paralelo

Universidad Técnica Federico Santa María Departamento de Industrias

14

Mediciones Q [L/min] H[m] Δ P [bar]

1 0 122,449 12

2 40 85,714 8,4

3 81,6 65,306 6,4

4 120 40,816 4

5 159,2 28,571 2,8

6 200 12,245 1,2 Tabla 4: Caudal, altura y diferencia de presión de bomba 3 (semejante).

Mediciones Q [L/min] η % ΔP [bar] Potencia Eléctrica [W] α°

1 28,8 4,2 0,2 190 10

2 28,1 4,1 0,2 194 20

3 27,2 4,7 0,2 191 30

4 26,8 6,2 0,3 191 40

5 25,1 8,3 0,4 192 45

6 19,6 9,7 0,6 189 50

7 8,2 5,9 0,8 175 55

8 3 2,4 0,8 178 60 Tabla 5: