bio pot en cia les

Upload: bachiusach2008

Post on 30-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Bio Pot en CIA Les

    1/31

    BiopotencialesBIOPOTENCIALES

  • 8/14/2019 Bio Pot en CIA Les

    2/31

    Agenda

    Primera parte

    Introduccin a los biopotenciales Mtodos de medida

    Tradicional: ECG, EEG, EMG, EOG

    Novedoso: VCG

    Segunda parte

    Mediciones Electrnica

    Electrodos

  • 8/14/2019 Bio Pot en CIA Les

    3/31

    Qu son lo biopotenciales?

    Biopotencial: Es un potencial elctrico que puede medirse entre dos

    puntos en clulas vivientes, tejidos y organismos y que esconsecuencia de algunos de sus procesos bioqumicos.

  • 8/14/2019 Bio Pot en CIA Les

    4/31

    Mecanismos detrs de los biopotenciales

    La concentracin de iones potasio(K+) es 30-50 veces mayor en el ladointracelular, comparado con elextracelular.

    La concentracin de iones sodio(Na+) es 10 veces mayor afuera de lamembrana que en el interior.

    En el estado de reposo, la membranaes permeable solo a iones potasio.

    mVVm

    100...70

    mVVm

    100...70

  • 8/14/2019 Bio Pot en CIA Les

    5/31

    Mecanismos de los biopotenciales

    Cuando la estimulacin de una membranaexcitable excede un umbral de alrededor de

    20 mV, ocurre un potencial de accin:1. Las permeabilidades de Na y K cambian.

    2. La permeabilidad al Na se incrementa muyrapidamente al principio, permitiendo a losiones Na fluir desde el exterior al interior,haciendo el medio intracelular ms positivo.

    3. La permeabilidad del K se incrementa mslentamente, permitiendo al potasio fluir desdedel interior al exterior, as retornando elpotencial de membrana a su valor de reposo.

    4. Durante el reposos, la bomba Na-K ATPasarestaura las concentraciones inicas a susvalores originales.

    El nmero de iones que fluyen a travs de uncanal abierto es >106/segundo

    El cuerpo es un conductor de volumen,permitiendo a estos flujos ionicos generarpotenciales medibles en la superficie del

  • 8/14/2019 Bio Pot en CIA Les

    6/31

    Electrocardiografa (ECG)

    Mide galvnicamente la actividad elctrica del corazn.

    Las primeras ECG fueron realizadas por Augustus Wallermediante el electrmetro capilar, en el ao 1887.

    Muy utilizado en el ambiente clnico.

    De muy alto valor diagnstico.

    1. Atrialdepolarization

    2. Ventriculardepolarization

    3. Ventricular repolarization

  • 8/14/2019 Bio Pot en CIA Les

    7/31

    ECG fundamentos bsicos

    Amplitud: 1-5 mV

    Ancho de banda: 0.05-100 Hz

    Fuentes de error:

    Artificios de movimiento

    Interferencia con la lnea de voltaje 50 Hz

    Aplicaciones tpicas:

    Diagnstico de isquemia

    Arritmias

    Defectos de la conduccin

  • 8/14/2019 Bio Pot en CIA Les

    8/31

    Medicin del ECG con 12 electrodos.

    El ms utilizado en la clnica.

    Las seales elctricas son medidas no invasivamente con 9 electrodos Existen bases de datos y referencias internacionales con este sistemaa.

    Este mtodo fue adoptado por razones histricas, aun cuando en la actualidadest algo obsoleto.

    Einthoven leads: I, II & III Goldberger augmented leads: VR, VL & VF Precordial leads: V1-V6

  • 8/14/2019 Bio Pot en CIA Les

    9/31

    Electroencefalografa (EEG)

    Mide la actividad elctrica del cerebromedido a nivel del cuero cabelludo.

    La seal medida resulta de la actividadde billones de neuronas.

    Amplitud: 0.001-0.01 mV

    Ancho de banda: 0.5-40 Hz

    Errores:

    Ruido de RF termal Lneas elctricas de 50 Hz.

    Aplicaciones tpicas:

    Estudios del sueo.

    Estudios de convulsiones.

    Mapas corticales.

  • 8/14/2019 Bio Pot en CIA Les

    10/31

    Mediciones del EEG

    El sistema de10-20electrodos es el ms usado

    en la clnica. Permite la localizacin de

    rasgos diagnsticos en lavecindad de un electrodo.

    A menudo se utilizan

    electrodos de hilo o unamalla de goma con loselectrodos posicionados.

    Los investigadores delcerebro utilizan gorras con256 o 512 canales.

  • 8/14/2019 Bio Pot en CIA Les

    11/31

    Electromiografa (EMG)

    Mide la actividad elctrica de las fibras musculares.

    Los electrodos estn posicionados muy cerca delos grupos de msculos bajo estudio.

    Seales rectificadas o integradas proveen una indi-

    cacin cruda de la actividad muscular.

    Electrodos de aguja pueden ser usados para medir

    fibras musculares individuales.

    Amplitud: 1-10 mV

    Ancho de banda: 20-2000 Hz

    Fuentes de error principales son la interferencia de RF y las lneas de 50 Hz.

    Applicacones: funcin muscular, enfermedades de la placa neuromuscular,prtesis.

  • 8/14/2019 Bio Pot en CIA Les

    12/31

  • 8/14/2019 Bio Pot en CIA Les

    13/31

    Vectorcardiograma (VCG o EVCG)

    En vez de desplegar la amplitud escalar(curva ECG), la activacin elctrica delcorazn es desplegada como un vector.

    Tiene amplitud y direccin

    El diagnstico est basado en la curva que lapunta de este vector se dibuja en dos o tresdimensiones.

    El contenido de informacin del VCG esaproximadamente el mismo que el sistemade ECG con 12 electrodos. La ventaja vienede la manera en que la informacin esdesplegada.

  • 8/14/2019 Bio Pot en CIA Les

    14/31

    Un pequeo

    descanso

  • 8/14/2019 Bio Pot en CIA Les

    15/31

    EL ORGANO ELECTRICO DE LA

    ANGUILA

  • 8/14/2019 Bio Pot en CIA Les

    16/31

  • 8/14/2019 Bio Pot en CIA Les

    17/31

    En el reposo, las bombas Na-KATPasa generan un potencialde membrana de -100 mV. La

    llegada de un potencial deaccin a la placa terminalcausa la entrada de Na a laclula.

    En reposo, el voltaje total de loselectrocitos apilados es compensado por elpotencial positivo de la membrana de

    superficie suave. La despolarizacinreversa el potencial de membranaresultando en una sumacin de lospotenciales individuales, causando unacorriente neta positiva

  • 8/14/2019 Bio Pot en CIA Les

    18/31

    The biopotential amplifier

    Small amplitudes, low frequencies, environmental and biologicalsources of interference etc.

    Essential requirements for measurement equipment:

    High amplification

    High differential gain, low common mode gain high CMRR

    High input impedance

    Low Noise Stability against temperature and voltage fluctuations

    Electrical safety, isolation and defibrillation protection

  • 8/14/2019 Bio Pot en CIA Les

    19/31

    The Instrumentation Amplifier

    Potentially combines the best features desirable for biopotentialmeasurements

    High differential gain, low common mode gain, high CMRR, high input resistance

    A key design component to almost all biopotential measurements!

    Simple and cheap, although high-quality OpAmps with high CMRR should beused

    1

    2

    121R

    RG +=

    3

    4

    2

    R

    RG =

    CMRR fine tuning

  • 8/14/2019 Bio Pot en CIA Les

    20/31

    Application-specific requirements

    ECG amplifier

    Lower corner frequency 0.05 Hz, upper 100Hz

    Safety and protection: leakage current below safety standard limit of 10 uA

    Electrical isolation from the power line and the earth ground

    Protection against high defibrillation voltages

    EEG amplifier

    Gain must deal with microvolt or lower levels of signals

    Components must have low thermal and electronic noise @ the front end

    Otherwise similar to ECG

    EMG amplifier

    Slightly enhanced amplifier BW suffices

    Post-processing circuits are almost always needed (e.g. rectifier + integrator)

    EOG amplifier High gain with very good low frequency (or even DC) response

    DC-drifting electrodes should be selected with great care

    Often active DC or drift cancellation or correction circuit may be necessary

  • 8/14/2019 Bio Pot en CIA Les

    21/31

    Electrical Interference Reduction

    Power line interference (50 or 60 Hz) is always around us

    Connects capacitively and causes common mode interference

    The common mode interference would be completely rejected by theinstrumentation amplifier if the matching would be ideal

    Often a clever driven right leg circuit is used to further enhance CMRR

    Average of the VCM is inverted and driven back to the body via reference electrode

    0RiV

    DCM=

    1

    2

    0

    21R

    R

    RiV

    D

    CM

    +

    =

  • 8/14/2019 Bio Pot en CIA Les

    22/31

    Filtering

    Filtering should be included in the front end of the InstrAmp

    Transmitters, motors etc. cause also RF interference

    Small inductorsor ferrite beadsin the lead wires

    block HF frequencyEM interference

    RF filtering withsmall capacitors

    High-pass filterto reject DC drifting

    Low-pass filteringat several stages

    is recommended toattenuate residual

    RF interference

  • 8/14/2019 Bio Pot en CIA Les

    23/31

    50 or 60 Hz notch filter

    Sometimes it may be desirable to remove the power line interference

    Overlaps with the measurement bandwidthMay distort the measurement result and have an affect on the diagnosis!

    Option often available with EEG & EOG measuring instruments

    Twin T

    notch filter

    Determinesnotch

    frequency

    Notch

    tuning

  • 8/14/2019 Bio Pot en CIA Les

    24/31

    Artifact reduction

    Electrode-skin interface is a major source of artifact

    Changes in the junction potential causes slow changes in the baseline

    Movement artifacts cause more sudden changes and artifacts

    Drifting in the baseline can be detected by discharging the high-passcapacitor in the amplifier to restore the baseline

  • 8/14/2019 Bio Pot en CIA Les

    25/31

    Electrical isolation

    Electrical isolation limits the possibility of passage of any leakagecurrent from the instrument in use to the patient

    Such passage would be harmful if not fatal!

    1. Transformer

    Transformers are inherently highfrequency AC devices

    Modulation and demodulation needed

    2. Optical isolation

    Optical signal is modulated inproportion to the electric signal andtransmitted to the detector

    Typically pulse code modulated tocircumvent the inherent nonlinearityof the LED-phototransistorcombination

  • 8/14/2019 Bio Pot en CIA Les

    26/31

    Defibrillation Protection

    Measuring instruments can encounter very high voltages

    E.g. 15005000V shocks from defibrillator Front-end must be designed to withstand these high voltages

    1. Resistors in the inputleads limit the current

    3. Protection against

    much higher voltagesis achieved withlow-pressure gasdischarge tubes

    (e.g. neon lamps)

    (note: even isolationcomponents such astransformers and

    optical isolators needthese spark gaps)

    Discharge @ ~100V

    2. Diodes or Zener diodesprotect against high

    voltages

    Discharge @ 0.7-15V

  • 8/14/2019 Bio Pot en CIA Les

    27/31

    Electrodes Basics

    High-quality biopotential measurements require

    Good amplifier design

    Use of good electrodes and their proper placement on the patient

    Good laboratory and clinical practices

    Electrodes should be chosen according to the application

    Basic electrode structure includes:

    The body and casing

    Electrode made of high-conductivity material

    Wire connector

    Cavity or similar for electrolytic gel

    Adhesive rim

    The complexity of electrode design often neglected

    El d B i

  • 8/14/2019 Bio Pot en CIA Les

    28/31

    Electrodes - Basics

    Skin preparation by abrasion or cleansing

    Placement close to the source being measured

    Placement above bony structures where there is less muscle mass

    Distinguishing features of different electrodes:

    How secure? The structure and the use of strong but less irritant adhesives

    How conductive? Use of noble metals vs. cheaper materials

    How prone to artifact? Use of low-junction-potential materials such as Ag-AgCl

    If electrolytic gel is used, how is it applied? High conductivity gels can help reducethe junction potentials and resistance but tend to be more allergenic or irritating

    Baseline drift due to thechanges in junction

    potential or motion artifacts

    Choice of electrodes Muscle signalinterference

    PlacementElectromagnetic

    interference Shielding

    A A Cl Sil Sil Chl id El t d

  • 8/14/2019 Bio Pot en CIA Les

    29/31

    Ag-AgCl, Silver-Silver Chloride Electrodes

    The most commonly used electrode type

    Silver is interfaced with its salt silver-chloride Choice of materials helps to reduce junction potentials

    Junction potentials are the result of the dissimilarelectrolytic interfaces

    Electrolytic gel enhances conductivity and also reduces

    junction potentialsTypically based on sodium or potassium chloride,

    concentration in the order of 0.1 M weak enough to notirritate the skin

    The gel is typically soaked into a foam pad or applieddirectly in a pocket produced by electrode housing

    Relatively low-cost and general purpose electrode

    Particularly suited for ambulatory or long term use

    G ld El t d

  • 8/14/2019 Bio Pot en CIA Les

    30/31

    Gold Electrodes

    Very high conductivity suitable for low-noise meas.

    Inertness suitable for reusable electrodes

    Body forms cavity which is filled with electrolytic gel

    Compared to Ag-AgCL: greater expense, higherjunction potentials and motion artifacts

    Often used in EEG, sometimes in EMG

    Conductive polymer electrodes Made out of material that is simultaneously conductive and adhesive

    Polymer is made conductive by adding monovalent metallic ions

    Aluminum foil allows contact to external instrumentation

    No need for gel or other adhesive substance

    High resistivity makes unsuitable for low-noise meas.

    Not as good connection as with traditional electrodes

    M t l b l t d

  • 8/14/2019 Bio Pot en CIA Les

    31/31

    Metal or carbon electrodes

    Other metals are seldom used as high-quality noblemetal electrodes or low-cost carbon or polymeric

    electrodes are so readily available Historical value. Bulky and awkward to use

    Carbon electrodes have high resistivity and are noisierbut they are also flexibleand reusable

    Applications in electrical stimulation and impedance plethysmography

    Needle electrodes

    Obviously invasive electrodes

    Used when measurements have to be taken from the organ itself

    Small signals such as motor unit potentials can be measured

    Needle is often a steel wire with hooked tip