automata and group theory - upc universitat politècnica de...

186
Automata and Group Theory Enric Ventura Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya AutoMatha ABCD Workshop, Bratislava, November 25, 2008 Enric Ventura (UPC) Automata and Group Theory November 25, 2008 1 / 69

Upload: others

Post on 01-Apr-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Automata and Group Theory

Enric VenturaDepartament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

AutoMatha ABCD Workshop, Bratislava,

November 25, 2008

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 1 / 69

Page 2: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 2 / 69

Page 3: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 3 / 69

Page 4: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 5: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 6: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 7: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 8: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 9: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 10: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 11: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 12: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1n }.

Usually, A = {a, b, c}.(A±1)∗ the free monoid on A±1 (words on A±1).1 denotes the empty word, and we have the notion of length.∼ is the eq. rel. generated by aia−1

i ∼ a−1i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w inFA, and w is the shortest word with this property). We also say w is areduced word.Again 1 denotes the empty word, and | · | the (shortest) length in FA:|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 4 / 69

Page 13: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The universal property

The universal property: given a group G and a mapping ϕ : A→ G, thereexists a unique group homomorphism Φ: FA → G such that the diagram

Aϕ //

ι

��

G

FA

∃!Φ

>>~~

~~

commutes (where ι is the inclusion map).Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 5 / 69

Page 14: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The universal property

The universal property: given a group G and a mapping ϕ : A→ G, thereexists a unique group homomorphism Φ: FA → G such that the diagram

Aϕ //

ι

��

G

FA

∃!Φ

>>~~

~~

commutes (where ι is the inclusion map).Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 5 / 69

Page 15: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The universal property

The universal property: given a group G and a mapping ϕ : A→ G, thereexists a unique group homomorphism Φ: FA → G such that the diagram

Aϕ //

ι

��

G

FA

∃!Φ

>>~~

~~

commutes (where ι is the inclusion map).Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 5 / 69

Page 16: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 17: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 18: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 19: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 20: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 21: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 22: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 23: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 24: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 25: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 26: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 27: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 28: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 29: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 30: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vectorspace is like this,

• Every group G is a quotientof a free group,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroupof a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 6 / 69

Page 31: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 7 / 69

Page 32: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

DefinitionA Stallings automata is a finite A-labeled oriented graph with a distinguishedvertex, (X , v), such that:

1- X is connected,2- no vertex of degree 1 except possibly v (X is a core-graph),3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

���������������

• c // •a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

���������������

•a

** •

b

XX0000000000000

c

jj

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 8 / 69

Page 33: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

DefinitionA Stallings automata is a finite A-labeled oriented graph with a distinguishedvertex, (X , v), such that:

1- X is connected,2- no vertex of degree 1 except possibly v (X is a core-graph),3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

���������������

• c // •a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

���������������

•a

** •

b

XX0000000000000

c

jj

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 8 / 69

Page 34: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

DefinitionA Stallings automata is a finite A-labeled oriented graph with a distinguishedvertex, (X , v), such that:

1- X is connected,2- no vertex of degree 1 except possibly v (X is a core-graph),3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

���������������

• c // •a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

���������������

•a

** •

b

XX0000000000000

c

jj

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 8 / 69

Page 35: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),551-565,

Stallings (building on previous works) gave a bijection between finitelygenerated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 9 / 69

Page 36: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),551-565,

Stallings (building on previous works) gave a bijection between finitelygenerated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 9 / 69

Page 37: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),551-565,

Stallings (building on previous works) gave a bijection between finitelygenerated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 9 / 69

Page 38: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 39: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 40: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 41: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 42: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 43: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 44: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 45: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 46: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 47: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Reading the subgroup from the automata

DefinitionTo any given (Stallings) automaton (X , v), we associate its fundamentalgroup:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

a

��

X= b

���������������

•a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 10 / 69

Page 48: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 49: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 50: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 51: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 52: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 53: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

A basis for π(X , v)

PropositionFor every Stallings automaton (X , v), the group π(X , v) is free of rankrk(π(X , v)) = 1− |VX |+ |EX |.

Proof:Take a maximal tree T in X .Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from pto q.For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs toπ(X , v).Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 11 / 69

Page 54: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

a

��

b

���������

•a

** •

b

XX0000000

c

jj

H = 〈 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 12 / 69

Page 55: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

a

��

b

���������

•a

** •

b

XX0000000

c

jj

H = 〈a, 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 13 / 69

Page 56: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

a

��

b

���������

•a

** •

b

XX0000000

c

jj

H = 〈a, bab, 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 14 / 69

Page 57: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

a

��

b

���������

•a

** •

b

XX0000000

c

jj

H = 〈a, bab, b−1cb−1〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 15 / 69

Page 58: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

a

��

b

���������

•a

** •

b

XX0000000

c

jj

H = 〈a, bab, b−1cb−1〉rk(H) = 1− 3 + 5 = 3.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 16 / 69

Page 59: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example-2

· · · b // • b //

a

��• b //

a

��• b //

a

��• b //

a

��• b //

a

��• b //

a

��• b //

a

��· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 17 / 69

Page 60: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69

Page 61: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69

Page 62: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 18 / 69

Page 63: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

Lemma (Stallings)If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reducedwords), do the following:

1- Draw the flower automaton,2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?Need to see that the output does not depend on the process...

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 19 / 69

Page 64: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

Lemma (Stallings)If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reducedwords), do the following:

1- Draw the flower automaton,2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?Need to see that the output does not depend on the process...

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 19 / 69

Page 65: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

Lemma (Stallings)If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reducedwords), do the following:

1- Draw the flower automaton,2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?Need to see that the output does not depend on the process...

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 19 / 69

Page 66: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

Lemma (Stallings)If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reducedwords), do the following:

1- Draw the flower automaton,2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?Need to see that the output does not depend on the process...

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 19 / 69

Page 67: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Constructing the automata from the subgroup

Lemma (Stallings)If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . wm〉 6 FA (we assume wi are reducedwords), do the following:

1- Draw the flower automaton,2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?Need to see that the output does not depend on the process...

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 19 / 69

Page 68: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��• a // •

b

OO

a //

a

��???

????

????

????

?

a

��

a

������

����

����

����

a

??����������������•

boo • •

boo

Flower(H)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 20 / 69

Page 69: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��• a // •

b

OO

a//

a

��???

????

????

????

?

a

��

a

������

����

����

����

a

??����������������•

boo • •

boo

Flower(H)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 21 / 69

Page 70: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��•

b

OO

a // •

b

��

bpp

a

OO

•a

oo

Folding #1

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 22 / 69

Page 71: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��•

b

OO

a // •

b

��

bpp

a

OO

•a

oo

Folding #1.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 23 / 69

Page 72: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

a

��???

????

????

????

?

b

OO

a // •

a

������

����

����

����

bpp

a

OO

Folding #2.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 24 / 69

Page 73: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

a

��???

????

????

????

?

b

OO

a// •

a

������

����

����

����

bpp

a

OO

Folding #2.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 25 / 69

Page 74: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a //b

.. •

a

������

����

����

����

bpp

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 26 / 69

Page 75: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a //b

.. •

a

������

����

����

����

bpp

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 26 / 69

Page 76: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example: H = 〈baba−1, aba−1, aba2〉

• a //b

.. •

a

������

����

����

����

bpp

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉= 〈b, aba−1, a3〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 27 / 69

Page 77: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Local confluence

PropositionThe automaton Γ(H) does not depend on the sequence of foldings

Proof:Suppose (X , v) (X ′, v ′) is a single folding of 2 edges

If p x //

x&&MMMMMMMMMMMMM q

r

in (X , v), then p′ x //

x&&MMMMMMMMMMMMM q′

r ′

in (X ′, v ′) (possibly

with q′ = r ′).So, we get local confluence:

(X , v)∀ //

∀��

π(X ′, v ′)

∃�����

π(X ′′, v ′′) ∃ //___ π(X ′′′, v ′′′)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 28 / 69

Page 78: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Local confluence

PropositionThe automaton Γ(H) does not depend on the sequence of foldings

Proof:Suppose (X , v) (X ′, v ′) is a single folding of 2 edges

If p x //

x&&MMMMMMMMMMMMM q

r

in (X , v), then p′ x //

x&&MMMMMMMMMMMMM q′

r ′

in (X ′, v ′) (possibly

with q′ = r ′).So, we get local confluence:

(X , v)∀ //

∀��

π(X ′, v ′)

∃�����

π(X ′′, v ′′) ∃ //___ π(X ′′′, v ′′′)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 28 / 69

Page 79: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Local confluence

PropositionThe automaton Γ(H) does not depend on the sequence of foldings

Proof:Suppose (X , v) (X ′, v ′) is a single folding of 2 edges

If p x //

x&&MMMMMMMMMMMMM q

r

in (X , v), then p′ x //

x&&MMMMMMMMMMMMM q′

r ′

in (X ′, v ′) (possibly

with q′ = r ′).So, we get local confluence:

(X , v)∀ //

∀��

π(X ′, v ′)

∃�����

π(X ′′, v ′′) ∃ //___ π(X ′′′, v ′′′)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 28 / 69

Page 80: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Local confluence

PropositionThe automaton Γ(H) does not depend on the sequence of foldings

Proof:Suppose (X , v) (X ′, v ′) is a single folding of 2 edges

If p x //

x&&MMMMMMMMMMMMM q

r

in (X , v), then p′ x //

x&&MMMMMMMMMMMMM q′

r ′

in (X ′, v ′) (possibly

with q′ = r ′).So, we get local confluence:

(X , v)∀ //

∀��

π(X ′, v ′)

∃�����

π(X ′′, v ′′) ∃ //___ π(X ′′′, v ′′′)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 28 / 69

Page 81: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The confluence grid

π(X00, v) //

��

π(X01, v) //

�����

. . . // π(X0p, v)

π(X10, v)

��

//___ π(X11, v)

...

��π(Xq0, v)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 29 / 69

Page 82: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The confluence grid

π(X00, v) //

��

π(X01, v) //

�����

. . . // π(X0p, v)

�����

π(X10, v)

��

//___ π(X11, v) //___ . . . //___ π(X1p, v)

...

��π(Xq0, v)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 30 / 69

Page 83: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The confluence grid

π(X00, v) //

��

π(X01, v) //

�����

. . . // π(X0p, v)

�����

π(X10, v)

��

//___ π(X11, v)

�����

//___ . . . //___ π(X1p, v)

�����

......

...

�� �����

�����

π(Xq0, v) //___ π(Xq1, v) //___ . . . //___ π(Xqp, v)

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 31 / 69

Page 84: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Confluence

Hence, we have confluence:

(X , v)∀ +3

∀��

π(X ′, v ′)

∃�����

���

π(X ′′, v ′′) ∃ +3___ ___ π(X ′′′, v ′′′),

where⇒ stands for an arbitrary sequence of foldings.

Finally, edge-reducing + confluence implies unique output. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 32 / 69

Page 85: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Confluence

Hence, we have confluence:

(X , v)∀ +3

∀��

π(X ′, v ′)

∃�����

���

π(X ′′, v ′′) ∃ +3___ ___ π(X ′′′, v ′′′),

where⇒ stands for an arbitrary sequence of foldings.

Finally, edge-reducing + confluence implies unique output. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 32 / 69

Page 86: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

PropositionThe automaton Γ(H) does not depend on the generators of H.

Proof:Suppose H = 〈w1, . . . , wp〉 = 〈w ′

1, . . . , w ′q〉 and let Γ(H) and Γ′(H) be the

Stallings automata obtained from each set of generators.Consider the double flower

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

whose fundamental group is 〈w1, . . . , wp, w ′1, . . . , w ′

q〉 = H.Now, fold in the two natural ways:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 33 / 69

Page 87: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

PropositionThe automaton Γ(H) does not depend on the generators of H.

Proof:Suppose H = 〈w1, . . . , wp〉 = 〈w ′

1, . . . , w ′q〉 and let Γ(H) and Γ′(H) be the

Stallings automata obtained from each set of generators.Consider the double flower

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

whose fundamental group is 〈w1, . . . , wp, w ′1, . . . , w ′

q〉 = H.Now, fold in the two natural ways:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 33 / 69

Page 88: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

PropositionThe automaton Γ(H) does not depend on the generators of H.

Proof:Suppose H = 〈w1, . . . , wp〉 = 〈w ′

1, . . . , w ′q〉 and let Γ(H) and Γ′(H) be the

Stallings automata obtained from each set of generators.Consider the double flower

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

whose fundamental group is 〈w1, . . . , wp, w ′1, . . . , w ′

q〉 = H.Now, fold in the two natural ways:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 33 / 69

Page 89: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

PropositionThe automaton Γ(H) does not depend on the generators of H.

Proof:Suppose H = 〈w1, . . . , wp〉 = 〈w ′

1, . . . , w ′q〉 and let Γ(H) and Γ′(H) be the

Stallings automata obtained from each set of generators.Consider the double flower

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

whose fundamental group is 〈w1, . . . , wp, w ′1, . . . , w ′

q〉 = H.Now, fold in the two natural ways:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 33 / 69

Page 90: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

Γ(H)•

w ′1

...

LL

w ′q

YY

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

19kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

%-SSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSS

•Γ′(H)

w1

···��

wp

��

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 34 / 69

Page 91: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

Γ(H)•

w ′1

...

LL

w ′q

YY+3 Γ(H)

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

19kkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

%-SSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSS

•Γ′(H)

w1

···��

wp

��+3 Γ′(H)

Lemma (Useless-w)If H 6fg FA and w ∈ H then, attaching a petal labeled w to the basepoint ofΓ(H) and folding, we obtain again Γ(H).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 35 / 69

Page 92: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Independence from the generators

Γ(H)•

w ′1

...

LL

w ′q

YY+3 Γ(H)

w1

···

��

wp

��

w ′1

...

NN

w ′q

\\

19lllllllllllllllllll

lllllllllllllllllll

$,RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR ‖

•Γ′(H)

w1

···��

wp

��+3 Γ′(H)

Lemma (Useless-w)If H 6fg FA and w ∈ H then, attaching a petal labeled w to the basepoint ofΓ(H) and folding, we obtain again Γ(H).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 36 / 69

Page 93: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The bijection

TheoremThe following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}H → Γ(H)

π(X , v) ← (X , v)

Proof:By Stallings Lemma, it is clear that π(Γ(H)) = H.Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.Let (Y , v) be the automata obtained by attaching petals labeledw1, . . . , wp to the vertex v of (X , v).By the useless-w Lemma, (Y , v) can be folded to both (X , v) andΓ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).�

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 37 / 69

Page 94: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The bijection

TheoremThe following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}H → Γ(H)

π(X , v) ← (X , v)

Proof:By Stallings Lemma, it is clear that π(Γ(H)) = H.Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.Let (Y , v) be the automata obtained by attaching petals labeledw1, . . . , wp to the vertex v of (X , v).By the useless-w Lemma, (Y , v) can be folded to both (X , v) andΓ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).�

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 37 / 69

Page 95: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The bijection

TheoremThe following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}H → Γ(H)

π(X , v) ← (X , v)

Proof:By Stallings Lemma, it is clear that π(Γ(H)) = H.Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.Let (Y , v) be the automata obtained by attaching petals labeledw1, . . . , wp to the vertex v of (X , v).By the useless-w Lemma, (Y , v) can be folded to both (X , v) andΓ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).�

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 37 / 69

Page 96: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The bijection

TheoremThe following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}H → Γ(H)

π(X , v) ← (X , v)

Proof:By Stallings Lemma, it is clear that π(Γ(H)) = H.Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.Let (Y , v) be the automata obtained by attaching petals labeledw1, . . . , wp to the vertex v of (X , v).By the useless-w Lemma, (Y , v) can be folded to both (X , v) andΓ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).�

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 37 / 69

Page 97: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The bijection

TheoremThe following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}H → Γ(H)

π(X , v) ← (X , v)

Proof:By Stallings Lemma, it is clear that π(Γ(H)) = H.Let (X , v) be a Stallings automata, and π(X , v) = = 〈w1, . . . , wp〉.Let (Y , v) be the automata obtained by attaching petals labeledw1, . . . , wp to the vertex v of (X , v).By the useless-w Lemma, (Y , v) can be folded to both (X , v) andΓ(π(X , v)). And both are completely folded. Hence, Γ(π(X , v)) = (X , v).�

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 37 / 69

Page 98: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easilyto the general case.

The original proof (1920’s) is combinatorial and much more technical.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 38 / 69

Page 99: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easilyto the general case.

The original proof (1920’s) is combinatorial and much more technical.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 38 / 69

Page 100: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easilyto the general case.

The original proof (1920’s) is combinatorial and much more technical.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 38 / 69

Page 101: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 39 / 69

Page 102: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Membership & containment

(Membership)Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),Check whether all the wi ’s are readable as closed paths in Γ(H) (at thebasepoint).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 40 / 69

Page 103: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Membership & containment

(Membership)Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),Check whether all the wi ’s are readable as closed paths in Γ(H) (at thebasepoint).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 40 / 69

Page 104: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Membership & containment

(Membership)Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),Check whether all the wi ’s are readable as closed paths in Γ(H) (at thebasepoint).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 40 / 69

Page 105: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Membership & containment

(Membership)Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),Check whether all the wi ’s are readable as closed paths in Γ(H) (at thebasepoint).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 40 / 69

Page 106: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Basis & conjugacy

(Computing a basis)Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),Choose a maximal tree,Read the corresponding basis.

(Conjugacy)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = Kfor some x ∈ FA) ?

Construct Γ(H) and Γ(K ),Check whether the are “equal" up to the basepoint.Every path between the two basepoints spells a valid x .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 41 / 69

Page 107: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Basis & conjugacy

(Computing a basis)Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),Choose a maximal tree,Read the corresponding basis.

(Conjugacy)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = Kfor some x ∈ FA) ?

Construct Γ(H) and Γ(K ),Check whether the are “equal" up to the basepoint.Every path between the two basepoints spells a valid x .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 41 / 69

Page 108: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Basis & conjugacy

(Computing a basis)Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),Choose a maximal tree,Read the corresponding basis.

(Conjugacy)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = Kfor some x ∈ FA) ?

Construct Γ(H) and Γ(K ),Check whether the are “equal" up to the basepoint.Every path between the two basepoints spells a valid x .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 41 / 69

Page 109: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Basis & conjugacy

(Computing a basis)Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),Choose a maximal tree,Read the corresponding basis.

(Conjugacy)Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = Kfor some x ∈ FA) ?

Construct Γ(H) and Γ(K ),Check whether the are “equal" up to the basepoint.Every path between the two basepoints spells a valid x .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 41 / 69

Page 110: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Finite index subgroups

(Finite index)Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of cosetrepresentatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),Check whether Γ(H) is complete (i.e. every letter going in and out ofevery vertex),Choose a maximal tree T in Γ(H),{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 42 / 69

Page 111: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Finite index subgroups

(Finite index)Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of cosetrepresentatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),Check whether Γ(H) is complete (i.e. every letter going in and out ofevery vertex),Choose a maximal tree T in Γ(H),{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 42 / 69

Page 112: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Finite index subgroups

(Finite index)Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of cosetrepresentatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),Check whether Γ(H) is complete (i.e. every letter going in and out ofevery vertex),Choose a maximal tree T in Γ(H),{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 42 / 69

Page 113: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Finite index subgroups

(Finite index)Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of cosetrepresentatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),Check whether Γ(H) is complete (i.e. every letter going in and out ofevery vertex),Choose a maximal tree T in Γ(H),{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 42 / 69

Page 114: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, ac, c−1a, cac−1, c−1bc−1, cbc, c4, c2ac−2, c2bc−2〉

Γ(H) = •b ## a

**

c

��000

0000

0000

00•

a

jj

b

��

c

��•

a

�� bppcoo

b

@@

c

99tttttttttttttttttttttt

a

NN

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 43 / 69

Page 115: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, ac, c−1a, cac−1, c−1bc−1, cbc, c4, c2ac−2, c2bc−2〉

Γ(H) = •b ## a

**

c

��000

0000

0000

00•

a

jj

b

��

c

��•

a

�� bppcoo

b

@@

c

99tttttttttttttttttttttt

a

NN

F3 = H t Hc t Ha t Hac−1.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 44 / 69

Page 116: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 117: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 118: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 119: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 120: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 121: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 122: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

More on finite index

(Schreier index formula)If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)Every f.g. subgroup H 6fg FA is a free factor of a finite index one,H 6ff H ∗ L 6f .i. FA.

Proof:Compute Γ(H) from a generating set,Locate the “missing” heads and tails of edges (in equal number for everyletter),Add new edges until having a complete automata (Y , v),Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 45 / 69

Page 123: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ##

c

��00

00

00

0 •

c

��@

JU_it~

•b

pp

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 46 / 69

Page 124: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •

c

��@

JU_it~

•b

pp

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈ac〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 47 / 69

Page 125: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

c

��@

JU_it~

•b

pp

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈ac, c−1a〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 48 / 69

Page 126: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

b

��

c

��@

JU_it~

•b

pp

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈ac, c−1a, c−1bc−1〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 49 / 69

Page 127: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

b

��

c

��@

JU_it~

•b

ppcoo

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈ac, c−1a, c−1bc−1, c4〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 50 / 69

Page 128: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

b

��

c

��@

JU_it~

a

�� bppcoo

b

@@

c

99tt

tt

tt

tt

tt

t

H 6ff H ∗ 〈ac, c−1a, c−1bc−1, c4, c2ac−2〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 51 / 69

Page 129: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

b

��

c

��@

JU_it~

a

�� bppcoo

b

@@

c

99tt

tt

tt

tt

tt

t

a

NN

H 6ff H ∗ 〈ac, c−1a, c−1bc−1, c4, c2ac−2, cac−1〉 64 F3.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 52 / 69

Page 130: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Example

H = 〈b, cbc, c2bc−2〉

Γ(H) = •b ## a

**

c

��00

00

00

0 •a

jj

b

��

c

��@

JU_it~

a

�� bppcoo

b

@@

c

99tt

tt

tt

tt

tt

t

a

NN

H 6ff H ∗ 〈ac, c−1a, c−1bc−1, c4, c2ac−2, cac−1〉 64 F3.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 52 / 69

Page 131: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Pull-back of automata

DefinitionThe pull-back of two Stallings automata, (X , v) and (Y , w), is the cartesianproduct (X × Y , (v , w)) (respecting labels). This is not in general connected,neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the connectedcomponent of Γ(H)× Γ(K ) containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 53 / 69

Page 132: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Pull-back of automata

DefinitionThe pull-back of two Stallings automata, (X , v) and (Y , w), is the cartesianproduct (X × Y , (v , w)) (respecting labels). This is not in general connected,neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the connectedcomponent of Γ(H)× Γ(K ) containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 53 / 69

Page 133: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Pull-back of automata

DefinitionThe pull-back of two Stallings automata, (X , v) and (Y , w), is the cartesianproduct (X × Y , (v , w)) (respecting labels). This is not in general connected,neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the connectedcomponent of Γ(H)× Γ(K ) containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 53 / 69

Page 134: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��•a

$$b

GG

H ∩ K =? Clear that b2 ∈ H, but.... something else?

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 54 / 69

Page 135: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��•a

$$b

GG

H ∩ K =? Clear that b2 ∈ H, but.... something else?

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 54 / 69

Page 136: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��•a

$$b

GG

H ∩ K =? Clear that b2 ∈ H, but.... something else?

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 54 / 69

Page 137: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• • •

•a$$

b

GG

• • •

H ∩ K = 〈b2, . . . (?) . . .〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 55 / 69

Page 138: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• •b

��

bvv•a$$

b

GG

• •

b66

•b

VV

H ∩ K = 〈b2, 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 56 / 69

Page 139: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• a // •b

��

bvv

a��

•a$$

b

GG

• •

b66

•b

VV

H ∩ K = 〈b2, a−2b2a2, 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 57 / 69

Page 140: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• a // •b

��

bvv

a��

•a$$

b

GG

• a // •

b66

•b

VV

H ∩ K = 〈b2, a−2b2a2, 〉

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 58 / 69

Page 141: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• a // •b

��

bvv

a��

•a$$

b

GG

• a // •

b66

•b

VV

a

__

H ∩ K = 〈b2, a−2b2a2, ba2ba2〉 ... and nothing else.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 59 / 69

Page 142: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.To compute a basis for H ∩ K :

• a // •b

(( •b

hh

a

��

•a$$

b��

• a // •b

��

bvv

a��

•a$$

b

GG

• a // •

b66

•b

VV

a

__

H ∩ K = 〈b2, a−2b2a2, ba2ba2〉 ... and nothing else.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 59 / 69

Page 143: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Rank of the intersection

Theorem (Howson)The intersection of finitely generated subgroups of FA is again finitelygenerated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).Enric Ventura (UPC) Automata and Group Theory November 25, 2008 60 / 69

Page 144: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Rank of the intersection

Theorem (Howson)The intersection of finitely generated subgroups of FA is again finitelygenerated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).Enric Ventura (UPC) Automata and Group Theory November 25, 2008 60 / 69

Page 145: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Rank of the intersection

Theorem (Howson)The intersection of finitely generated subgroups of FA is again finitelygenerated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).Enric Ventura (UPC) Automata and Group Theory November 25, 2008 60 / 69

Page 146: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Rank of the intersection

Theorem (Howson)The intersection of finitely generated subgroups of FA is again finitelygenerated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).Enric Ventura (UPC) Automata and Group Theory November 25, 2008 60 / 69

Page 147: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Rank of the intersection

Theorem (Howson)The intersection of finitely generated subgroups of FA is again finitelygenerated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).Enric Ventura (UPC) Automata and Group Theory November 25, 2008 60 / 69

Page 148: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 149: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 150: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 151: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 152: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 153: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Status of Hanna Neumann Conjecture

HNC holds if H (or K ) has rank 1 (immediate),

HNC holds for finite index subgroups (elementary),

HNC holds if H has rank 2 (Tardös, 1992), (not easy),

HNC holds if H has rank 3 (Dicks-Formanek, 2001), (quite difficult),

HNC also holds if H is positively generated (⇔ Γ(H) is stronglyconnected), (Meakin-Weil, and Khan, 2002),

HNC in general is an open problem (...and considered very hard).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 61 / 69

Page 154: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Algebraic extensions and Takahasi’s theorem

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 62 / 69

Page 155: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 156: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 157: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 158: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 159: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 160: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 161: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 162: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Free and algebraic extensions

DefinitionAnd extension of subgroups H 6 K , in FA is called

a free extension if H is a free factor of K (i.e. K = H ∗ L for some L 6 FA),denoted H 6ff K ;algebraic if H is not contained in any proper free factor of K (i.e.H 6 K1 6 K1 ∗ K2 = K implies K2 = 1), denoted H 6alg K .

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z.if r(H) > 2 and r(K ) 6 2 then H 6alg K .H 6alg K 6alg L implies H 6alg L.H 6ff K 6ff L implies H 6ff L.H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 63 / 69

Page 163: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Takahasi’s Theorem

Theorem (Takahasi, 1951)For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and dueindependently to Ventura (1997), Margolis-Sapir-Weil (2001) andKapovich-Miasnikov (2002).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 64 / 69

Page 164: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Takahasi’s Theorem

Theorem (Takahasi, 1951)For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and dueindependently to Ventura (1997), Margolis-Sapir-Weil (2001) andKapovich-Miasnikov (2002).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 64 / 69

Page 165: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Takahasi’s Theorem

Theorem (Takahasi, 1951)For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and dueindependently to Ventura (1997), Margolis-Sapir-Weil (2001) andKapovich-Miasnikov (2002).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 64 / 69

Page 166: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 167: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 168: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 169: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 170: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 171: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The modern proof

Proof:Let us (temporarily) attach some “hairs" to Γ(H) an denote the resulting(folded) automata by Γ̃(H).Given H 6 K (both f.g.), we can obtain Γ(K ) from Γ(H) by 1) adding theappropriate hairs, 2) identifying several vertices to •, 3) folding; (note thatadding extra hairs, the result will be the same if we 4) trim at the end).Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)or some quotient of it (i.e. Γ(H) after identifying several sets of vertices(∼) and then folding, Γ(H)/ ∼).The overgroups of H:O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .Thus, AE(H) ⊆ O(H) and so, it is finite. �

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 65 / 69

Page 172: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 173: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 174: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 175: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 176: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 177: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 178: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Computing AE(H)

CorollaryAE(H) is computable.

Proof:Compute Γ(H),Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),Compute O(H),Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 anddeleting K2.The resulting set is AE(H). �

For the cleaning step we need:

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 66 / 69

Page 179: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Deciding free-factorness

PropositionGiven H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:Whitehead 1930’s (classical and exponential),Silva-Weil 2006 (graphical algorithm, faster but still exponential),Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomialtime).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69

Page 180: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Deciding free-factorness

PropositionGiven H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:Whitehead 1930’s (classical and exponential),Silva-Weil 2006 (graphical algorithm, faster but still exponential),Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomialtime).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69

Page 181: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Deciding free-factorness

PropositionGiven H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:Whitehead 1930’s (classical and exponential),Silva-Weil 2006 (graphical algorithm, faster but still exponential),Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomialtime).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69

Page 182: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

Deciding free-factorness

PropositionGiven H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:Whitehead 1930’s (classical and exponential),Silva-Weil 2006 (graphical algorithm, faster but still exponential),Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomialtime).

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 67 / 69

Page 183: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The algebraic closure

ObservationIf H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

CorollaryFor every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, calledthe K -algebraic closure of H, and denoted ClK (H).

CorollaryEvery extension H 6 K of f.g. subgroups of FA splits, in a unique way, in analgebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 68 / 69

Page 184: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The algebraic closure

ObservationIf H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

CorollaryFor every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, calledthe K -algebraic closure of H, and denoted ClK (H).

CorollaryEvery extension H 6 K of f.g. subgroups of FA splits, in a unique way, in analgebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 68 / 69

Page 185: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

The algebraic closure

ObservationIf H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

CorollaryFor every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, calledthe K -algebraic closure of H, and denoted ClK (H).

CorollaryEvery extension H 6 K of f.g. subgroups of FA splits, in a unique way, in analgebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 68 / 69

Page 186: Automata and Group Theory - UPC Universitat Politècnica de …epsem.upc.edu/~ventura/ventura/files/Bratislava-25-11-08.pdf · 2008. 11. 25. · 1The friendly and unfriendly free

THANKS

Enric Ventura (UPC) Automata and Group Theory November 25, 2008 69 / 69