aplicaciones de las leyes de newton

20
Aplicaciones de las leyes de Newton Resumen El físico Isaac Newton formulo, a mediados del siglo 21, los principios que rigen los fenómenos físicos a nivel de la física clásica, es decir, para aquellos fenómenos que conforman nuestro mundo. Estos principios denominados las tres leyes de Newton no son de validez universal pero permiten explicar y predecir un sinnúmero de fenómenos naturales, a la vez, estas leyes encuentran aplicación práctica en amplios campos de las ciencias naturales y la técnica. La característica esencial de la mecánica Newtoniana consiste en su gran capacidad para determinar lo que sucede con un cuerpo dado en cualquier instante de tiempo si se conocen las fuerzas que actúan sobre el cuerpo, además de su velocidad y sus posiciones iniciales. ABSTRACT The physicist Isaac Newton formulated, for mid-21st century, the principles governing physical phenomena at the level of classical physics, i.e. for those events shaping our world.These principles called Newton's three laws are not universally valid but to explain and predict a host of natural phenomena, while these laws are broad practical application in fields of natural sciences and technology.The essential feature of Newtonian mechanics is its great capacity to shape what happens with a given body at any instant of time if you know the forces acting on the body, plus their speed and their initial positions. Introducción Este documento tiene como objetivo explicar de una mejor manera el funcionamiento, aplicaciones y la importancia de

Upload: angel-hurtado-quituizaca

Post on 31-Jul-2015

40 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Aplicaciones de Las Leyes de Newton

Aplicaciones de las leyes de NewtonResumen

El físico Isaac Newton formulo, a mediados del siglo 21, los principios que rigen los fenómenos físicos a nivel de la física clásica, es decir, para aquellos fenómenos que conforman nuestro mundo.

Estos principios denominados las tres leyes de Newton no son de validez universal pero permiten explicar y predecir un sinnúmero de fenómenos naturales, a la vez, estas leyes encuentran aplicación práctica en amplios campos de las ciencias naturales y la técnica.

La característica esencial de la mecánica Newtoniana consiste en su gran capacidad para determinar lo que sucede con un cuerpo dado en cualquier instante de tiempo si se conocen las fuerzas que actúan sobre el cuerpo, además de su velocidad y sus posiciones iniciales.

ABSTRACT

The physicist Isaac Newton formulated, for mid-21st century, the principles governing physical phenomena at the level of classical physics, i.e. for those events shaping our world.These principles called Newton's three laws are not universally valid but to explain and predict a host of natural phenomena, while these laws are broad practical application in fields of natural sciences and technology.The essential feature of Newtonian mechanics is its great capacity to shape what happens with a given body at any instant of time if you know the forces acting on the body, plus their speed and their initial positions.

Introducción

Este documento tiene como objetivo explicar de una mejor manera el funcionamiento, aplicaciones y la importancia de las leyes de newton, el saber en qué parte de la física aplicarlas y sobre todo en el movimiento y sus causas.

Palabras clave:

Leyes de newton Newton's Laws

Isaac Newton Isaac Newton

Leyes del movimiento Laws of motion

Física Physics

En este trabajo se hablara de las leyes de Isaac Newton uno de los más grandes expertos de las ciencias físico-matemáticas, estas leyes hablan de:

Page 2: Aplicaciones de Las Leyes de Newton

Primera ley de Newton (ley de inercia): Todos los cuerpos se mantienen firmes y constantes en su estado de reposo o de movimiento uniforme en línea recta, salvo que se vean forzados a cambiar ese estado por fuerzas impresas.

Segunda ley de Newton: el cambio de movimiento proporcional a la fuerza, y se hace en la dirección de la línea recta en la que se imprime esa fuerza.

Tercera ley de Newton (ley de la acción y reacción): Esta ley afirma que cuando uno objeto ejerce una fuerza sobre otro objeto ejerce también una fuerza sobre el primero.

Durante siglos el problema del movimiento y sus causas fue un tema central de la filosofía natural, un primer apelativo de lo que ahora llamamos física. (Resnick: 2000.)

Fue hasta tiempos de Galileo e Isaac Newton que el progreso fue extraordinario debido a que se formularon tres leyes importantes por Isaac Newton conocidas también como leyes del movimiento de Newton las cuales son: Ley de inercia, ley de fuerza y ley de acción y reacción.

Isaac Newton nació en Lincolnshire, Inglaterra, en 1642, precisamente el año en que murió Galileo. Según los autores Francisco Noreña y Juan Tonda. (1995). Newton en la escuela fue muy retraído y mal estudiante hasta que un compañero, el niño más brillante de la clase, lo golpeo. Newton lo reto a pelear y lo venció; después empezó a estudiar y también lo supero académicamente.

A los 16 años de edad murió su padrastro y regreso a vivir con su madre, quien quería que se dedicara a la agricultura, pero Newton se negó y entró a estudiar matemáticas en el colegio de la trinidad de Cambridge.

La universidad se cerró por causa de una epidemia de peste que mató a muchísima gente, y Newton regreso a su pueblo natal donde estuvo 18 meses, que se consideran los mas productivos de su vida. Fue ahí donde, por ejemplo, se le ocurrió, a raíz de que le cayó una manzana en la cabeza, la teoría de la gravitación universal, relacionando la fuerza que hizo caer a la manzana con la fuerza que mantiene a la luna girando alrededor de la tierra. Newton también hizo descubrimientos importantes en óptica y desarrollo el cálculo diferencial e integral, una poderosa rama de las matemáticas muy usada por los físicos aun en la actualidad.

Isaac Newton logro concretar las ideas de Galileo acerca del movimiento, ya que antes de galileo la mayoría de los filósofos pensaban que para mantener a un cuerpo en movimiento necesitaban de cierta influencia o "fuerza", ellos pensaban que un cuerpo se mantenía en estado natural cuando este se encontraba en reposo. Un ejemplo claro delo que creían es que si un cuerpo se mueve en línea recta a velocidad constante tenía que haber un agente externo que lo empujara de forma continuaba; de lo contrario, de una forma "natural", como ellos creían, dejaría de moverse.

Para entender de una mejor forma tomemos un bloque cualquiera sobe un plano horizontal rígido. Si hiciéramos que el bloque se deslice a lo largo de este plano, notaremos que poco apoco ira más despacio hasta detenerse totalmente. Este ejemplo se ha tomado para basar la idea de que el movimiento se detiene cuando la fuerza externa, es decir, lo que haya empujado al bloque, se retiraba.

Page 3: Aplicaciones de Las Leyes de Newton

Si hacemos lo mismo pero ahora usando un bloque mas liso y un plano más liso aplicando lubricante, observaremos que la velocidad disminuye más lentamente que antes. Ahora usemos bloques y superficies mas lisos y mejores lubricantes veremos que el bloque disminuye su velocidad en una cantidad más y más notable y que viaja más lejos cada vez antes de llegar al reposo. Con esto podremos contra argumentar la idea de que al detenerse el bloque es porque se retiraba la fuerza.

Es difícil poder dar ejemplos en donde no actúe ninguna fuerza sobre el cuerpo, ya que la fuerza de gravedad siempre actuara sobre el cuerpo cerca de la tierra o en la tierra y también actuaran fuerzas resistivas tales como la fricción o la resistencia del aire, estas se opondrán al movimiento en el suelo o en el aire.

Usualmente nos referimos a todas las fuerzas que actúan sobre un cuerpo como la fuerza "neta" o total. Un ejemplo seria que al empujar un bloque con nuestra mano, este al deslizarse puede ejercer una fuerza que contrarreste a la fuerza de fricción que actúa sobre el bloque, y una fuerza hacia arriba del plano horizontal contrarrestaría a la fuerza de gravedad. La fuerza neta o total sobre el bloque puede entonces ser cero, y el bloque puede moverse a velocidad constante.

Este principio lo tomo Isaac Newton como la primera de sus tres leyes del movimiento.

Primera ley de Newton o Ley de Inercia

Esta ley fue publicada por primera vez en 1686 en la obra: "Philosophiae Naturalis Principia Mathematica" o también llamada "Principia". Y nos dice lo siguiente:

Considere un cuerpo sobre el cual no actúe alguna fuerza neta. Si el cuerpo está en reposo, permanecerá en reposo. Si el cuerpo está moviéndose a velocidad constante, continuara haciéndolo así.

Es decir, si un cuerpo está en reposo, o si se mueve en línea recta y con velocidad constante, es porque sobre el no está actuando fuerza alguna, es decir que las fuerzas que actúan se anulan unas a otras o sea se hacen cero. De lo contrario si ves un cuerpo que se acelera, se frena o que su trayectoria no es recta, puedes asegurar que sobre el actúa una fuerza neta.

Hacen falta fuerzas para cambiar el estado natural de un cuerpo, que es el de reposo o el de movimiento uniforme rectilíneo. Por esta razón a esta primera ley se le conoce también como "ley de inercia". La inercia es la tendencia de un cuerpo a seguir como está. Si vas en un camión y este se detiene, tú tiendes a irte para adelante, a seguir el movimiento que llevas, no hay una fuerza que te empuje al frente, si no que el camión frenó y tú seguiste el movimiento.

Page 4: Aplicaciones de Las Leyes de Newton

De la misma manera, cuando el camión acelera tú te vas hacia atrás, si el camión da vuelta a la izquierda tu cuerpo se mueve a la derecha y si da vuelta a la derecha tu cuerpo se mueve a la izquierda siguiendo el movimiento siguiendo la inercia.

Segunda ley de Isaac Newton

Esta ley define la reacción cuantitativa entre la fuerza proveniente de interacciones, y los cambios de movimientos de todo cuerpo.

Isaac Newton tenía en mente una frase que relaciono con esta ley, "el cambio de movimiento es proporcional a la fuerza neta y se efectúa en la dirección en la se imprime dicha fuerza".

Además de que decía de que teníamos que tomar en cuenta dos cosas que son muy importantes dentro de estas las cuales son: * la primera, a mayor fuerza sobre un cuerpo, mayor será el cambio de su estado de movimiento, si una fuerza cualquiera genera en el momento de una partícula, una fuerza, el doble o el triple, ocasionara el doble o el triple del cambio originado por la primera fuerza. *La segunda: el cambio ocurre en la dirección de la fuerza.

Newton demostró que hay una relación directa entre la fuerza aplicada y la aceleración resultante, además probo que la aceleración disminuye con la inercia ola masa ,Si tenemos un cuerpo de masa conocida y sabemos la fuerza neta que actúa sobre el podremos saber con facilidad la aceleración.

Newton se dio cuenta que la aceleración de los cuerpos era n la clave, por lo cual decidió formular la siguiente ecuación:

EF= m.a esta es la ecuación "EF" es la suma de todas las fuerzas que actúan sobre el cuerpo, "m" es la masa del cuerpo y "a" es la aceleración que tiene dicho cuerpo. Donde la aceleración es una magnitud que es directamente proporcional a la suma de "EF", La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,

1 N = 1 Kg · 1 m/s2

Page 5: Aplicaciones de Las Leyes de Newton

A la gran conclusión que llego newton es que el efecto que una fuerza tenga sobre un cuerpo depende de su masa; a mayor masa menor aceleración y a menor masa mayor será la aceleración resultante.

Para poder empezar a tener una aplicación de esta ley, debemos de tener muy en cuenta los siguientes conceptos, ya que estos nos ayudaran a poder resolver los problemas planteados dentro de las tres leyes de newton,

Movimiento

Si la fuerza total que actúa sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

Fuerza

Fuerza es toda causa capaz de modificar el estado de reposo o de movimiento de un cuerpo, o de producir una deformación.

Aceleración

Se define la aceleración como la relación entre la variación o cambio de velocidad de un móvil y el tiempo transcurrido en dicho cambio: a=V-Vo/t

Donde "a" es la aceleración, "v" la velocidad final, "Vo" la velocidad inicial y "t" el tiempo.

Masa Inercial

La masa inercial es una medida de la inercia de un objeto, que es la resistencia que ofrece a cambiar su estado de movimiento cuando se le aplica una fuerza. Un objeto con una masa inercial pequeña puede cambiar su movimiento con facilidad, mientras que un objeto con una masa inercial grande lo hace con dificultad.

En la siguiente imagen mostramos uno de los experimentos que realiza newton para poder demostrar lo que quiere decir con las tres grandes leyes que presento, así como también muestra la definición de cada una y su explicación.

Page 6: Aplicaciones de Las Leyes de Newton

Para que nos quede más claro lo que es la segunda ley y que es lo que tiende a lograr daremos un ejemplo:

  Se patea una pelota con una fuerza de 1,2 N y adquiere una aceleración de 3 m/s2, ¿cuál es la masa de la pelota?

 

Datos:

F = 1,2 N

a = 3 m/s2

m = 0.4 kg

Page 7: Aplicaciones de Las Leyes de Newton

Como sabemos la segunda ley de Newton es una de las leyes básicas de la mecánica se utiliza en el análisis de los movimientos próximos a la superficie de la tierra y también en el estudio de los cuerpos celestes.

Tercera ley de Newton

Esta ley nos habla de cómo interactúan los cuerpos. Por ejemplo cuando nosotros presionamos con el dedo un bloque en el suelo, el bloque oprime simultáneamente el dedo en la dirección contraria. A este hecho se le denomina interacción; entonces, las fuerzas que aparecen durante la interacción sobre cada uno de los cuerpos son las acciones mutuas entre ellos.(Hecht: 2007.)

En general, si un cuerpo actúa sobre otro, este último actúa sobre el primero de una manera definida que se puede expresar:

"cuando dos cuerpos ejercen fuerzas mutuas entre sí, las dos fuerzas son siempre de igual magnitud y de dirección opuesta. Es decir, que las acciones mutuas entre dos cuerpos son siempre iguales entre si y dirigidas en sentidos contrarios".

Por lo tanto, no puede existir una sola fuerza aislada.

Observe que las fuerzas de acción y de reacción no se anulan. Son iguales en magnitud y opuestas en dirección, pero actúan sobre cuerpos diferentes. Para que dos fuerzas se anulen deben actuar sobre el mismo objeto. Se puede decir que las fuerzas de acción crean las fuerzas de reacción.

Page 8: Aplicaciones de Las Leyes de Newton

Un claro ejemplo seria un hombre al subir escaleras. Normalmente ponemos el pie y después nos impulsamos para subir el otro pie y así sucesivamente, mientras esto pasa al ejercer una fuerza al peldaño, el peldaño ejerce la misma fuerza pero hacia arriba, esto quiere decir que son iguales en magnitud pero opuestas en dirección, a esto se refiere la ley de interacción.

Conclusión

"Las tres leyes del movimiento de Newton" se enuncian abajo en palabras modernas: como hemos visto todas necesitan un poco de explicación.

1.- En ausencia de fuerzas, un objeto ("cuerpo") en descanso seguirá en descanso, y un cuerpo moviéndose a una velocidad constante en línea recta, lo continuará haciendo indefinidamente.

2.- Cuando se aplica una fuerza a un objeto, se acelera. La aceleración es en dirección a la fuerza y proporcional a su intensidad y es inversamente proporcional a la masa que se mueve: a = k(F/m)donde k es algún número, dependiendo de las unidades en que se midan F, m y a. Con unidades correctas (volveremos a ver esto), k = 1 dando a = F/m ó en la forma en que se encuentra normalmente en los libros de texto F = m a De forma más precisa, deberíamos escribir F = ma siendo F y a vectores en la misma dirección. No obstante, cuando se sobreentiende una dirección única, se puede usar la forma simple.

3.- "La ley de la reacción" enunciada algunas veces como que "para cada acción existe una reacción igual y opuesta". En términos más explícitos:

"Las fuerzas son siempre producidas en pares, con direcciones opuestas y magnitudes iguales. Si el cuerpo nº 1 actúa con una fuerza F sobre el cuerpo nº 2, entonces el cuerpo nº 2 actúa sobre el cuerpo nº 1 con una fuerza de igual intensidad y dirección opuesta."

Page 9: Aplicaciones de Las Leyes de Newton

Las leyes de NewtonNewton, el gran científico

Isaac Newton nació en Inglaterra el 25 de diciembre de 1642 y es considerado uno de los más grandes e importantes científicos de la historia. Aportó a varios campos de la ciencia, sirviendo de base a la mayor parte de avances científicos de la época.

Físico y matemático, recibió el título de profesor en 1668, dedicándose al estudio e investigación de los últimos avances matemáticos; en 1666 desarrolló lo que hoy conocemos como cálculo, un método matemático muy novedoso.Sin embargo, hay algo que dejó una profunda huella en la historia de la física: los llamados principios o leyes de Newton, que profundizaremos a continuación.

Los principios de la mecánica

En 1665, cuando Newton tenía 23 años, comenzó a desarrollar los principios de la mecánica, que terminaron siendo la base teórica de todo el desarrollo de la física dinámica (fuerza y movimiento) desde el siglo XVIII.

El principio de inercia

Si pensamos en todo lo que hacemos diariamente, no es difícil entender que para mover un cuerpo debemos aplicar una fuerza, y para detenerlo, también. La inercia es la resistencia de un cuerpo en reposo al movimiento, o de un cuerpo en movimiento a la aceleración, al retardo en su desplazamiento o a un cambio de dirección del mismo. Para vencer la inercia debe aplicarse una fuerza.

Un ejemplo de inercia es cuando vamos en el auto y frenamos bruscamente; entonces nuestro cuerpo tiende a irse hacia adelante. Por el contrario, cuando el vehículo parte nos vamos hacia atrás. Esto demuestra que todos los cuerpos que están en movimiento tienden a seguir en movimiento; los cuerpos que están en reposo, tienden a seguir en reposo. Esta es la primera Ley de Newton, que se enuncia así: “Todo cuerpo permanece en reposo o se desplaza con movimiento rectilíneo uniforme, siempre que no actúe sobre él una fuerza exterior que cambie su estado”.

Definición de masa

En un comienzo, Newton definió la masa como la cantidad de materia de un cuerpo. Sin embargo, con el tiempo, esto quedó mejor explicado como la medida de la inercia de un cuerpo; es decir, la resistencia del cuerpo a cambiar su estado. Es importante tener claro que a mayor masa, mayor inercia. Esto no tiene nada que ver con el peso, ya que la masa es la medida de la inercia de un cuerpo; por el contrario, el peso se refiere a la fuerza de gravedad sobre un cuerpo y es igual al producto de su masa y la aceleración de gravedad. El peso variará dependiendo del lugar donde se encuentre, mientras que la masa será siempre constante.

Por ejemplo, si tenemos dos automóviles iguales, y uno es tirado por un hombre y el otro por un caballo (dos fuerzas distintas), el segundo va a adquirir mayor aceleración, comprobando que la aceleración es directamente proporcional a la fuerza: a mayor fuerza, mayor aceleración.

o

Page 10: Aplicaciones de Las Leyes de Newton

Por el contrario, si tenemos dos caballos iguales (igual fuerza), el primero tira de un auto más pequeño que el segundo (distintas masas), el primero adquirirá mayor aceleración, concluyendo que la aceleración es inversamente proporcional a la masa: a menor masa, mayor aceleración.

Esta es la segunda Ley de Newton, que formalmente se enuncia así: “Cualquier variación del movimiento es proporcional a la fuerza que la produce y tiene lugar en la dirección en que dicha fuerza actúa, siendo el aumento o la disminución de la velocidad proporcional a la misma”.

Principio de acción y reacción

La tercera Ley del Movimiento de Newton es el principio de acción y reacción. Este postula que a cada acción corresponde una reacción igual y contraria. Es decir, si un cuerpo A ejerce una acción sobre un cuerpo B, el cuerpo B reacciona y ejerce una fuerza igual y contraria sobre el cuerpo A.

Los cohetes funcionan en base al mismo principio, ya que se aceleran al ejercer una gran fuerza sobre los gases que expulsan. Estos gases ejercen una fuerza igual y opuesta sobre el cohete, lo que finalmente lo hace avanzar.

Cada material, sin importar cuán duro sea, es elástico. Esto hace que al ejercer una fuerza sobre él, este también lo haga. Por ejemplo, si empujamos una mesa estamos ejerciendo una fuerza sobre ella; si miramos nuestras manos, podremos ver qué están deformadas por la fuerza y sentimos dolor. Eso quiere decir que la mesa también ejerció una fuerza sobre nuestras manos.

La teoría de la gravitación universal

Una de las contribuciones más específicas de Isaac Newton fue esta teoría. Pero, ¿sabes cómo llegó a ella? Un día del año 1665, Newton estaba muy concentrado tratando de entender el movimiento de los planetas en el jardín de la casa de su madre, cuando vio que desde un árbol caía una manzana. Al observar esto, la teoría vino a él como una luz: si el efecto de gravedad actúa en la copa de los árboles o en lugares de altura, tal vez sucedía los mismo con la Luna.

Luego de esto, llegó a la conclusión de que la fuerza de gravedad sobre un objeto no solo depende de la distancia, sino también de su masa. Entonces, la teoría dice: “cada partícula del Universo atrae a todas las demás con una fuerza proporcional al producto de su masa, e inversamente proporcional al cuadrado de la distancia entre ellas, fuerza que actúa a lo largo de la línea que une las dos partículas”.

Primera Ley de Newton

Fuerza y MovimientoDesde la antigüedad la relación entre fuerza y movimiento fue objeto de estudio. En el siglo IV (a. C), el filósofo griego Aristóteles , fundamentándose únicamente en la “observación”, manifestaba que para poner un cuerpo en movimiento, o para mantenerlo en dicho estado una vez iniciado, era necesario que sobre el cuerpo actuara de manera

Page 11: Aplicaciones de Las Leyes de Newton

constante una fuerza. Si ésta dejaba de actuar, el cuerpo adquiría su “estado natural”, es decir, el “reposo”.

El estado natural de todos los cuerpos es el “reposo”                                                 Aristóteles

Si se suponen nulas las fuerzas de fricción o roce, puede un cuerpo moverse sin que exista ninguna fuerza aplicada sobre el mismo.                                                       Galileo

No se preocupó Aristóteles de hacer la comprobación experimental de sus ideas y, debido a su enorme prestigio, las mismas se mantuvieron hasta el siglo XVI, sin que nadie se animara a contradecirlas, ya que tales comportamientos se consideraban como “naturales” y sin ninguna discusión, hasta que surge el físico italiano Galileo Galilei , quien enfrentó el pensamiento aristotélico basado en una serie de razonamientos lógicos.

Galileo, que introduce el método experimental en el estudio de los fenómenos físicos realizó una serie de experimentos que lo llevaron a conclusiones diferentes de las de Aristóteles

Como en el universo todos los objetos están sometidos a interacciones mutuas es muy importante establecer que relación existe entre fuerza y movimiento. El estudio del movimiento tomando en cuenta las fuerzas de interacción entre el objeto que se mueve y los demás objetos que lo rodean recibe el nombre de Dinámica .La Dinámica comprende tres leyes que generalmente reciben el nombre de Leyes del movimiento de Newton:

1. Ley de Inercia2. Ley de la Fuerza o Ley de la Masa3. Ley de Acción y Reacción

Aunque estas leyes son llamadas comúnmente Leyes de Newton, por haber sido este físico quien primero las enunció en forma correcta y la aplicó a casos concretos. Debe tenerse presente que el descubridor de la Ley de Inercia fue el físico italiano Galileo Galilei, y la Ley de la Fuerza era conocida por el astrónomo alemán Johannes Kepler.

Page 12: Aplicaciones de Las Leyes de Newton

Primera Ley de movimiento de Newton (Ley de Inercia)Newton complementó los trabajos realizados por Galileo en lo referente a la relación entre fuerza y movimiento. Galileo trabajó sobre el movimiento que realizaban los cuerpos en una superficie horizontal, una vez se les daba cierto impulso. Newton repitió dichos experimentos y descubre que cuanto más lisas son las superficies, tanto más lejos se deslizará el cuerpo antes de llegar al reposo ( V = 0), una vez que se hubiese dado el mismo impulso. O sea, cuanto más lisas son las dos superficie en contacto tanto menos se desacelera el objeto y tanto más débil es la fuerza de fricción que actúa sobre él.

La primera ley de Newton o Principio de Inercia de Galileo como también se le conoce es un enunciado de un experimento idealizado (Porque no existe roce).

Primera ley de NewtonEn ausencia de la acción de fuerzas (si existen, su resultante es nula), un cuerpo en reposo continuará en reposo, y uno en movimiento se moverá en línea recta y con velocidad constante, es decir Movimiento rectilíneo uniforme (MRU).

Si un cuerpo está en reposo o MRU, su aceleración es nula. Esta ley indica que si la fuerza resultante es nula o en ausencia de fuerzas que se ejercen sobre el cuerpo, éste no podrá acelerar.

O también Si un cuerpo se acelera (No está en reposo ni a velocidad constante en línea recta) entonces las fuerzas que actúan sobre él son diferentes de cero.

En términos matemáticos quiere decir, que si sobre un cuerpo actúan varias fuerzas

y éste permanece en reposo o a velocidad constante, la suma vectorial de las

fuerzas es nula, es decir:

Las situaciones de reposo y velocidad constante físicamente son equivalentes y en ambas situaciones se dice que la partícula está en equilibrio, es decir; una partícula está en equilibrio cuando se encuentra en una de estas dos condiciones; o está en reposo o en movimiento

Page 13: Aplicaciones de Las Leyes de Newton

rectilíneo uniforme. Esto quiere decir que la fuerza resultante de varias fuerzas que actúan sobre una partícula es nula, todo ocurrirá como si no existiera ninguna fuerza actuando sobre ella.

En virtud de la descomposición de un vector en sus componentes rectangulares, se puede escribir:

y se conoce con el nombre de ecuaciones de equilibrio de traslación (Primera condición).Lo anterior significa que para un cuerpo esté en reposo o en MRU, las sumas de las fuerzas en las que han descompuesto individualmente en el eje X y en el eje Y, respectivamente, son nulas.

Si está en reposo, continúa en ese estado. Si se está moviendo, continúa haciéndolo sin cambiar de dirección ni de rapidez. La ley establece que un cuerpo no se acelera por si mismo; la aceleración debe ser impuesta contra la tendencia de un cuerpo a conservar su estado de movimiento. La tendencia de un cuerpo a oponerse a un cambio en su movimiento, es lo que Galileo denominó Inercia.La inercia de la materia en “estado de reposo” es evidente, pues un objeto en estado de reposo respecto a un marco de referencia, no puede ponerse por si mismo en estado de movimiento.

La inercia de la materia en “estado de movimiento” es más difícil de comprender, pues si a un objeto en estado de reposo se le da un impulso inicial de tal manera que adquiera cierta velocidad, ésta disminuye progresivamente hasta que finalmente el objeto se detiene. Sin embargo, lo que ocurre es que el objeto que se mueve interactúa con los demás objetos que lo rodean, por lo que se encuentra constantemente sometidos a fuerzas exteriores que se oponen al movimiento, tales como el roce y la resistencia del aire.

Page 14: Aplicaciones de Las Leyes de Newton

Esto demuestra que todos los cuerpos que están en movimiento tienden a seguir en movimiento; los cuerpos que están en reposo, tienden a seguir en reposo. Esta es la primera Ley de Newton , que se enuncia así: “Todo cuerpo permanece en reposo o se desplaza con movimiento rectilíneo uniforme, siempre que no actúe sobre él una fuerza exterior que cambie su estado”.

Esta condición equivale a admitir que el objeto no interactúa con ninguno de los objetos que lo rodean, lo cual es una condición que no se da en realidad, pues todos los objetos están sometidos a interacciones mutuas. Por consiguiente, sobre un objeto en reposo o en movimiento están actuando constantemente fuerzas exteriores. Sin embargo, si en un momento dado todas las fuerzas que actúan sobre el objeto se equilibran, la fuerza resultante que actúa sobre el objeto es nula, lo cual equivale a la condición exigida por la Primera Ley de Newton.

Un objeto permanece en reposo o se mueve indefinidamente con velocidad constante, cuando las fuerzas que actúan sobre el objeto se equilibran, dando una resultante nula.

Aunque Galileo fue quien introdujo el concepto de inercia, fue Newton quien valoró su importancia. La ley de la inercia define el movimiento natural e indica que clases de movimiento son el resultado de las fuerzas aplicadas.

Page 15: Aplicaciones de Las Leyes de Newton

Si piensa en todo lo que hace diariamente, no es difícil entender que para mover un cuerpo debe aplicar una fuerza, y para detenerlo, también. La inercia es la resistencia de un cuerpo en reposo al movimiento, o de un cuerpo en movimiento a la aceleración, al retardo en su desplazamiento o a un cambio de dirección del mismo. Para vencer la inercia debe aplicarse una fuerza.

Todo cuerpo posee inercia. Depende de la cantidad de materia en la sustancia de un cuerpo; a mayor cantidad de materia, mayor inercia. Al hablar de cuánta materia tiene un cuerpo, se emplea el término masa. La masa es una medida de la inercia de un cuerpo.

La masa guarda una correspondencia con la noción intuitiva del peso.¿Cómo determinar cuál de dos cuerpos es el más pesado?

Al hacerlo, se juzga cuál de los dos es más difícil de mover, para apreciar cuál opone más resistencia a un cambio en su movimiento. Lo que realmente se hace con ello es comparar la inercia de los objetos.

Ejemplos donde se pone de manifiesto la Ley de Inercia: Cuando un caballo se detiene de repente con toda seguridad el jinete seguirá moviéndose y se caerá si no se agarra con fuerza .

Un ejemplo de inercia es cuando vas en la moto con tu compañero(a) y frenas bruscamente; entonces el cuerpo de tu compañero(a) tiende a irse hacia adelante. Por el contrario, cuando el vehículo arranca el o ella se va hacia atrás.

Algo muy importante acerca de esta primera ley de Newton es lo relativo a los sistemas de referencias.

Page 16: Aplicaciones de Las Leyes de Newton

Un cuerpo en reposo sólo estará en reposo en ciertos sistemas de referencia. En otros se estará moviendo. En ciertos sistemas se estará moviendo a velocidad constante, mientras que en otros se acelerará.La primera ley de Newton no se cumple en todos los sistemas de referencia. Para que ésta sea válida el movimiento del objeto debe ser referido a un sistema muy especial, llamado sistema inercial .

Una de las propiedades de un sistema inercial es que los cuerpos que están en reposo, con respecto a este sistema, no sufren ninguna acción de fuerzas.

Ver 1ra. Ley de Newton     Ver 2da. Ley de Newton     Ver 3ra. Ley de Newton

Fundación Educativa Héctor A. García