unidad 15. recursos minerales y energéticos

Post on 10-Jun-2015

2.850 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

UNIDAD 15

RECURSOS ENERGÉTICOS Y

MINERALES

LOS RECURSOS ENERGÉTICOS

“Energía es la capacidad de producir un trabajo”.

• 99% de la utilizada en la tierra proviene directa o indirectamente del sol.• Se denominan fuentes de energía primaria a los recursos tal y como se

obtienen de la naturaleza. Se consideran productos primarios: petróleo crudo, gas natural, carbón, hidroelectricidad, leña y otros (subproductos de la leña) y biogas.

• Se denomina energía secundaria al conjunto de los productos energéticos disponibles en horma apta para su utilización final. Por ejemplo: gasoil, gasolina, queroseno, gas de refinería, electricidad, gas, alquitrán, metanol y otros.

Los recursos energéticos pueden ser :

• No renovables*. No se regeneran o lo hacen a un ritmo

infinitamente más lento que el de su consumo. Son las energías de uso convencional.

• Renovables o alternativas. Su regeneración se produce a un ritmo ligeramente inferior o igual al de su consumo, lo que los hace teóricamente inagotables.

* El concepto de renovable depende la escala de tiempo que se utilice y el tiempo de uso de los recursos. Así, los combustible fósiles se consideran fuentes no renovables ya que la tasa de utilización es muy superior al ritmo de formación del propio recurso.

RECURSOS Y RESERVAS

Recurso es la estimación teórica de la cantidad total que hay en la corteza terrestre de un determinado combustible fósil o de un mineral.

Reserva es la cantidad descubierta de un combustible fósil cuya explotación es rentable económicamente.

LOS RECURSOS DE LA GEOSFERA Y SUS RESERVAS

LOS RECURSOS DE LA GEOSFERA Y SUS RESERVAS

NO RENOVABLES RENOVABLES

ENERGÍAS CONVENCIONALES

Combustibles fósiles

Fisión nuclearHidroeléctrica

ENERGÍAS ALTERNATIVAS

Eólica, fusión, Hidrógeno, solar, biomasa,

mareomotriz, geotérmica.

FUENTES DE ENERGÍA CONVENCIONALES: COMBUSTIBLES FÓSILES, ENERGÍA NUCLEAR E

HIDROELECTRICA

LOS COMBUSTIBLES FÓSILES

CARBÓN• Se forma por la acumulación de restos vegetales en zonas pantanosas que por acción de bacterias anaerobias sobre la celulosa o la lignina formaron el carbón, el metano y el CO2.

• Se formó en todos los continentes y en todas las épocas pero las condiciones más adecuadas para ello se dieron en el periodo carbonífero (hace 347 a 280 millones de años). Las reservas conocidas podrían permitir el abastecimiento al ritmo actual durante algunos cientos de años.

ENERGÍAS CONVENCIONALES

Etapas de la formación del carbón

LOS COMBUSTIBLES FÓSILES

CARBÓN• Es un combustible sólido que se puede quemar directamente. Sus usos principales son la obtención de energía eléctrica en centrales térmicas, la industria metalúrgica y la calefacción doméstica.

•La calidad del carbón viene determinada, sobre todo, por la cantidad de energía que almacena (su riqueza en carbono). Los tipos de carbones, según esto, se clasifican en antracita (90 a 95% de carbono), hulla (80%), lignito (70%) y turba (45 al 60%).

ENERGÍAS CONVENCIONALES

LOS COMBUSTIBLES FÓSILES

CARBÓN

• Ventajas:• Alto poder calorífico.• Muy abundante.

• Inconvenientes:• Muy contaminante. Alto contenido en S. Lluvia ácida.• Impacto ambiental y paisajístico de las explotaciones a cielo abierto.• Alto coste social y económico en las minas. Escombreras.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESCARBÓN

ENERGÍAS CONVENCIONALES

Centrales térmicas en España. Seis de ellas tienen más de 1000 MW de potencia. De UNESA (http://www.unesa.net/unesa/html/sabereinvestigar.htm)

COMBUSTIBLES FÓSILES

LOS HIDROCARBUROS• Son moléculas compuestas principalmente por carbono e hidrógeno combinados de diversas formas. Los principales yacimientos de hidrocarburos son los de petróleo y gas natural.

•Estos combustibles fósiles son mezclas de varios tipos de hidrocarburos y contienen pequeñas cantidades de azufre, nitrógeno y oxígeno.

•Los más simples son gaseosos y contienen pocos átomos de carbono por molécula (etano, propano y butano). En cambio, los hidrocarburos más complejos son líquidos o semisólidos y forman parte del petróleo.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

HIDROCARBUROS• Tanto el petróleo como el gas natural se forman a partir de grandes masas de plancton (fitoplancton y zooplancton) acumulado en el fondo del mar que al sedimentar junto a cienos y arenas formó barros sapropélicos. Ambos componentes sufren una transformación, la materia orgánica se transforma en hidrocarburos por fermentación y el componente mineral se transforma en areniscas y margas que forman la roca madre impregnada de hidrocarburos.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

EL PETRÓLEO. EXPLOTACIÓN Y UTILIZACIÓN

• Se extrae en forma de crudo y para poder utilizarlo es transportado con facilidad mediante oleoductos o barcos petroleros hasta las plantas petroquímicas, donde es sometido a un tratamiento llamado destilación fraccionada, en la que se eleva la temperatura y se van separando las distintas fracciones.

ENERGÍAS CONVENCIONALES

LAS FRACCIONES DE LA DESTILACIÓN

FRACTION CARBONS BP °C USES

GASES 1 a 4 < 40• Fuel in refinery

• Bottled and sold as LPG

NAFAS 5 a 10 25 – 175• Blended into petrols

• Feedstock for making chemicals

QUEROSENOS 10 a 16 150 – 260 • Aviation fuel

LIGHT GAS OILS 14 a 50 235 – 360 • Diesel fuel production

HEAVY GAS OILS

20 a 70 330 – 380 • Feedstock for catalytic cracker

LUBRICANTES > 60 340 – 575• Grease for lubrication

• Fuel additives• Feedstock for catalytic cracker

FUEL OIL > 70 > 490 • Fuel oil (power stations and ships)

BITUMEN > 80 >580 • Road and roof surfaces

LAS FRACCIONES DE LA DESTILACIÓN

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

Emisiones de CO2 derivadas de todo el ciclo de vida del petróleo empleado como combustible de automoción (valoradas en g de CO2

por Kg. de combustible consumido.

COMBUSTIBLES FÓSILES

EL PETRÓLEO. EXPLOTACIÓN Y UTILIZACIÓN

• Ventajas:• Gran variedad de utilidades (gasolinas, gasóleos, fertilizantes, plásticos,

pinturas, medicinas, etc.) (Pág. 328) • Bajo coste.

• Inconvenientes:• Elevado riesgo de accidente de los petroleros.• Incremento de la polución y de la emisión de CO2.• Excesiva dependencia y dificultades para sus sustitución.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESPETRÓLEO

Consultar página web:

http://elpetroleo.aop.es/indexelpetroleo.asp

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

Reservas mundiales de petróleo

PaísPorcentaje sobre el totalde reservas mundiales

Arabia Saudí 24.9

Irak 10.7

Emiratos Árabes Unidos 9.3

Kuwait 9.2

Irán 8.5

Venezuela 7.4

Rusia 4.6

Estados Unidos 2.9

Libia 2.8

México 2.6

Nigeria 2.3

China 2.3

Fuente: BP statistical review of world energy June 2002 (Datos de 2001)

Países del mundo con más petróleo en su subsuelo

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESPETRÓLEO

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

GAS NATURAL• Se forma, como ya se ha dicho, por fermentación de la materia orgánica acumulada entre los sedimentos. Está compuesto de una mezcla de hidrógeno, metano, butano, propano y otros gases en proporciones variables.

•Al salir del yacimiento es purificado y licuado para su transporte y después ya se usa directamente en hogares e industrias y algunos motores de explosión ya funcionan con este gas.

•Es ideal para utilizarlo durante la transición a otras fuentes de E y su consumo ha crecido mucho en los últimos tiempos tanto por razones económicas como ambientales.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

GAS NATURAL• Ventajas:

• Extracción muy sencilla y económica.• Transporte por gaseoducto con un riesgo muy bajo.

• Produce un 65% menos de CO2 que otros combustible fósiles. No produce contaminantes sulfurados.

• Inconvenientes:• Escapes de metano. Efecto invernadero.

• Incremento de la emisión de CO2.

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESGAS NATURAL

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

ENERGÍAS CONVENCIONALES

Reservas mundiales de gas natural.

COMBUSTIBLES FÓSILESGAS NATURAL

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILESGAS NATURAL

ENERGÍAS CONVENCIONALES

COMBUSTIBLES FÓSILES

ENERGÍAS CONVENCIONALES

Comparación de las emisiones de CO2 de los distintos combustibles fósiles en la generación de electricidad en las centrales térmicas (valorado en g de CO2 por KW/h

de electricidad producida.

ENERGÍA NUCLEAR: FISIÓN

• El núcleo atómico de elementos pesados como el uranio, puede ser desintegrado (fisión nuclear), por el impacto de un neutrón, dando lugar a una explosión atómica que libera gran cantidad de energía. Las centrales termonucleares aprovechan esta energía para producir electricidad mediante turbinas de vapor de agua (circuito de refrigeración secundario). (Leer pág. 330 sobre el funcionamiento de una central nuclear).

• Actualmente se investiga un proceso en el que se bombardea un bloque de plomo son neutrones. Los restos (torio) son menos contaminantes que el plutonio y la reacción se detiene si no inyectamos neutrones con lo que se podría controlar mejor para evitar accidentes.

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

• Ventajas:

• Muy efectiva.• No emite gases contaminantes.• Extracción muy sencilla y económica.

• Inconvenientes:

• Afectan al clima de la zona en la que esté la central transformándolo en más cálido y más húmedo.

• Energía de alto riesgo que puede dar lugar a accidentes graves (Chernobyl). Hoy la mayoría de los países han paralizado la construcción de centrales nucleares y hay un debate sobre su uso.

• Enormes costes de construcción y mantenimiento de las centrales.• Residuos radiactivos (activos más de 10.000 años).

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

ENERGÍAS CONVENCIONALES

ENERGÍA NUCLEAR: FISIÓN

ENERGÍAS CONVENCIONALES

LA ENERGÍA HIDRAULICAEs la energía que se obtiene al aprovechar la caída

del agua desde una cierta altura.

Aprovechamiento de la energía hidráulica: Esta energía cinética se usa para transformarla en energía mecánica y, posteriormente, en energía eléctrica, esto es lo que se hace en las centrales hidroeléctricas.

El salto de agua mueve las máquinas hidráulicas (turbinas) que están conectadas a generadores eléctricos.

Se puede modificar el flujo de agua para regular la producción eléctrica, dependiendo de esta regulación tenemos dos tipos de centrales:

Masa de agua

Energía potencial (depende de la masa y de la posición)

Energía cinética (depende de la masa y de la velocidad)

Con un salto de agua adquirirá la suficiente energía cinética a costa de su energía potencial

Unidad 3.- La hidrosfera

Centrales con embalse: La central tiene una presa que forma un embalse, de esta forma se pueden almacenar caudales de agua de los ríos y aumentar el nivel, aumentando el salto y la producción. Las centrales hidroeléctricas aprovechan esta energía de los ríos para poner en funcionamiento unas turbinas que arrastran un generador eléctrico.

ENERGÍA HIDROELÉCTRICA• La energía potencial acumulada en los saltos de agua puede ser transformada en energía eléctrica. Las centrales hidroeléctricas aprovechan esta energía de los ríos para poner en funcionamiento unas turbinas que arrastran un generador eléctrico.

ENERGÍAS CONVENCIONALES

ENERGÍA HIDROELÉCTRICA

ENERGÍAS CONVENCIONALES

ENERGÍA HIDROELÉCTRICA

ENERGÍAS CONVENCIONALES

Centrales hidroeléctricas en España mayores de 20 MW. Se indica el nombre de las mayores de 300 MW. De UNESA (

http://www.unesa.net/unesa/html/sabereinvestigar.htm)

ENERGÍA HIDROELÉCTRICALa presa de Assuan construida en el Nilo inundó una zona de

interés arqueológico, incrementó la erosión remontante, aumento la evaporación y la salinización y afectó al delta del río disminuyendo el banco de pesca que allí había y la fertilidad de los suelos.

ENERGÍAS CONVENCIONALES

Construcción de la presa de Assuan

- Ventajas:- El agua embalsada puede servir para más

cosas como el consumo humano.- La producción energética es muy grande.- Energía barata.- Al controlar el caudal del río se pueden

evitar crecidas- Inconvenientes:

- Destruyen pueblos y zonas de cultivo.- Modifican totalmente el curso del río,

acumulan sus sedimentos y su ecosistema.- Construir una presa es muy costoso.- El lugar de producción y los lugares de

consumo están muy alejados, por lo que se necesita un largo transporte

- Reducción de la biodiversidad- Dificultan migración de peces

Centrales fluyentes: Aquí no hay embalse, por lo que el agua es retenida en un azud (dique especial) y desviada por el canal de derivación hasta la central donde se lanza hasta la turbina para ser devuelta al río. Estas centrales son más pequeñas y su producción es menor.

- Ventajas:- Escaso impacto ambiental.- Construcción poco costosa y tecnología sencilla.- Los lugares de consumo están más próximos.

- Inconvenientes:- Menor rendimiento energético.- Dependen del caudal del río, por lo que su localización queda reducida a cauces que no

se sequen en verano.

ENERGÍAS ALTERNATIVAS

ENERGÍA SOLAR

Es la principal fuente de energía y todas las energías renovables dependen de ella. Hay dos tipos:

• SISTEMAS DE CAPTACIÓN SOLAR TÉRMICA.

• SISTEMAS FOTOVOLTAICOS

ENERGÍAS ALTERNATIVAS

ENERGÍA SOLAR

SISTEMAS DE CAPTACIÓN SOLAR TÉRMICA.

Usan la energía del sol para calentar un fluido (agua o aceite normalmente) que se aprovecha directamente o genera electricidad.

Emplean materiales absorbentes, reflectantes y aislantes.

ENERGÍA SOLAR

ENERGÍA SOLAR

• GENERACIÓN DE ELECTRICIDAD MEDIANTE CENTRALES TÉRMICAS SOLARES.

ENERGÍA SOLAR

ENERGÍA SOLAR

ENERGÍA SOLAR

ENERGÍA SOLAR

• GENERACIÓN DE ELECTRICIDAD MEDIANTE CENTRALES TÉRMICAS SOLARES.

ENERGÍA SOLAR

SISTEMAS FOTOVOLTAICOS

Las células fotovoltaicas convierten directamente la energía solar en electricidad. Son pequeñas superficies planas elaboradas con un material semiconductor (generalmente silicio)que tiene dos zonas bien diferenciadas, cada una con una “concentracón” diferente de electrones; una de silicio tipo P (con déficit de electrones) y otra de silicio tipo N (con exceso de electrones). Cuando la luz incide sobre la célula solar, se crea un flujo de electrones (corriente eléctrica) entre los dos tipos de silicio que es recogido por unos contactos metálicos.

ENERGÍA SOLAR

ENERGÍA SOLAR

ENERGÍA SOLAR• ELECTRICIDAD FOTOVOLTAICA

ENERGÍA SOLAR

• ELECTRICIDAD FOTOVOLTAICA

ENERGÍA SOLAR

ELECTRICIDAD FOTOVOLTAICA

ENERGÍA SOLAR

Potencia instalada en energía fotovoltaica por comunidades autónomas en MW. De UNESA (http://www.unesa.net/unesa/html/sabereinvestigar.htm)

ENERGÍA SOLAR

ENERGÍA SOLAR• ELECTRICIDAD FOTOVOLTAICA

ENERGÍA SOLAR

• Ventajas:

• Es renovable.

• Tiene un escaso impacto ambiental negativo en cuanto a que no emite gases y produce pocos residuos.

• Escaso coste de la energía tras amortizar la inversión inicial.

• Su versatilidad. Permite instalaciones particulares o que exporten energía a la red general.

• Inconvenientes:

• Dependencia de la meteorología.

• Falta de horas de sol en algunos lugares del planeta.

• Alta inversión inicial.

• Dependencia de acumuladores fotovoltaicos que contienen sustancias contaminantes.

• Fuerte impacto visual.

ENERGÍA SOLAR

Es la energía cinética del viento. Los desplazamientos de las masas de aire son una fuente de energía renovable que el hombre puede aprovechar directamente o transformar en otras formas de energía.

La energía eólica se ha aprovechado desde la antigüedad en molinos, barcos, etc.

Las máquinas eólicas que se conectan a generadores de energía eléctrica se llaman aerogeneradores, aunque también se usan como aeromotores , para mover bombas de agua, desaladoras, etc. Se pueden usar de forma autónoma para un particular o de forma centralizada en forma de parques eólicos que vierten la energía eléctrica a la red general.

ENERGÍA EÓLICA

• Ventajas:

• Es renovable y limpia.

• Baja inversión inicial.

• Bajos costes de mantenimiento.

• Genera numerosos puestos de trabajo.

• Inconvenientes:

• Dependencia de la meteorología (vientos intermitentes y aleatorios).

• Rendimiento energético escaso. Un parque de 10MW sustituye la importación de 2064 Tep (Toneladas equivalentes de petróleo).

• Fuerte impacto ambiental (peligro para las aves, rompen la estética del paisaje, pistas forestales, etc.)

ENERGÍA EÓLICA

ENERGIA EÓLICA

Eólica sí, pero no a cualquier precio

ENERGÍA EÓLICA

ENERGIA EÓLICA

ENERGÍAS ALTERNATIVAS

Potencia eólica por cumunidades autónomas en 2000. De UNESA (http://www.unesa.net/unesa/html/sabereinvestigar.htm)

ENERGÍA EÓLICA

ENERGÍA DE LA BIOMASA Y BIOCOMBUSTIBLE

La biomasa es energía solar que los organismos productores almacenan en forma de enlaces químicos de alta energía gracias a la fotosíntesis, y que se distribuye a todos los demás organismos mediante las relaciones alimentarias que se producen en las cadenas tróficas.

• Biomasa extraída de los ecosistemas. Sobre todo leña.

• Biomasa procedente de biocultivos. Las especies usadas son de alto contenido energético (ciertos cereales, la remolacha, la patata o el eucalipto que contienen azúcares o aceites), de crecimiento rápido (chopo, acacia, etc.) o con la facultad de crecer en climas y suelos que no sirven para cultivos más exigentes (pita, chumberas, etc.).

• Biomasa excedentarias o residual. Se usan los excedentes de cultivos agrícolas para obtener energía (girasoles, cardos, lino, etc.) o los residuos de limpieza de bosque, labores agrícolas, excrementos de ganadería o la parte orgánica de los residuos sólidos urbanos y los lodos de las aguas residuales..

COMBUSTIÓN DE LA BIOMASA

Para aprovechar la energía contenida en la biomasa se emplea algún proceso que rompa sus enlaces químicos, de manera que la energía contenida en ellos se libere en forma de calor. El procedimiento más usado es la combustión de la biomasa en bruto (leña), bien de los productos obtenidos mediante distintos tratamientos (biocombustibles). La biomasa arde a 600-1300ºC en presencia de oxígeno mediante distintos tipos de instalaciones:

• Plantas o instalaciones industriales que emplean el calor para producir vapor de agua, que después, mueven turbinas que generan energía eléctrica.

• Sistemas de calefacción y agua caliente de domicilios particulares.

• Chimeneas, recuperadores de calor, estufas y cocinas de uso doméstico.

La biomasa se somete a distintos procesos para transformarla en otros productos derivados, con mayor capacidad calorífica y versatilidad. Estos productos son sólidos, líquidos y gaseosos y se llaman biocombustibles. Se producen con distintos tratamientos:

• Tratamientos termoquímicos. La biomasa se transforma por acción del calor y con falta o ausencia de oxigeno. Se producen por este método el gas pobre o gasógeno, gasolinas, carbón vegetal, etc.

• Tratamientos bioquímicos como la digestión anaeróbica que produce biogás, la fermentación alcohólica con la que se obtiene etanol y metanol, o la esterificación o transesterificación con el que se obtiene biodiesel a partir de aceites de plantas oleaginosas como el girasol, la colza, la soja, etc.

MÉTODOS PARA OBTENER ENERGÍA DE LA BIOMASA

APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA

MÉTODOS PARA OBTENER ENERGÍA DE LA BIOMASA

APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA

MÉTODOS PARA OBTENER ENERGÍA DE LA BIOMASA

APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA

• Transformación de desechos en biocombustibles:

• Biogas (60 % metano y 40 % dióxido de carbono) por fermentación bacteriana anaerobia de residuos ganaderos, lodos de depuradoras, alimentos, lácteos,…

• Bioetanol: se obtiene por fermentación y destilación de cereales, remolacha, patata y caña de azúcar, también de maíz. Los vehículos adaptados o FFV admiten diferentes mezclas: E5, E10 y E85 que tienen respectivamente 5%, 10% y 85% de bioetanol, el resto es gasolina.

• Biodiésel: se obtiene por tratamiento de aceites vegetales: colza, girasol, soja, palma, ricino y aceites usados. Los principales derivados son el B20, B50 y B100 que contienen respectivamente el 20%, 50% y 100% de biodiesel, el resto son gasoleos.

• Metanol, por transformación de madera, restos agrarios, basuras y carbón.

VENTAJAS

• Es una energía renovable.

• Es un combustible biodegradable.

• Método útil de eliminación de residuos.

INCONVENIENTES

• Produce CO2 y otras sustancias nocivas en la quema y en la

elaboración de biocombustibles.

• Bajo rendimiento energético en relación con los combustibles fósiles.

• Elevado coste de obtención.

• Alta ocupación del territorio de los cultivos para obtener biocombustibles.

MÉTODOS PARA OBTENER ENERGÍA DE LA BIOMASA

APROVECHAMIENTO ENERGÉTICO DE LA BIOMASA

EL HIDROGENO

El hidrógeno es el gas más abundante del Universo (75 % de su composición). En la Tierra se encuentra combinado en el agua. Otras moléculas donde hay hidrógenos son los combustibles fósiles o en los seres vivos. Se considera un combustible eterno y muy eficiente (triple de energía calorífica que el petróleo).

Se producen 400.000 millones de metros cúbicos al año de hidrógeno para combustible (10 % de la producción de petróleo). En Madrid se usan autobuses desde el 2003. Está en fase experimental pero parece ser un combustible prometedor.

Se basa en la hidrólisis del H2O mediante electrólisis. Se aplica continua, lo que implica gasto de energía. Está en periodo de investigación.

Se pretende que en el futuro la molécula de agua se pueda romper mediante la acción directa del sol. Se utiliza como pila de combustible

EL HIDROGENO

Ventajas:

• No emite dióxido de carbono a la atmósfera por lo que adquiere mucho interés

desde la reunión de Kioto.

• Puede ser transportado por los gasoductos ya construidos.

• Puede usarse en pilas de combustible (ya usado por la NASA para impulsar los

satélites artificiales) que se podrían usar en los coches.

Inconvenientes:

• Actualmente se obtiene a partir del gas natural y en el proceso se desprende

dióxido de carbono de la misma manera que si se obtiene de otros combustibles

fósiles.

• El mecanismo de obtención ideal es por electrolisis del agua en hidrógeno y

oxígeno, pero aún está en fase de investigación. Otro método sería la fotólisis

del agua(aún más lejano que la electrolisis del agua).

• Resulta muy caro (La electrólisis del agua es la descomposición de agua (H2O)

en gas de oxígeno (O2) e hidrógeno (H2) por medio de una corriente eléctrica a

través del agua. Este proceso electrolítico es raramente usado en aplicaciones

industriales debido a que el hidrógeno puede ser producido a menor coste por

medio de combustibles fósiles).

EL HIDROGENO

ENERGÍA NUCLEAR: FUSIÓNEs la unión de núcleos ligeros para dar lugar a otro más pesado,

liberándose una gran cantidad de energía. Se genera una gran cantidad de calor al aumentar la proximidad entre los átomos.

Isótopos (tienen el mismo número de protones, pero distinto número de neutrones) del H: Deuterio y tritio generan residuos no radiactivos (el tritio es radiactivo pero su vida media es de 12 anos) y abundantes en la naturaleza.

Deuterio + Tritio = He + neutrones + E

•Ventajas

• Los residuos no son radiactivos.

• No emite contaminantes.

•Inconvenientes:

• El reactor puede absorber gran cantidad de neutrones volviéndose

radiactivo.

• Etapa de investigación: No existes reactores diseñados que puedan se

utilizados comercialmente.

ENERGÍA GEOTERMICA: Experimental.

Utilización del calor del interior de la tierra para calentar agua y generar electricidad o utilizar como calefacción.

• Ventajas:

• No emite contaminantes, inagotable.

• Bajo coste de la instalación y sencillez de la explotación.

• Inconvenientes:

• Escasos yacimientos geotérmicos.

• Ruidos, olores, erosión, cambios microclimáticos ...

• No competitiva económicamente.

• Difícil transporte.

ENERGÍA GEOTERMICA

ENERGÍAS ALTERNATIVAS

ENERGÍA NUCLEAR: FUSIÓNEs la unión de núcleos ligeros para dar lugar a otro más pesado,

liberándose una gran cantidad de energía. Se genera una gran cantidad de calor al aumentar la proximidad entre los átomos.

Isótopos (tienen el mismo número de protones, pero distinto número de neutrones) del H: Deuterio y tritio generan residuos no radiactivos (el tritio es radiactivo pero su vida media es de 12 anos) y abundantes en la naturaleza.

Deuterio + Tritio = He + neutrones + E

•Ventajas

• Los residuos no son radiactivos.

• No emite contaminantes.

•Inconvenientes:

• El reactor puede absorber gran cantidad de neutrones volviéndose

radiactivo.

• Etapa de investigación: No existes reactores diseñados que puedan se

utilizados comercialmente.

ENERGÍA GEOTERMICA: Experimental.

Utilización del calor del interior de la tierra para calentar agua y generar electricidad o utilizar como calefacción.

• Ventajas:

• No emite contaminantes, inagotable.

• Bajo coste de la instalación y sencillez de la explotación.

• Inconvenientes:

• Escasos yacimientos geotérmicos.

• Ruidos, olores, erosión, cambios microclimáticos ...

• No competitiva económicamente.

• Difícil transporte.

ENERGÍAS ALTERNATIVAS

ENERGÍA GEOTERMICA

ENERGÍAS ALTERNATIVAS

ENERGIA DE LA BIOMASA

Desechos forestales, agrícolas, ganaderos, basuras, etc.Fundamentalmente se utilizan dos métodos:

• BASURAS URBANAS

• TRANSFORMACIÓN EN BIOCOMBUSTIBLES

ENERGÍAS ALTERNATIVAS

ENERGIA DE LA BIOMASA

BASURAS URBANAS

Combustión => calor o vapor de agua o electricidad.

ENERGÍAS ALTERNATIVAS

ENERGÍAS ALTERNATIVAS

ENERGIA DE LA BIOMASA

ENERGÍAS ALTERNATIVAS

Centrales eléctricas alimentadas con residuos urbanos con indicación de su potencia instalada en MW.De UNESA (http://www.unesa.net/unesa/html/sabereinvestigar.htm)

ENERGIA DE LA BIOMASA

TRANSFORMACIÓN EN BIOCOMBUSTIBLESTrasformación mediante la acción de bacterias y procesos

químicos en biofueles, líquidos o gaseosos:• Biogás; descomposición anaerobia => C0z+ metano (tuberías).• Etanol (fermentación + destilación) + gasolina => combustible.• Metanol: madera, basuras, etc. => fermentación bacteriana.• Bioaceites (colza, girasol, soja): motores diesel modificados o

mezclado con combustibles fósiles.

• Ventajas:

• Renovable, barata.

• Tecnologías poco complejas.

• Inconvenientes:

• Emisión de contaminantes (NOx y formaldehído).

• Transporte caro.

• Modificaciones de los automóviles

ENERGÍAS ALTERNATIVAS

ENERGIA DE LA BIOMASA

ENERGÍAS ALTERNATIVAS

EL HIDROGENO

Está en fase experimental pero parece ser un combustible prometedor.

Se basa en la hidrólisis del H2O mediante electrólisis. Se aplica una corriente continua, lo que implica gasto de E.

Está en periodo de investigación hacerlo mediante = O2+ H2 => combustión => recuperación de la E almacenada + H2O

Se pretende que en el futuro la molécula de agua se pueda hacer mediante la acción directa del sol.

Se utiliza como pila de combustible (pág. 339 del libro)

• Ventajas:

• No emite contaminantes.

• Facilidad almacenaje y transporte.

• Inconvenientes:

• No competitiva económicamente.

EL HIDROGENO

Unidad 3.- La hidrosfera

LA ENERGÍA DEL MAR Los océanos tienen mucha energía que se puede aprovechar:

Energía de las mareas: La diferencia de altura entre la bajamar y la pleamar genera un desnivel que puede transformarse en energía cinética. Normalmente se forma un dique para que entre y salga el agua a través de unas turbinas y así generar electricidad.

ENERGÍA MAREOMOTRIZ

ENERGÍAS ALTERNATIVAS

Unidad 3.- La hidrosfera

Energía de las olas: Se están desarrollando en la actualidad pero hay de dos tipos fundamentalmente, los Pelamis (cilindros articulados que al moverse activan un motor con un generador eléctrico) y las boyas (al subir y bajar se genera energía que va a un generador eléctrico).

• Ventajas:

• No emite contaminantes.

• Inconvenientes:

• No competitiva económicamente.

• En fase de experimentación.

• Variabilidad de la producción.

NUEVAFUENTE

DE ENERGÍA

AHORRO

• Favorece la protección del medio ambiente.

• Disminuye la dependencia de los recursos.

• Desacelera el cambio climático.

• Alarga la existencia de recursos.

• Proporciona tiempo para desarrollar nuevas tecnologías.

• Etc.

USO EFICIENTE DE LA ENERGÍA

• Todas las medidas deben tener en cuenta:

• Garantizar el crecimiento económico.

• Disminuir los impactos ambientales.

• Proporcionar energía a un precio razonable.

• Disminuir la dependencia exterior.

• Aumentar el empleo.

USO EFICIENTE DE LA ENERGÍA

Comparación entre la producción y el consumo de energía en nuestro país, valoradas en TEP. Según IEA en 2002.

Estas medidas son las siguientes, y se dividen en:

• GENERALES:

• CONCRETAS O ESPECÍFICAS.

USO EFICIENTE DE LA ENERGÍA

• GENERALES:• Divulgación a la opinión pública.• Uso de las energías no renovables de forma transitoria e invertir

en nuevas tecnologías.• Tasas de usos deben ser menores a las tasas de agotamiento.• Negawatio.• Cogeneración. Producción combinada de dos energías útiles

partiendo de un solo combustible.

USO EFICIENTE DE LA ENERGÍA

Algunos mecanismos de ahorro energético:

COGENERACIÓN

Es la producción combinada de dos formas útiles de energía (vapor de agua y electricidad) a partir de una fuente de combustible. Tiene una eficacia del 90% frente al 33% de eficiencia de una planta típica*.

USO EFICIENTE DE LA ENERGÍA

* Una página que promociona la cogeneración es http://cogeneracion.org

Algunos mecanismos de ahorro energético:

COGENERACIÓN

USO EFICIENTE DE LA ENERGÍA

* Una página que promociona la cogeneración es http://cogeneracion.org

Algunos mecanismos de ahorro energético:

COGENERACIÓN

USO EFICIENTE DE LA ENERGÍA

* Una página que promociona la cogeneración es http://cogeneracion.org

Algunos mecanismos de ahorro energético:

MEDIDAS ESPECÍFICAS• Alta eficiencia.• Valorar el coste real (coste + consumo anual x vida media).• Valorar los costes ocultos de la E: polución, mareas

negras...• Reducción del consumo de diferentes sectores.• Medidas de ahorro personales.

USO EFICIENTE DE LA ENERGÍA

* Una página que promociona la cogeneración es http://cogeneracion.org

MEDIDAS ESPECÍFICAS.

• Reducción del consumo de diferentes sectores: • ENERGÍA ELÉCTRICA

• Muy ineficiente (33%) => Altas pérdidas de transporte y distribución.• Infraestructura cara y compleja.• Su gasto puede reducirse con aparatos más eficientes y evitando pérdidas.

• TRÁNSPORTES• Su gasto puede reducirse con transportes públicos y automóviles más

eficientes. Una solución es la utilización de vehículos híbridos.

• CONSTRUCCIONES• Arquitectura ecológica => diseño adecuado (tradicional).• Ventanas de gran superficie hacia el S.• Cámaras de aire aislantes.• Paneles solares.• Muros gruesos• Termostatos.• Aparatos de bajo consumo.

USO EFICIENTE DE LA ENERGÍA

MEDIDAS ESPECÍFICAS.• Reducción del consumo de diferentes sectores:

• CONSTRUCCIONES

USO EFICIENTE DE LA ENERGÍA

Arquitectura solar pasiva

MEDIDAS ESPECÍFICAS.• Reducción del consumo de diferentes sectores:

• CONSTRUCCIONES

USO EFICIENTE DE LA ENERGÍA

• OTRAS MEDIDAS CONCRETAS O ESPECÍFICAS• En el hogar:

• Electrodomésticos de bajo consumo.• Arquitectura bioclimática.• Bombillas de bajo consumo.• Sensores de control de la calefacción.• Limitar el consumo de envases desechables.• Fomento del reciclaje de papel, plástico, cristal,…

• En la industria.• Optimizar los recursos de las fábricas.• Fomento de las nuevas tecnologías.

• En el transporte:• Fomento del transporte público.

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

USO EFICIENTE DE LA ENERGÍA

ROCAS Y MINERALES

• Las rocas y minerales se pueden utilizar en el mismo estado en el que se extraen o como fuente de algunos elementos que contienen.

• Los yacimientos minerales son concentraciones de algunos minerales que se forman en las rocas y que se aprovechan una vez sometidos a una mayor o menor transformación.

LOS RECURSOS DE LA GEOSFERA Y SUS RESERVAS

ROCAS Y MINERALES

• Las rocas y minerales se pueden utilizar en el mismo estado en el que se extraen o como fuente de algunos elementos que contienen.

• Los yacimientos minerales son concentraciones de algunos minerales que se forman en las rocas y que se aprovechan una vez sometidos a una mayor o menor transformación.

LOS RECURSOS DE LA GEOSFERA Y SUS RESERVAS

RECURSOS MINERALES METALÍFEROS

• Se emplean en la obtención de metales y de energía (como el caso del uranio).

• 88 minerales diferentes pero sólo se explotan los que están concentrados en yacimientos.

LOS RECURSOS DE LA GEOSFERA Y SUS RESERVAS

RECURSOS MINERALES METALÍFEROS Mena Ganga

RECURSOS MINERALES

RECURSOS MINERALES METALÍFEROS

RECURSOS MINERALES

1.200 metros

Minas a cielo abierto. Corta atalaya en Riotinto (Huelva)

33

5 m

etr

os

RECURSOS MINERALES METALÍFEROS

RECURSOS MINERALES

Minas excavadas en profundidad

RECURSOS MINERALES METALÍFEROS

• Los minerales metalíferos se subdividen en :

• ABUNDANTES: Al, Fe, Cr, Mn, Ti.

• ESCASOS: Cu, Pb, Zn, Sn, Ag, Au, Hg, U.

RECURSOS MINERALES

RECURSOS MINERALES METALÍFEROS

Actualmente hay tendencia a la sustitución de los metales por otras tecnologías, por ej. los plásticos, papel,cerámica...

RECURSOS MINERALES

Consumo de materias primas en Estados Unidos

RECURSOS MINERALES METALÍFEROS

• La extracción del mineral provoca impactos en el medio ambiente importantes, sobre todo en la minería a cielo abierto, debido a las escorias (escombreras).La ley española obliga a llevar a cabo un plan de restauración del paisaje.

• Algunos impactos medioambientales que provoca la minería son:

• Atmósfera: partículas sólidas, contaminación sonora.

• Aguas: contaminación de aguas superficiales y acuíferos.

• Suelo: irreversible.

• Flora y fauna: eliminación.

• Paisaje: alteración de la morfología.

• Ambiente sociocultural: alteración de zonas de interés natural, aumento del tráfico.

RECURSOS MINERALES

Esquema de una mina de transferencia real: la descubierta para carbón Emma (Puertollano, Castilla-La Mancha, España), operada por ENCASUR.

1: Hueco inicial. 2: Escombrera exterior. 3: Zona restaurada. 4: Cavidad intermedia (mina Emma). 5: Puertollano. 6: Complejo Petroquímico REPSOL-YPF.

Fotografía gentileza de ENCASUR Puertollano.

RECURSOS MINERALES

Drenaje ácido de la mina de San Quintín (Chile)

RECURSOS MINERALES

Mina y rotura de la balsa en Aznalcollar (Huelva)

RECURSOS MINERALES

RECURSOS MINERALES

En la madrugada del 25 de abril de 1998 una riada de lodos tóxicos invadió las tierras de los pueblos ribereños del río Guadiamar y llegó hasta Doñana. Un embalse de 8 Hm3, propiedad de la empresa sueca Boliden, con millones de litros de lodos ácidos con un alto contenido en metales pesados y otros elementos tóxicos.

RECURSOS MINERALES NO METALÍFEROSDentro de este grupo se incluyen los recursos minerales empleados como:

• Combustibles fósiles. Ya se han visto anteriormente.

• Fertilizantes. Los fertilizantes esenciales son:• P. El apatito es el mineral del P. En todas las rocas pero muy

escaso y depositado en el fondo del océano.• N. El N atmosférico tiene dos formas de fijación, atmosférica y

biológica y además se puede hacer de forma artificial artificial.• K. Los recursos más ricos son las sales marinas, silvina y

carnalita.

• Construcción. Se denominan en general áridos y se

obtienen de todos los tipos de rocas conocidas.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Fertilizantes.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Bloques de piedra: cuevas => roca => arquitectura tradicional

(canteras).

• Rocalla: roca triturada para firme de carreteras, hormigón o vías de tren.

• Arena y grava: graveras que ocasionan grandes impactos.

• Cemento. Mezcla de caliza + arcilla => 1.400 ºC => pérdida de H2O y CO2 => triturado.

• Hormigón. Cemento + arena o grava. El hormigón armado tiene barras de hierro además.

• Yeso. Se calcina la roca y se tritura después.

• Arcillas. Primero se usaban sin cocer y luego cocidas para fabricar ladrillos, tejas, baldosas...

• Vidrio. Derritiendo arena de cuarzo, sosa y cal a 1700 °C y enfriándolo rápidamente.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Bloques de piedra: cuevas => roca => arquitectura tradicional

(canteras).

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Bloques de piedra: cuevas => roca => arquitectura tradicional

(canteras).

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Rocalla: roca triturada para firme de carreteras, hormigón o vías de

tren.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Arena y grava: graveras que ocasionan grandes impactos.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Arena y grava: graveras que ocasionan grandes impactos.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Cemento. Mezcla de caliza + arcilla => 1.400 ºC => pérdida de

H2O y CO2 => triturado.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Cemento.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Hormigón. Cemento + arena o grava. El hormigón armado tiene

barras de hierro además.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Yeso. Se calcina la roca y se tritura después.

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Arcillas. Primero se usaban sin cocer (adobe) y luego cocidas

para fabricar ladrillos, tejas, baldosas...

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Arcillas. Primero se usaban sin cocer (adobe) y luego cocidas para

fabricar ladrillos, tejas, baldosas...

RECURSOS MINERALES

RECURSOS MINERALES NO METALÍFEROS

• Construcción. • Vidrio. Derritiendo arena de cuarzo, sosa y cal a 1700 °C y

enfriándolo rápidamente.

RECURSOS MINERALES

IMPACTOS AMBIENTALES DERIVADOS DE LA EXPLOTACIÓN DE LOS RECURSOS MINERALES

• Impactos atmosféricos: • Impactos edáficos• Impactos hidrológicos: • Impactos morfológicos• Impactos visuales• Impacto acústicos• Impactos socioeconómicos

EXPLOTACIÓN DE LOS RECURSOS MINERALES: IMPACTOS

PREVENCIÓN Y CORRECCIÓN DE LOS IMPACTOS CAUSADOS POR LAS EXPLOTACIONES

• La rehabilitación incorpora dos elementos básicos:

• El plan de uso final del terreno.• El plan de rehabilitación progresiva.

EXPLOTACIÓN DE LOS RECURSOS MINERALES: IMPACTOS

PREVENCIÓN Y CORRECCIÓN DE LOS IMPACTOS CAUSADOS POR LAS EXPLOTACIONES

• Existe una diversidad de usos finales posibles para un terreno que ha sido sujeto a actividades mineras:

– Retorno a las condiciones iniciales: naturaleza pura o actividades agrícola-ganaderas, según haya sido el caso.

– Usos industriales.– Lagos o lagunas artificiales para uso recreativo.– Vertederos controlados.– Patrimonio histórico-minero.

EXPLOTACIÓN DE LOS RECURSOS MINERALES: IMPACTOS

PREVENCIÓN Y CORRECCIÓN DE LOS IMPACTOS CAUSADOS POR LAS EXPLOTACIONES

– El plan de rehabilitación progresiva debe incluir:

» Revegetación, densidad de plantas; con qué plantas se repoblará, plantas por metro cuadrado, etc.

» Diversidad de especies; no basta con repoblar con algunas especies vegetales, la zona deberá ser repoblada con un número de especies animales y vegetales (o facilitar su reintroducción) equivalente al inicial.

» Productividad de los terrenos agrícolas rehabilitados; si se retorna a una actividad agrícola, los suelos deberán ser capaces de sustentar a ésta en condiciones equivalentes a las iniciales. 

» Angulo final de pendiente de los taludes de la mina y escombreras; importante llegado el momento de prevenir fenómenos erosivos posteriores.

» La química y los sólidos en suspensión de las aguas de escorrentía

EXPLOTACIÓN DE LOS RECURSOS MINERALES: IMPACTOS

PREVENCIÓN Y CORRECCIÓN DE LOS IMPACTOS CAUSADOS POR LAS EXPLOTACIONES– REVEGETACIÓN DE ESCOMBRERAS

EXPLOTACIÓN DE LOS RECURSOS MINERALES: IMPACTOS

top related