presentacion fibra optica fluke networks 2014(1)

Post on 21-Dec-2015

244 Views

Category:

Documents

11 Downloads

Preview:

Click to see full reader

DESCRIPTION

Presentacion Fibra Optica Fluke Networks 2014(1)

TRANSCRIPT

• Empresa con mas de 30 años de experiencia en el mercado de

Instrumentos Electrónicos de Medición y Fusibles

• Representante exclusivo en Chile de las marcas lideres a nivel

mundial.

INSTRUMENTACION ELECTRONICA S.A.C.I.

REPRESENTANTE OFICIAL EN CHILE DE:

SOLUCIONES FLUKE NETWORKS

Verificación y Certificación de cableado de Cobre y Fibra Óptica Comprobación de Redes

Calificación xDSL Optimización de Procesos

Comprobación y administración de Acceso

Redes empresariales

Soluciones Portátiles y Distribuidas para comprobación y Análisis

LAN, Wireless y WAN

Infraestructura de Redes Proveedores de Servicios

PROBAR Y SOLUCIONAR

PROBLEMAS DE CABLES DE FIBRA

ÓPTICA DE LA EMPRESA

AGENDA

• Tendencias y requisitos de rendimiento en fibra óptica

• Inspección y limpieza de fibras

• Reflexión

• OTDR Tecnología y Herramientas

• Ejercicios prácticos

• Prueba MPO Cassettes y cables troncales

• Las mediciones de pérdida y Herramientas

11

REQUISITOS DE DESEMPEÑO

CONDUCTORES DE CRECIMIENTO

40/100 GB Ethernet

- Aprobado por el IEEE en junio de 2010

- La tendencia continúa ...

1000

40000

100000

4 10 16 100 10 52 26610010000

0

20000

40000

60000

80000

100000

120000

To

ken

Rin

g 4

Mb

10B

AS

E-

FO

IL

To

ken

Rin

g 1

6

FD

DI/

TP

PM

D

10B

AS

E-

FL AT

M

Fib

re

Ch

an

nel

100B

AS

E-

FX

1000

BA

SE

-SX

10G

BA

SE

-

S

40G

BA

SE

-

SR

4

100G

BA

S

E-S

R10

1986 1987 1989 1992 1993 1993 1994 1995 1998 2002 2010 2010

Mb

ps

Higher Speeds

0

500

1000

1500

2000

2500

3000

3500

To

ke

n

Rin

g 4

Mb

10

BA

SE

-

FO

IL

To

ke

n

Rin

g 1

6

FD

DI/

TP

PM

D1

0B

AS

E-

FL A

TM

Fib

re

Ch

an

ne

l

10

0B

AS

E-

FX

10

00

BA

SE

-SX

10

GB

AS

E-

S

40

GB

AS

E-

SR

4

10

0G

BA

S

E-S

R1

0

1986 1987 1989 1992 1993 1993 1994 1995 1998 2002 2010 2010

Me

ters

Shorter Distances

1.9 1.9

13 12.5 13

11

12.5

10

6

11

3.56

2.60

2

4

6

8

10

12

14

To

ke

n

Rin

g 4

Mb

10

BA

SE

-

FO

IL

To

ke

n

Rin

g 1

6

FD

DI/T

P

PM

D

10

BA

SE

-

FL A

TM

Fib

re

Ch

an

ne

l

10

0B

AS

E-

FX

10

00

BA

S

E-S

X

10

GB

AS

E-

S IEE

E

80

2.3

ba

IEE

E

80

2.3

ba

1986 1987 1989 1992 1993 1993 1994 1995 1998 2002 2010 2010

dB

Smaller loss budgets

FACTORES QUE AFECTAN LA PÉRDIDA DE

SEÑAL

Intrínseco • Raleigh Scattering Pérdida por empalme • Fusión: alineación por Nucleo • Mecánica: la alineación de los núcleos, la suciedad en la

cara final, la reflexión • Diámetro del campo Modal en fibras monomodo • Discrepancia apertura numérica de las fibras multimodo Pérdida de conector • Par acoplado en el acoplador • La alineación de los núcleos, la suciedad en la cara final,

la reflexión

MÁS FACTORES QUE AFECTAN A LA

PÉRDIDA

Macrocurvaturas

• Radio de curvatura ~ 2-15 mm

• Afecta primero a longitudes de onda largas

• Afectado principalmente por el diseño de la fibra

Micro curvaturas

• Radio de curvatura ~ radio del núcleo

• Puede ocurrir durante el proceso de fabricación de la fibra óptica

• Puede ocurrir en la instalación debido a presiones del punto

• Afecta a todas las longitudes de onda, pero aumenta ligeramente con la longitud de onda

• Orden de sensibilidad (menor a mayor): SM, 62,5 μ, 50 μ

• Afectado por la cubierta y el Diseño del Cable

FACTORES QUE AFECTAN AL

RENDIMIENTO

Dispersión Cromática (fibras monomodo)

• Salida de láser es distribuida en longitudes de onda

• Diferentes longitudes de onda viajan a diferentes velocidades

La dispersión por modo de polarización (fibras monomodo)

• Núcleo radialmente imperfecta

• Provoca retraso en 1 de 2 modos ortogonales

Dispersión Modal (fibras multimodo)

• Mode es el nivel cuántico en pulso de luz

• Cada uno de ellos ocupa un área diferente del Núcleo

• La imperfección del núcleo causa modos con diferentes velocidades

DISPERSION O ENSANCHAMIENTO DEL

PULSO

MEDICIÓN DISPERSIÓN

MODAL

Lanzamiento llenados en exceso (OFL) • utiliza LED

• Totalmente llena todos los medios de la fibra multimodo

Diferencial Dispersión Modal • utiliza láser

• Inyecta pulsos de luz desde un lado del núcleo a la otra a intervalos micras

• Mide la intensidad del pulso y el tiempo de llegada

• El Ancho de banda modal efectivo se determina a partir de esta prueba

DIFFERENTIAL MODAL DISPERSION

Received pulse at 10 GB/s over 300 meters

FDDI Grade 62.5µ fiber 10 Gb/s

Bit Period

Laser Optimized 50µ fiber 10 Gb/s

Bit Period

Fiber Core

Center

MULTIMODE PERFORMANCE COMPARISON AT 850 NM

Fiber Type

Bandwidth (MHz-km @ 850 nm)

1 GB/s Link Length (@850 nm)

10 GB/s Link Length (@850 nm)

FDDI 62.5 µ 160 220 m 26 m

OM1 62.5 µ 220 275 m 33 m

OM2 50 µ 500 550 m 82 m

OM3 50 µ 1500 (2000)* ~1000 m * 300 m

OM4 50 µ 3500 (4700)* ~1040 m * 400 m *

* Effective Modal Bandwidth

OM4 grade multimode fiber was approved in EIA/TIA 492AAAD on August 5, 2009

* Lengths unsupported by application standards

* Formally stated by the IEEE. Some manufacturers specify more (500-550m)

MULTIMODE FIBER PERFORMANCE

• 1000BASE-SX (850 nm VCSEL) MBW Loss Distance

- 62.5 micron multimode fiber: 160 2.38 dB 220 m

- 62.5 micron multimode fiber: 200 2.60 dB 275 m

- 50 micron multimode fiber: 400 3.37 dB 500 m

- 50 micron multimode fiber: 500 3.56 dB 550 m

• 1000BASE-LX (1310 nm laser)

- 62.5 micron multimode fiber: 500 2.35 dB 500 m

- 50 micron multimode fiber: 400 2.35 dB 550 m

- 50 micron multimode fiber: 500 2.35 dB 550 m - For multimode links >300 m, a mode conditioning patch cord may be required

- singlemode fiber: 4.70 dB 5000 m

20

LIMITES IEEE GIGABIT ETHERNET

21

• 10GBASE-SR (850 nm laser) MBW Loss Distance

- 62.5 micron multimode fiber: 160 2.60 dB 26 m

- 62.5 micron multimode fiber: 200 2.50 dB 33 m

- 50 micron multimode fiber: 400 2.20 dB 66 m

- 50 micron multimode fiber: 500 2.30 dB 82 m

- 50 micron multimode fiber: 2000 2.60 dB 300 m

• 10GBASE-LX4 (1310 nm laser)

- 62.5 micron multimode fiber: 500 2.50 dB 300 m

- 50 micron multimode fiber: 400 2.00 dB 240 m

- 50 micron multimode fiber: 500 2.00 dB 300 m

- 50 micron multimode fiber: 2000 2.00 dB 300 m

- singlemode fiber: 6.30 dB 10 km

LIMITES IEEE 10 GIGABIT ETHERNET

22

• 40GBASE-R4, 100GBSE-SR10 MBW Loss Distance

- 50 micron multimode fiber: OM3 2000 1.90 dB 100 m

- 50 micron multimode fiber: OM4 4700 1.50 dB 150 m

LIMITES IEEE 40/100 GIGABIT ETHERNET

ANSI/TIA-568-C.0 TEST LIMIT

La pérdida permisible depende de: • Número de adaptadores (pares de conectores)

• Número de empalmes

• Longitud de la fibra

• Longitud de onda medida

Se le permite: • 0,75 dB por adaptador (par de conectores)

• BICSI limita esto a 0,5 dB

• 0,3 dB por empalme

ANSI/TIA-568-C.0 TEST LIMIT

Para la fibra multimodo se permite:

• 3,5 dB por km @ 850 nm

• 1,5 dB por km @ 1300 nm

Para la fibra monomodo se permite:

• 1,0 dB por km @ 1310 nm y 1550 nm Planta interna (ISP)

• 0,5 dB por km @ 1310 nm y 1550 nm planta externa (OSP)

Ejemplo de cálculo del presupuesto de pérdidas

850 nm: Adapters Splices Fiber

= 0 * 0.3 dB

= 0.1 km * 3.5 dB

1.50 dB

0.00 dB

0.35 dB

Allowable loss = 1.85 dB

= 2 * 0.75 dB

ANSI/TIA-568-C.0 TEST LIMIT

26

REFLEXIÓN: EL ASESINO

SILENCIOSO DE REDES DE ALTA

VELOCIDAD

WHAT IS REFLECTANCE?

Estas reflexiones Fresnel son lo que se ve cuando se mira en una ventana.

• Causada por la diferencia de índice de refracción entre el aire y el vidrio.

• Si no está demasiado mal, todavía se pueden ver a través del cristal.

Un espacio de aire entre las caras de extremo de una fibra también causan que se produzca reflexiones de Fresnel.

Cuando la luz se mueve de un medio de un índice de refracción n1 dado en un segundo medio con índice de refracción n2, pueden ocurrir tanto la reflexión como la refracción de la luz.

WHAT DO THOSE NUMBERS MEAN?

La reflectancia es el término preferido al caracterizar un solo conector.

• Es una medida de la cantidad de potencia reflejada por una conexión.

• Se incluye un conector

• Siempre es negativo.

• Más pequeño es mejor (por ejemplo, -35 dB es mejor que-20dB)

Refl 10logPreflected

Pincident

Pérdida de retorno es el término preferido al caracterizar un link completo

• Es una medida de la cantidad de energía que no se reflejan por un enlace.

• Incluye todas las conexiones y fibra

• Siempre es positivo.

• Más grande es mejor (por ejemplo, 35 dB es mejor que 20 dB)

reflected

incident

P

Plog10ORL

WHY SHOULD YOU CARE?

Alta reflectancia provoca aumento de tasas de error de bit? (Errores CRC) en la red

• La luz del láser se reflejada hacia atrás incrementa la Intensidad de Ruido Relativa “Noise Intensidad relativa (RIN)” del láser transmisor.

• Si el reflejo es causada por la contaminación que resulta en pérdidas selectivas de modo (por ejemplo, causado por la suciedad), entonces se incrementa el ruido modal.

• Ruido en la red aumenta el “Bit error Rates” (afectando negativamente la experiencia del usuario)

CONNECTOR TYPES

REFLECTANCE IN CONNECTORS

• Si la luz ve un cambio en el índice de refracción, habrá una reflexión.

• Las causas más comunes son:

– Espacio de aire entre los conectores

– Polvo / contaminación

– Residuos dejados por la solución de limpieza

• En un mundo ideal, no habría ningún espacio de aire entre los conectores acoplados, pero en realidad, siempre hay un pequeño espacio de aire, también conocido como "corte sesgado":

• Los mejores conectores terminados en fábrica tendrán un corte mejor que 50 nm (que es 0,05 um).

• La cantidad de rebaje que vea dependerá de la técnica de pulido.

FIELD POLISHING – NOT THE BEST WAY

La calidad de pulido campo depende en gran medida de la habilidad del operador y el proceso de pulido que se sigue.

• Deben tener una buena conexión para todos los conectores.

Los problemas a menudo se encuentran: • Durante el pulido del conector (espacio de aire, falta de reflectancia)

• Tratando de ahorrar dinero o tiempo al no cambiar el papel pulido final de forma regular (papel pulido final sólo es bueno para 5 pulimentos)

• Saltarse el documento final porque la pérdida / longitud pruebas probablemente pasar con un límite de 0,75 dB por conector

El logro de una conexión de baja reflectancia es más difícil que lograr una conexión de baja pérdida.

• Usted puede conseguir lejos con algunas prácticas "descuidados" y todavía pasar las pruebas de pérdida / longitud, pero las pruebas de OTDR revelará las prácticas descuidadas.

MEJOR MANERA

Utilice un conector terminado en fábrica pulida, los ejemplos incluyen:

• Thread-Lock ®

• Corning ® UniCam

• CommScope OptiCam ® – Hay muchos otros

Por lo general garantizan un mínimo de reflectancia

• -35 DB para multimodo

• -40 DB para monomodo

• A menudo mejor que esto

Pero aún así requiere habilidad del usuario en

El corte con precisión de la fibra y Obligadamente de

De un Cortador de Precisión. No usar un Cleaver precisión

es a menudo donde está el problema.

CLEAVE ERRORS

SHEARI

NG

CONC

AVE

CONV

EX

MORE CLEAVE ERRORS

HACKLE /

MIST SHATTER SUB-SURFACE

CRACK

EVEN MORE CLEAVING ERRORS

SURFACE

CRACKS

SURFACE

PITS

BEST WAY

• Pigtails terminados en Fábrica.

• El conector se pule en la fábrica de máquinas automatizadas, tiene muy poca pérdida y excelente reflectancia.

• Es entonces fusión empalmada sobre la fibra instalada donde el empalme es típicamente 0,003 dB y mucho mejor que el requisito de 0,3 dB en las normas.

• Menos propenso a errores de instalación, pero el costo de los componentes y el equipo al principio es más.

SMART TESTING & TROUBLESHOOTING

Elimine los problemas comunes con las buenas prácticas durante la instalación y el mantenimiento

• Verifique la continuidad, la polaridad, la adecuada condición de fin-cara con las herramientas básicas para garantizar la buena terminación y prácticas de instalación

Realizar certificación de cableado completo por TIA-568C • Certificación básico (Tier 1)

• Certificación extendida (Tier 2)

39

TWO-TIER TESTING

Nivel 1 (TIER 1): OLTS (Optical Loss Tes Set) pruebas de pérdida óptica)

• Cumple con TIA-526-14B y TIA-526-7

– (Más cerca del sistema Simulado )

• Mide la pérdida total de un canal de fibra

• Verifique la polaridad utilizando OLTS o VFL

Nivel 2 (TIER 2): OTDR (Reflectómetro óptico de dominio en el Tiempo)

• OTDR puede mostrar longitudes de segmento, ubicación de los conectores y las pérdidas, y los eventos de pérdida sin conector

• Proporciona evidencia de que el cable se instaló sin eventos degradantes (por ejemplo, curvas, conectores sucios o rotos o malos empalmes

• Es una sola prueba terminó

EJEMPLO DE PRUEBAS: TIER 1 (OLTS)

TR

MC X

X X X

Backbone Cables

Horizontal Cables

50/125 m cabling 104 m backbone cable 3 m patch cord 102 m to the wall outlet

Light Source

Power Meter

2.00 dB

2.60 dB for 10GBase-SR per IEEE

PMLS measures total link loss

EJEMPLO DE PRUEBAS: TIER 2 (OTDR)

TR

MC X

X X X

Backbone Cables

Horizontal Cables

OTDR characterizes link details

42

EVENTMAP & EVENT TABLE FROM OTDR

EventMap Event Table

INTRODUCCIÓN AL

OPTIFIBER® PRO OTDR

Company Confidential

¿QUÉ HAY DENTRO!

• La unidad central OptiFiber con

módulo Quad Pro con NOTA: Los

módulos monomodo y multimodo

también disponible

• Cables de lanzamiento / Tail fibra

retráctil

• Factor de forma más pequeño

• Inspector de la fibra con consejos

• interfaz USB

• OneClick Cleaners

OPTIFIBER PRO OTDR

10.6 x 5.0 x 2.5

inches

5.7 inches

touchscreen display Smartphone user

interface

EventMap 8-hour battery life

Singlemode,

Multimode and

Quad modules

47

FIBER INSPECTION AND CLEANING

48

#1 PROBLEMA: SUCIEDAD!

• Conectores con su extremo contaminado: Principal causa de fallas de los enlaces de fibra.

• Las partículas de polvo y suciedad atrapada entre las caras frontales de las fibras causan pérdida de la señal, la reflexiónes, y equipo dañado

• Muchas fuentes de contaminación: • Los lugares de instalación y salas de telecomunicaciones en entornos

de suciedad • Útiles de limpieza inapropiados o insuficientes, materiales,

procedimientos • Los escombros y la corrosión de los manguitos de fijación de baja

calidad • Las manos de los técnicos • Transportado por el aire

49

¿POR QUÉ MOLESTARSE FACES

INSPECCIÓN FINAL?

• Para evitar daños • Escombros incrustará en el vidrio cuando se acoplan los conectores

contaminados • Cuando se quita los escombros embebidos, hoyo permanece en el vidrio

como un daño permanente • hoyos causan pérdida de la señal y la reflexión hacia atrás

• Escombros provoca otros daños, como los quiebres y arañazos

Good Connector

Fingerprint

on Connector

Dirty Connector

INSPECTION IMAGES

Las imágenes reales tal como se captura de las redes de fibra con un

Fluke Inspector

COMMON MISCONCEPTIONS

• Tapas protectoras mantienen caras frontales limpia- NO

– Caps son una fuente de contaminación: compuesto de liberación de molde de la fabricación

– Finales rostros no están limpios cuando vienen pre-terminados de la fábrica en una bolsa sellada

• Aire comprimido arruinará la suciedad- NO

– Es ineficaz en partículas más pequeñas, y en particuas con carga estatica

– Sopla las partículas más grandes alrededor en lugar de eliminarlos

– Es ineficaz en aceites y contaminantes de compuestos

• El alcohol isopropílico– NO

– IPA no funciona en los contaminantes no polares

– Pulling lubricants, buffer gels, etc.

– IPA deja un residuo cuando no se utiliza correctamente

CLEANING WITH IBC CLEANERS

• IBC™ OneClick Cleaners for cleaning different

end faces/connectors — no training required

• 1.25 mm LC and MU connector and end faces

• 2.5 mm SC, ST, FC, E2000 connector and end

faces

• MPO/MTP connector and end faces

• Cleans Ports on devices and patch panels

as well as Cords ….with an adapter

• Limpieza en seco es menos eficiente para la

limpieza de grasa (aceite de la piel seca) de

limpieza en húmedo con un disolvente y hisopos

/ limpieza de cubos

CLEANING WITH SOLVENT PEN

• Start with a clean, lint-free wiping surface every time

– Material left exposed accumulates ambient dust

– Material used once should not be used again

• Use a minimal amount of specialized solvent – Important that solvent be removed after cleaning

– Move the end-face from the wet spot into a dry zone Cleaning with a saturated wipe will not fully remove

solvent

Cleaning with a dry wipe will not dissolve contaminants and can generate static, attracting dust

• Proper handling and motion – Apply gentle pressure with soft backing behind cleaning surface

– Hold end-face perpendicular to cleaning surface

– No figure-8 motion as that’s for polishing only

• Inspect both end-faces of any connection before insertion

– If the first cleaning was not sufficient, then clean again until all contamination is removed

Company Confidential

FIBER INSPECTION

Company Confidential

PROBE TIPS

• Connect the FiberInspector to

the OFP USB port

• Examine the probe tips

• “FS” tip is for FC and SC

bulkheads. Note that it is

asymmetrical

• LC tip for bulkheads

• 2.5mm tip for SC/ST/FC patch

cords

• 1.25mm tip for LC patch cords

• And many more available

Bulkhead FC/SC Bulkhead LC

Patch cord 2.5mm Patch cord 1.25mm

Company Confidential

ATTACHING A TIP

• Attach the “2.5mm” tip to the

probe

• Note that all the tips have a key

• Hold the tip in position while

tightening the nut

Company Confidential

FIBER INSPECTION

• Tap TOOLS

• Tap FiberInspector

• Focus the image with the knob

on the probe

• Press to “pause” or enter

the “still” mode

Company Confidential

EXERCISE 2: FIBER INSPECTION

• Tap SCALE ON

• Tap NEXT SCALE

• Drag fiber to center of scales

• Zoom on image

• Tap GRADE

• Tap GRADE again

STAND ALONE MICROSCOPE OVERVIEW

Inspect widest range of patch cords and port varieties

Dual magnification (250x/400x)

probe Large 3.5” screen

• Rugged, shock-absorbent boot

• Extensive range of adapter

probe tips (including MPO)

FiberInspector Pro

Inspect most patch cords and ports (SC, ST, FC and LC)

Exceptionally compact and

convenient Competitive price point for a

video microscope

FiberInspector Mini

Inspect patch cords only Rugged, ergonomic form

factor Most affordable way to

inspect an end-face

FiberViewer

60

OTDR TECHNOLOGY

61

WHAT DOES AN OTDR DO?

OTDR Port

Connector

Processing

& Control

Color

Display

Directional

Coupler

Very Sensitive

Photo

Detector

Two

Laser

Diodes

• Sends pulses of light out

• Keeps checking for

reflected light

• The farther the light goes,

the more time it takes to

come back

• When light hits a

connection, an extra spike

of light reflects back

• The farther the light goes,

the more loss it encounters,

so less comes back

(measures length)

(measures fiber loss)

(finds connections)

OTDR

Fiber

Under

Test

Optical Fiber

Electrical

62

OTDR IN ACTION

The OTDR measures reflected energy and

NOT the transmitted light level.

Distance

Loss

63

OTDR TECHNOLOGY

• Rayleigh Scattering

• Fresnel Reflection

64

Scattering, (Rayleigh Scattering) occurs when transmitted light energy is higher than what the glass molecules can absorb and the energy is released in all directions. It is the major loss factor in fiber.

Backscattering occurs from about 0.0001% of the light being reflected back to the OTDR.

Rayleigh Scattering

65

Coupling loss air gap causes loss of light transmitted

Fresnel Reflection occurs when light traveling in one material encounters a different density material (like air). Up to 8% of the light is reflected back to the source while the rest continues out of the material.

Fresnel Reflection

66

WHAT DO OTDR TEST RESULTS

LOOK LIKE?

EVENTMAP

• Fácil de entender el mapa de la infraestructura física Los iconos representan eventos. Pasa evento de reflexión Falla de evento de reflexión Evento de reflexión Ocultos Pasa evento de pérdida Falla de evento de pérdida Pérdida del evento oculto se

añade a la pérdida del evento

anterior

68

TYPICAL OTDR TEST RESULT

Backscatter

Reflection

69

REFLECTION EVENT

Connector

70

LOSS EVENT

Non-reflective event

Splice or severe bend

71

END EVENT

End of Fiber

72

GAINER EVENT

50 micron fiber connected to a 62.5 micron fiber

Gainer

73

GHOST EVENT

Ghosts

74

DYNAMIC RANGE

• Determina la longitud de la fibra que se puede probar

• Provisto como un valor en dB

• Los valores más altos significan mayor distancia (típicamente para las empresas de telecomunicaciones) ... y una zona muerta más grande

• Locales OTDR no necesitan un gran rango dinámico ... y se benefician con una pequeña zona muerta

• Pulso necesita ser lo suficientemente amplia para llegar al extremo de la fibra

75

DYNAMIC RANGE

Measurement

Dynamic

Range

Initial backscatter level at OTDR front connector

Dynamic range is the maximum attenuation level that the test

equipment can recognize and therefore may be used to

determine how long of a fiber can be measured.

Noise

dB

Length 0

0

76

DEAD ZONE

• Una zona muerta es como cuando tus ojos necesitan para recuperarse de mirar al sol brillante o el Flash de una cámara

• Puede reducirse mediante el uso de un ancho de pulso menor, pero disminuirá el rango dinámico.

77

TWO TYPES OF DEAD ZONES

• Typically occurs in a trace whenever there is a connector

• The OTDR receiver goes “blind” from the strong reflection

• Includes duration of the reflection and recovery time for the receiver.

Event

dead zone

Attenuation

dead zone

ATTENUATION DEAD ZONE

VS. EVENT DEAD ZONE

• Attenuation Dead Zone is the minimum distance between two events on an OTDR where the OTDR can assess the event loss

• In this example, the following event is too close to the first event to reliably assess the individual losses at 1300nm (it worked for 850nm)

• We say that the second event is within the Attenuation Dead Zone, so we are unable to asses the event loss of the first event at 0 ft/ 0 m

• OFP Typical Attenuation Dead Zone is:

• 2.2m @ 850 nm, 3 ns, -40 dB Reflectance

• 4.5m @ 1300 nm, 3 ns -40 dB Reflectance

• 3.6m @ 1310 nm, 3 ns, -50 dB Reflectance

• 3.6 m @ 1550 nm, 3 ns, -50 dB Reflectance

ATTENUATION DEAD ZONE

VS. EVENT DEAD ZONE

• Event Dead Zone is the minimum distance it can detect an event after the preceding event on an OTDR

• In this example, we can see that there is an event 7 ft/2 m after the first event at 0 ft/0 m

• The Event Dead Zone distance depends on

• The pulse width used

• The reflectance of the preceding event

• OFP Typical Event Dead Zone is:

• 0.5m @ 850 nm, 3 ns, -40 dB Reflectance

• 0.7m @ 1300 nm, 3 ns -40 dB Reflectance

• 0.6m @ 1310 nm, 3 ns, -50 dB Reflectance

• 0.6 m @ 1550 nm, 3 ns, -50 dB Reflectance

80

LAUNCH & TAIL FIBER

• A must for measuring the loss of the first and last connector in a fiber link

• Launch fiber must be significantly longer than the attenuation dead zone of the OTDR

• With short dead zones you can use a short launch fiber

81

USING A LAUNCH AND TAIL FIBER

Launch

Fiber

Will give loss of the

first connector

Tail

Fiber

Will give loss of the

last connector

82

LAUNCH FIBER COMPENSATION

Shows the

end of the

launch

fiber

The zero point is now shifted

to the end of the launch fiber

Shows the

beginning

of the tail

fiber

Company Confidential

SIMPLE OTDR TRACE ACQUISITION

Company Confidential

SETUP

• Supplies

• Launch and Tail Cords

• SC/SC adapter

• OptiFiber Pro (OFP)

• Connect Launch Cord to OFP

• Connect Tail to Launch with SC/SC

adapter

Company Confidential

TEST ACQUISITION

• Press or

• Always ensure your Port Quality

is good.

• Trace progress gives instant

insight into test results.

• EventMap interprets the trace

for you.

Company Confidential

EVENT DETAILS

• Tap the Summary Bubble to see

the Event Details.

• Details are provided for the

event’s loss, reflectance and

segment attenuation.

• Next and previous events can be

viewed.

• Context sensitive help is

available.

Company Confidential

EVENT TABLE

• Tap the Table tab.

• Large tables can be scrolled

• Change wavelength here

• Overall results are here

Company Confidential

TRACE

• Tap on TRACE

• Change wavelength here

• Jump to next/previous event

• Test settings are here

Company Confidential

EXERCISE 4

LAUNCH/TAIL COMPENSATION

Company Confidential

EXERCISE 4: LAUNCH AND TAIL

COMPENSATION

• Fluke Networks recommends

the use of launch and tail cords.

• Required to measure first and

last connectors in link.

• Must have backscatter signal on

both sides of connector to make

a measurement.

Company Confidential

EXERCISE 4: SETUP

• Supplies

• Launch and Tail Cords

• SC/SC adapter

• OptiFiber Pro (OFP)

• Connect Launch Cord to OFP

• Connect Tail to Launch with SC/SC

adapter

Company Confidential

LINK TEST

Company Confidential

SET UP

• Supplies

• Launch and Tail Cords

• Demo Artifact

• 1m patch cord

• OptiFiber Pro (OFP)

• Connect Launch cord to port 2

• Connect 1m to ports 6 and 8

• Connect Tail cord to port 4

1m

MPO/MTP CONNECTORS AND

CASSETTES

16 Fiber – For SAN market, where switch & director blades come in eight fiber increments

24 Fiber – High density for the data center server side

100 Gig

12 Fiber – For plug and play cassettes in datacom environment

40 Gig

MULTI-FIBER CONNECTORS (MPO/MTP)

Typical cassette 20dB Return Loss 40dB RL Typical

1.0dB Insertion Loss 0.75dB IL Typical

Premium cassette >20dB Return Loss

40dB RL Typical 0.5dB Insertion Loss

0.35dB IL Typical

MPO/MTP FIBER CASSETTE

• Contain a short “breakout” cable to change to single fiber connectors

• Considered part of the permanent link

• Have ‘male’ MPO/MTP connectors (pins)

• Three different wiring methods specified in the standards

111

50/125um MM

Pre-terminated MTP

Cassette

MTP Pre-terminated Ribbon

Cable

50/125um MM Patch

Cord

FIBER CASSETTE-BASED CHANNEL

WIRING SCHEMES PER EIA/TIA 942

• “Plug & Play” cabling not the same as legacy trunk cables and patch panels

• MPO cassette configurations: • Method A – Straight through • Method B – Ribbon Flip • Method C – Pair-wise Flip

• Potential Issues with Cassettes:

• High return loss • Difference between channels • Dirt on one fiber creates air

gap (high reflectance) for all fibers in the connector!

• All must be properly installed and tested

OTDR TESTING MPO/MTP CASSETTES

114

OTDR TESTING OF FIBER CASSETTES

The breakout cable from the MPO to the LC is well within the event dead zone so…

- An OTDR will see the cassette as a single connector - If you can’t get a clean trace without ghosts, than the link has

problems - High reflectance - High Loss

- An OTDR can still help find the location of link problems

115

OTDR TRACES WITH FIBER CASSETTES

• Here is how an OTDR can help find the location of problems:

• The connector at 154 m did not get seated correctly and shows a big loss

• With a power meter, you would know there was too much loss, but would not know where the problem was

116

OTDR TRACES WITH FIBER CASSETTES

• After the connector was properly seated, the loss at the second connector is fine

• But the ghosts indicate we still have a reflectance issue

• Inspect and clean

• Retest

117

MEASURING LOSS

• Optical Power is measured in dBm

(0 dBm = 1 milliwatt)

• Some examples

0 dBm = 1. Milliwatt = 1000 microwatts

-10 dBm = 0.1 milliwatts = 100 microwatts

-20 dBm = 0.01 milliwatts = 10 microwatts

-30 dBm = 0.001milliwatts = 1 microwatt

• Every 3 dBm subtracted drops the power in half

OPTICAL POWER

Absolute measurement of power measured in dBm as a reference to one milliwatt of power

1. Reference level: light energy arriving at detector through test reference cord

Test Reference Cord Source Detector

Loss Is Measured As A Difference In Power

2. Loss measurement: light energy arriving at detector through fiber under test and tail test reference cord

Additional Test Reference Cord

Adapter Adapter

Test Reference Cord

Fiber Optic Link-under-test

Source Detector

FIBER LOSS MEASUREMENT – PRINCIPLE

3. Loss: difference between the two measurements Loss = 4.2 dB

-20 dBm

-24.2 dBm

ONE JUMPER REFERENCE

• The method explained in the previous slide is the essence of “one-jumper” method (previously known as Method B)

• Recommended by TIA 568-C (also TIA-526-7 & TIA-526-14-B)

• Advantage: • Correctly yields the loss of the two adapters and the link-under-test

• Disadvantages: • Can only be used when adapters at the end of the link-under-test match the

adapter type in the tester (detector)

• To maintain the reference: - The coupling or launch conditions must be kept identical throughout the test

- NEVER REMOVE TRC from the source after the reference has been set

Fluke Networks introduced Fiber Test Modules with removable test adapters

Set the reference: Launch Reference Cord

Source Detector

CL3

Launch Reference Cord

CL4

Tail Reference Cord

Fiber Link-under-test

Source Detector

Review of the “One-jumper” Method

Measure loss:

• Measured loss: LossFiber + CL3 + CL4 • NO systematic error from connections • Key issue: Detector adapter = adapter of Link-under-test

ONE JUMPER REFERENCE

Measure loss – The difference: Link plus ONE connection

Launch TRC

Adapter Adapter

Receiving TRC

Fiber Optic Link-under-test

Source Detector

Set the reference level:

Launch Patch Cable

Source Detector

Receiving Patch Cable

TWO JUMPER REFERENCE

Formerly known as Method A, it should never be used in an enterprise environment as it only measures the loss of the fiber and one adapter and may give negative loss measurements.

THREE JUMPER REFERENCE

• Used for channel measurements

• Or when connectors are different at each end and you have fixed connector at the detector

Launch Reference

Cord

Source Detector

Tail Reference Cord

Reference Jumper

Reads P1

CL1 CL2

CL1 = Loss of connection 1 CL2 = Loss of connection 2

Launch Reference

Cord

CL4

Tail Reference

Cord

Fiber Optic Link-under-test

Source Detector

Link-under-test Loss Measurement

Reads P2 CL3

THREE JUMPER REFERENCE

• The loss measurement is calculated as P2 - P1

• Measured loss = LossFiber + (CL3-CL1) + (CL4-CL2)

FIBER LOSS LAUNCH CONDITIONS

• Different power distribution between modes creates different Link Loss results - Higher modes are less stable - Lower modes are more stable

• Light source for Multimode Fiber: LED - LED light source with test reference cord needs to meet ANSI/TIA-

526-14-B with Encircled Flux

• No VCSEL light source - Optical loss limits in IEEE 802.3 are based on test equipment

using LEDs, same for ANSI/TIA and ISO/IEC - VCSELs are under-filled; results are more optimistic - Some vendors will not warrant a cabling system if VCSEL source is

used in testing

WHY AM I REQUIRED TO USE A MANDREL?

WHAT DOES THE MANDREL DO?

Mandrel wrap with LED allows testing 50um and 62.5um

MANDREL – CONTROL LAUNCH CONDITIONS

• Control the over fill launch condition with the use of a mandrel

• Diameter and number of wraps determine the effect of the mandrel

• Desired result:

Strip out the higher order modes to achieve

measurement stability

131

ENCIRCLED FLUX LAUNCH CONTROL

LAUNCH CONTROL

• Make an optical loss measurement

- Using reference grade connectors

- Better than 0.10 dB on the test reference cords

- With a mandrel at the source

Multimode Source 1

Power Meter 1

LAUNCH CONTROL

• Make another optical loss measurement

- Using the same reference grade connectors

- Better than 0.10 dB on the test reference cords

- With a mandrel at the source

- But using a different source

Multimode Source 2

Power Meter 1

WHAT IS HAPPENING IN STANDARD BODY?

• New TSB:

- Practical Considerations for Implementation of Multimode Launch Conditions in the Field (Draft as of Dec 2012)

• Helps users to understand Encircled Flux and the options for dealing with it

• TSB = Telecommunications System Bulletin

- Not an official standard, more like a memo

- Will likely lead to ANSI/TIA-568-D.3

EF is the radial integration of power from the core center to the core boundary

Optical Power intensity at each

increment of radius r

Total Power Intensity in radius

R

EF is a ratio of powers (incremental/total)

HOW IS EF DEFINED?

HOW IS EF MEASURED?

Measured at output of test cord

Source

Reference grade

test cord

mandrel

Near field

measurement

EF

output Test cord

output

HOW IS THE LAUNCH CONTROLLER USED?

From:

To:

HOW IS THE LAUNCH CONTROLLER USED?

BEST PRACTICES FOR LOSS TESTING

• Loss limits are low measurement accuracy is critical • A 0.25 dB measurement error represents ~10% of the

channel budget

• Best Practice • Use high-quality Test Reference Cords (TRCs)

• Clean TRC ends before you set the reference

• Let the tester warm up to steady-state internal temperature • About 10 min with ambient temp and tester temp difference <20°F

• Use one-jumper (Method B) reference method

• After reference, do NOT disconnect TRC from light source

• For multimode optical link, use proper mandrel

• Repeat the reference after power down

148

LOSS MEASUREMENT TOOLS:

SIMPLIFIBER PRO, CERTIFIBER AND

DTX-XFM2

• Power meter and light source “Verification” kit

• Single fiber power meter and light source kits cannot “Certify” to TIA or IEEE standards since they do not measure length.

SIMPLIFIBER PRO

SIMPLIFIBER PRO COMPONENTS

• Multimode Source

• Dual Wavelength, Single Port, Auto Wavelength Mode and FindFiber Mode, 850 nm and 1300 nm

• Singlemode Source

• Dual wavelength, Single Port, Auto Wavelength and FindFiber Mode, 1310nm and 1550nm

• Power Meter

• Calibration points at 850, 1300, 1310, 1490, 1550 and 1625 nm,

• CheckActive Mode, FindFiber Mode

• Min/Max Feature

• USB Port

• FindFiber Remote ID

• One device for both SM and MM fiber

• Sends a unique identifier signal (1 thru 8)

VERIFICATION WITH A VFL

• A VisiFault Visual Fault Locator (VFL) is good for polarity/continuity verification but…

• Quality cannot be determined by any VFL!

12 dB Loss! 0.5 dB Loss!

Which Link is better?

• CertiFiber and DTX-xFM2

• Dual fiber power meter and light source kit “Certifies” to TIA and IEEE standards by measuring loss and length.

CERTIFIBER AND DTX FIBER MODULES

DTX-XFM2 LOSS/LENGTH MODULES

• Support for four Fiber Optic Adapters: SC, ST, LC, FC

DTX-SFM2 – Laser 1310 nm & 1550 nm

DTX-MFM2 – LED 850 nm & 1300 nm

DTX-GFM2 – VCSEL/Laser 850 nm & 1310 nm

DUPLEX TEST REFERENCE CORDS

• FNET includes high-performance Test Reference Cords (TRC) • Polarity is marked with colored boots

• Red boot on end at which light enters

• Black boot on end at which light exits

• Light source connection is always an SC adaptor

• Longer cord segment to accommodate mandrel

• Connector fiber end face: specially hardened HLC technology

• Example: Duplex TRC to test LC ‘system’:

LC

LC LC

SC

DTX-MFM2 DUAL-FIBER LOSS MEASUREMENT

Set the reference with two duplex cords

In Out

LC Adapter

SC LC

LC LC

Main Unit Remote Unit

In Out

LC LC

LC SC

TEST REFERENCE GUIDELINES

• SC adapter with Red boot plugs into the transmitter (OUT connection)

• Do not unplug red boot (on “Output”) after setting the reference

• Maintain precise launch conditions of the reference

• Set reference with DTX-MFM2

• -20 dBm nominal level with LED, mandrel and 62.5 μm TRC

• -24 dBm nominal level with LED, mandrel and 50 μm TRC

• Set reference with DTX-GFM2 or DTX-SFM2

• -7dBm nominal level with VCSEL or laser

DTX-MFM2 DUAL-FIBER LOSS MEASUREMENT

Connect to the link-under-test (LUT)

In Out In Out

SC

LC Adapter

LC LC

LC LC

LC LC

SC

To LUT – End 1 To LUT – End 2

Do not move

DTX-XFM2 DUAL-FIBER LOSS MEASUREMENT

Loss measurement with two duplex cords

In Out

LC SC

LC

LC

In Out

SC LC

LC

LC

DTX-XFM2 DUAL-FIBER LOSS MEASUREMENT

• Polarity Test • Plug black boot at end of TRC into “transmit” port on the

panel • Plug red boot at end of TRC into “receive” port on the panel

In Out

LC panel LC panel

In Out

TR

TR RC

RC

LOSS TESTING MPO/MTP TRUNK

CABLES

WHAT WAS NEEDED …

• Measure the performance of all 12 trunk fibers in a single

• Test loss

• Validate polarity

The old way to test MPO Trunk Cables

Set reference

Install fan-out

Test 12 times Complex

Tedious Incomplete Polarity?

Test to Limit?

Documentation?

Repeat all tests

WHAT WERE THE PROBLEMS?

INTRODUCING MULTIFIBER™ PRO

• The industry’s first MPO fiber trunk tester that validates the performance of all 12 trunk fibers in a single test – reducing testing time by nearly 95%*

• Simple & efficient • Measures loss on all 12 fibers • Tests against user-configurable

loss limits • Validates polarity

*According to Fluke Networks research of standard competitive products and processes.

PREPARE THE METER FOR TESTING

• Set the loss limit as desired • Press SELECT to enter the loss limit set up mode

• Press F1 to decrease the limit

• Press F2 to increase the limit

• Press and hold MENU

• Release when returns to normal measurement mode

Application Budgets At 850nm OM2 OM3 OM4

1000BASE-S

Loss Budget (dB) 3.6 4.5 4.8

Length m (ft) 550 (1804) 550 (1804) 550 (1804)

10GBASE-S

Loss Budget (dB) 2.3 2.6 2.9

Length m (ft) 82 (269) 300 (984) 400 (1312)

40GBASE-SR4

Loss Budget (dB) --- 1.9 1.5

Length m (ft) --- 100 (328) 150 (492)

100GBASE-SR10

Loss Budget (dB) --- 1.9 1.5

Length m (ft) --- 100 (328) 150 (492)

PREPARE TO SET A REFERENCE

• Ensure light source

defaults are ON

• Scan All: ON, Auto l: ON

• Connect meter and source

with 1 meter, Type B,

Pinned/Pinned MPO cord

• Patch cord must have pins on

both ends

• Source and meter both have

unpinned test ports

NOTE: this method is the preferred “1 jumper” reference method

SET REFERENCE

• Press MENU repeatedly until the

SET REF segment appears

• Once all channels have been

referenced:

• Power will be displayed for each

channel

• SAVE will be displayed

• Press F1 to SAVE the reference

• Connect the test cord to the

cassette or bulkhead.

• After 6 seconds the meter

will provide a measurement

of all 12 fibers

• Press F2 to view the

measurements of each

channel

• Note the Polarity

measurement

• Press SAVE to save all 12

records!

Measure the loss of the link or channel!

MEASURE THE LOSS OF THE LINK OR

CHANNEL

You can also measure loss of MPO Cassette

• Loss of each channel

• Polarity of cassette

MEASURE THE LOSS OF CASSETTE

OPTIFIBER® PRO OTDR

REVIEW OF FEATURES

OPTIFIBER PRO OTDR: SIMPLICITY

• Intuitive smartphone interface

• Capacitive touchscreen: No stylus required

• Gesture-based input accelerates testing

• “Pinch & zoom” for rapid trace navigation and analysis

OPTIFIBER PRO OTDR: SIMPLICITY

• Event Map: Alternative trace presentation of link topology

• Reduces need for OTDR expertise

• Icons designate the type of fiber event

• One-tap gives access to all event details

OPTIFIBER PRO OTDR: SIMPLICITY

• Project Folders: Preconfigure settings for specific jobs or users

• Create up to 100 Project Folders for future jobs or use by others

• Predefine tests and test parameters

• Change configuration as needed

• Integrated Inspection Camera

• Probe tips for patch cords and

bulkheads

• “FS” tip is for FC and SC

bulkheads. Note that it is

asymmetrical

• LC tip for bulkheads

• 2.5mm tip for SC/ST/FC patch

cords

• 1.25mm tip for LC patch

cords

• And many more available

Bulkhead FC/SC Bulkhead LC

OPTIFIBER PRO OTDR:

INSIGHT

OPTIFIBER PRO OTDR:

INSIGHT • The industry’s shortest multimode dead

zones

• Event: 0.5 meters

• Attenuation: 2 meters at 850nm, 3 meters at 1300, 1310 and 1550nm

• Top-of-Rack and End-of-Row architectures employ short links with many connectors

• OptiFiber Pro ensures reliability in virtualized datacenters and SANs

OPTIFIBER PRO OTDR: INSIGHT

• Reflectance: The silent bandwidth thief

• FaultMap is the fastest way to find reflectance and eliminate insidious reliability problems

• Icons designate large and small reflectance

• One-tap access to event details

OPTIFIBER PRO OTDR:

INSIGHT • Extended measurement range

• Multimode: 8 – 35 km

• Singlemode: 80 – 130 km

• Ideal for academic, business and government campus networks

• No need for a “carrier class” OTDR in enterprise environment

OPTIFIBER PRO OTDR: SPEED

• DataCenter OTDR mode: One-touch configuration to test datacenter fiber

• Optimized for short links, many connectors and large reflections

• Selects wavelengths for multimode and singlemode

• Fast answers on datacenter and storage network infrastructure

OPTIFIBER PRO OTDR: SPEED

• The industry’s fastest trace time

• QuickTest: 2 seconds*

• DataCenter: 2 seconds typical*

• Auto OTDR: 5 seconds typical*

• Increased accuracy with decreased test time

• You don’t have time to waste

*- Per wavelength

OPTIFIBER PRO OTDR DOCUMENTATION

• LinkWare: Integrates test results from OptiFiber Pro and other Fluke Networks testers

• No learning curve for reporting and presentations

• Results exportable in Bellcore SR-4731 format

SUMMARY

• Do not Plug-and-Pray

• VFL testing is not testing

• Perform full Tier 1 Certification Testing • Inspect and Clean

• Proper loss referencing (1-Jumper)

• Meticulous loss testing

• Perform Tier 2 OTDR testing for Event Loss and Connector Reflectance • Provides a rock solid testing strategy

• Inspect and Clean the OTDR Port

• Use Launch and Tail Cords

• Strive for multimode connector reflectance <-35 dB and singlemode connector reflectance <-40 dB

BACKUP SLIDES Slides here described the use of DTX to test MPO

cassette, and with MultiFiber Pro, this is no longer necessary. The slides are left here such that in case

there are prospects who still use DTX and want to know how to test MPO cassette, they can be used to

illustrate the steps and upsell them to MultiFiber Pro.

WE’RE GOING TO TEST THIS

LOSS BUDGETS - TIA

• Does not work for data centers

≤0.75 dB ≤0.75 dB

≤0.75 dB ≤0.75 dB

300 m ≤ 1.05 dB

10GBASE-SR requirement is 2.6 dB @ 850 nm

The loss budget here would be 4.05 dB; not good enough

LOSS BUDGETS – WHAT YOU NEED

The cassette has to be better than two adapters of 0.75 dB each

10GBASE-SR requirement is 2.6 dB @ 850 nm

The loss here would be 2.55 dB; GOOD

≤0.75 dB ≤0.75 dB

300 m ≤ 1.05 dB

COMPONENTS NEEDED WITH DTX

SET A REFERENCE

Inspect and clean all test reference cords and DTX-xFM2 Output ports first!

INSERT KNOWN GOOD CORD INTO INPUT

PORT ON REMOTE UNIT

RUN AN AUTOTEST

• If the loss is better than 0.10 dB, we know our reference cords are good

• This is critical to a successful measurement

CONNECT TO THE LINK AND RUN AN

AUTOTEST

300 m ≤ 1.05 dB

≤0.75 dB ≤0.75 dB

PRACTICAL IMPLEMENTATION OF EF

• Option 2 - Use an external mode controller

- Replaces the mandrels

PRACTICAL IMPLEMENTATION OF EF

• The mode controllers are not a popular option

• They’re bulky and not what you would call cheap

• So why not just make the source EF compliant?

• EF compliance is at the end of the test cord

EF Compliance is met at the end of the Test Reference Cord

A Test Reference Cord will alter the EF template

PRACTICAL IMPLEMENTATION OF EF

• Today’s solution

• When that LC connector breaks or wears out, it cannot be re-terminated in the field

• Re-terminations need to be verified for EF compliance

Hugo Barros – 2927-4422

hbarros@intronica.com

MUCHAS GRACIAS

top related