interacción suelo estructura

Post on 20-Dec-2015

60 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

interación suelo-estructura

TRANSCRIPT

DISEÑO SISMICO DE EDIFICACIONES

INTERACCIÓN SUELO-ESTRUCTURA

Con el modelo del análisis sísmico dinámico espectral del archivo A.S.E.-Tumbaco-Espectral,

Realice un análisis de Iteración Suelo-Estructura, considerando:

Coeficiente de Poisson del suelo µs = 0,35

Se pide:

i. Calcular las masas de las zapatas.

ii. Calcular las masas rotacionales de las zapatas.

iii. Determinar los coeficientes de rigidez para el modelo dinámico Barkan D.D.

iv. Modelar con el SAP2000 y determinar los 8 primeros periodos de vibración.

v. Efectuar el control de desplazamientos laterales para ambas direcciones.

vi. Determinar las fuerzas internas maximas, indicando los elementos en los cuales surgen

dichas fuerzas internas.

vii. Comparar los resultados obtenidos del análisis sísmico estático, del análisis dinámico

espectral y la Interacción suelo-estructura.

viii. Comparar los periodos y desplazamientos obtenidos del análisis sísmico estático, del

análisis dinámico espectral, y la Interacción suelo-estructura.

SOLUCIONARIO

i. Calcular las masas traslacionales de las zapatas.

del libro “Interacción suelo-estructura en edificios altos” del Ph.D. Genner Villarreal Castro, para

calcular masas de cimentaciones tipo cabezal con pilotes, plateas de cimentación y zapatas aisladas,

teniendo en consideración que en los dos primeros casos se considerará como placa rectangular

delgada, debido a que la proporción de dos de sus lados respecto al tercero es muy grande. En

cambio, para el caso de zapatas aisladas, debe considerarse como paralelepípedo rectangular.

Ahora, calculamos las masas traslacionales respecto a los ejes centroidales X, Y, Z y las masas

rotacionales respecto a los ejes de contacto suelo-zapata, indicados como X’, Y’, Z’

g

cba

g

V

g

PMMMM czapataczapata

zyxt

....

zapataP : Peso de la zapata.

cba ,, : Dimensiones de la zapata.

3/4,2 mTc : Peso especifico del hormigón.

2/81,9 smg : Aceleración de la gravedad

msTMMMM zyxt /.7105,081,9

6,0.2,2.2,2.4,2 2

ZAPATA a (m) b (m) c (m) g (m/s2) ϒc (T/m

3) Mx=My=Mz (T.s

2/m)

ESQUI. (Z1) 2,2 2,2 0,6 9,81 2,4 0,7105

EXCEN. (Z2) 1,8 1,8 0,6 9,81 2,4 0,4756

CENTR. (Z3) 2,2 2,2 0,8 9,81 2,4 0,9473

ii. Calcular las masas rotacionales de las zapatas.

122

222

2

'

cbMcMIdMM t

tmxtx

122

222

2

'

caMcMIdMM t

tmyty

12

22

'

baMIM t

mzz

d : distancia desde el centro de gravedad de la masa de la zapata hasta la superficie de contacto

con el suelo de fundación.

mzmymx III ,, : momentos de inercia de masa respecto a X, Y, Z

Para el modelo dinámico Barkan D.D. no es necesario calcular el momento 'zM debido a que se

debe de restringir la rotación en Z, pero lo realizamos con la intención que el lector pueda aplicarlo

a otro modelo dinámico. Las masas traslacionales y rotacionales deben asignarse en el centroide de

cada zapata.

122

222

2

'

cbMcMIdMM t

tmxtx

msTM x ..3718,0

12

6,02,27105,0

2

6,07105,0 2

222

'

122

222

2

'

caMcMIdMM t

tmyty

msTM y ..3718,0

12

6,02,27105,0

2

6,07105,0 2

222

'

12

22

'

baMIM t

mzz

msTM z ..5731,0

12

2,22,27105,0 222

'

ZAPATA a (m) b (m) c (m) Mt (T.s2/m) Mϕx' (T.s

2.m) Mϕy' (T.s

2.m) Mψz' (T.s

2.m)

ESQUI. (Z1) 2,2 2,2 0,6 0,7105 0,3718 0,3718 0,5731

EXCEN. (Z2) 1,8 1,8 0,6 0,4756 0,1855 0,1855 0,2568

CENTR. (Z3) 2,2 2,2 0,8 0,9473 0,5842 0,5842 0,7641

iii. Determinar los coeficientes de rigidez para el modelo dinámico Barkan D.D.

De acuerdo al libro “Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas” del

Ph.D. Genner Villarreal Castro.

MODELO DINAMICO DE INTERACCION SISMICA SUELO-CIMENTACION

SUPERFICIAL-SUPERESTRUCTURA.

MODELO DINAMICO D.D. BARKAN – O.A. SAVINOV

para determinar los coeficientes de rigidez de las cimentaciones, el científico ruso D.D. Barkan en

el año 1948 propuso utilizar las siguientes expresiones:

ACK zz

ACK xx

ICK

Donde:

yx CC : Coeficiente de desplazamiento elástico uniforme.

CCz : Coeficiente de compresión elástica uniforme y no uniforme.

A : Área de la base de la cimentación.

I : Momento de inercia de la base de la cimentación respecto al eje principal, perpendicular al

plano de vibración.

los coeficientes de compresión y desplazamiento de la base en el modelo D.D. Barkan-O.A.

Savinov es:

o

ozA

baCC

.

21

o

oxA

baDC

.

21

o

oA

baCC

.

321

Donde:

00 , DC : Coeficiente determinados atravez de experimentos realizados para 0 .

ba, : Dimensiones de la cimentación en el plano.

: Coeficiente empirico,asumido para cálculos prácticos igual a 11 m .

: Coeficiente de Poisson.

2

0 /2,0 cmkg .

: Presión estática.

Pesos Sísmicos.

PISOS W=D

(T)

5 252,893

4 252,893

3 252,893

2 252,893

1 271,181

Σ 1282,75

ZAPATA a

(m)

b

(m)

c

(m) # Zapatas

ϒc

(T/m3)

Pzapata

(T)

Pedificio

(T)

Azapata

(m2)

ρ

(T/m2)

ESQUI. (Z1) 2,2 2,2 0,6 4 2,4 27,88

1282,75

19,36

23,01 EXCEN. (Z2) 1,8 1,8 0,6 8 2,4 37,32 25,92

CENTR. (Z3) 2,2 2,2 0,8 3 2,4 27,88 14,52

Σ 93,08 59,8

22 /301,2/01,238,59

08,9375,1282cmkgmT

A

PP

zapata

zapataedificio

Perfil de roca de rigidez media

35,0s

3/6,2 cmkgCo Tabla 2.1

oo CD

5,01

1

3/048,26,2.35,0.5,01

35,01cmkgDo

o

oyxA

baDCC

.

21

3/576,192,0

301,2

2,2,2,2,1

2,22,221048,2 cmkgCC yx

o

ozA

baCC

.

21

3/852,242,0

301,2

2,2.2,2.1

2,22,2216,2 cmkgCz

o

oxA

baCC

.

321

3/885,402,0

301,2

2,2.2,2.1

2,2.32,2216,2 cmkgC x

o

oyA

abCC

.

321

3/885,402,0

301,2

2,2.2,2.1

2,2.32,2216,2 cmkgC y

ZAPATA a

(m)

b

(m)

Azapata

(m2)

ρ

(kg/cm2)

ρ0

(kg/cm2)

C0

(kg/cm3)

Δ

(m-1

)

Cϕx

(kg/cm3)

Cϕy

(kg/cm3)

ESQUI. (Z1) 2,2 2,2 4,84 2,301 0,2 2,6 1 40,885 40,885

EXCEN. (Z2) 1,8 1,8 3,24 2,301 0,2 2,6 1 48,011 48,011

CENTR. (Z3) 2,2 2,2 4,84 2,301 0,2 2,6 1 40,885 40,885

ACKK xyx

mTKK yx /11,9474684,4.19576

ACK zz

mTK z /14,12028384,4.24852

ZAPATA Azapata (m2)

Cx = Cy

(T/m3)

Cz

(T/m3)

Kx = Ky

(T/m)

Kz

(T/m)

ESQUI. (Z1) 4,84 19576 24852 94746,11 120283,14

EXCEN. (Z2) 3,24 22382 28415 72518,28 92064,22

CENTR. (Z3) 4,84 19576 24852 94746,11 120283,14

ZAPATA

a

(m)

b

(m)

Azapata

(m2)

ρ

(kg/cm2)

ρ0

(kg/cm2)

D0

(kg/cm3)

C0

(kg/cm3)

Δ ( m

-1)

Cx = Cy

(kg/cm3)

Cz

(kg/cm3)

ESQUI. (Z1) 2,2 2,2 4,84 2,301 0,2 2,048 2,6 1 19,576 24,852

EXCEN. (Z2) 1,8 1,8 3,24 2,301 0,2 2,048 2,6 1 22,382 28,415

CENTR. (Z3) 2,2 2,2 4,84 2,301 0,2 2,048 2,6 1 19,576 24,852

xxx ICK

mTK x /69,7981312

2,2.2,2.40885

3

yyy ICK

mTK y /69,7981312

2,2.2,2.40885

3

ZAPATA a

(m)

b

(m)

Cϕx

(T/m3)

Cϕy

(T/m3)

Kϕx

(T/m)

Kϕy

(T/m)

ESQUI. (Z1) 2,2 2,2 40885 40885 79813,69 79813,69

EXCEN. (Z2) 1,8 1,8 48011 48011 42000,33 42000,33

CENTR. (Z3) 2,2 2,2 40885 40885 79813,69 79813,69

iv. Modelar con el SAP2000 y determinar los 8 primeros periodos de vibración

Abrimos el archivo A.S.E.-Tumbaco-Espectral

Ahora guardamos el archivo con el nombre A.S.E.-Tumbaco-Barkan-Espectral

E ingresamos los datos necesarios.

1. Eliminar las restricciones de empotramiento en la base.

Marcamos todos los empotramientos.

Hacemos ok y tendremos todos los nudos de restricciones libres.

2. Generar las zapatas.

Las zapatas esquineras y perimetrales están con desplante de 1m más la mitad del espesor de la

Zapata de 60 cm. En Z grid data ingresamos el valor de Z = -1,3.

Hacemos ok dos veces.

Las zapatas centradas están con desplante de 1m más la mitad del espesor de la Zapata de 80 cm. En

Z grid data ingresamos el valor de Z = -1,4.

Hacemos ok dos veces.

Para las zapatas centradas se tendrán zapatas de 2,2m x 2,2m

Se van a crear nuevas grillas de X = 1,1, X = -1,1 y en Y = 1,1, Y = -1,1 para crear las zapatas

cuadradas de 2,2m.

Hacemos ok dos veces.

Ahora vamos dibujar las zapatas

escogemos la opción Draw Rectangular Area, marcamos dos nudos opuestos y tendremos dibujados

la zapata como se muestra en la figura.

Marcamos el elemento shell y vamos dividir en cuatro regiones.

Hacemos ok y tendremos la siguiente figura.

Ahora procedemos a dibujar las dos zapatas centradas que faltan siguiendo el siguiente

procedimiento.

Hacemos Ok.

Hacemos ok.

Una vez dibujados las zapatas centradas, ahora vamos a proceder a dibujar las columnas esquineras.

creamos nuevas grillas en X = -6,1, X = -3,9, Y = -6,9, Y = -9,1 para poder dibujar las zapatas

cuadradas de 2,2m x 2,2m.

Hacemos ok dos veces.

Bajamos al nivel Z = -1,3 para dibujar las zapatas esquineras, creamos el elemento shell para la

zapata esquinera y después dividimos para cuatro regiones como se hizo con las zapatas centradas.

Ahora vamos a dibujar las tres zapatas esquineras que faltan.

Siguiendo el siguiente procedimiento.

Para dibujar la zapata del eje A5 que se encuentra ubicado a 16 mts de la zapata A1, en dy = 16.

Hacemos ok y tendremos dibujado la zapata del eje A5.

Para dibujar las zapatas del eje C5 y C1 replicamos las zapatas A1 y A5 hasta la distancia de 10 mts

en dx = 10.

Hacemos Ok y tendremos dibujados todas las columnas esquineras.

Para las zapatas perimetrales tendremos X= - 5,9, X = -4,1, Y = -3,1, Y = -4,9.

Hacemos ok dos veces y tendremos las nuevas rejillas para las zapatas perimetrales.

Dibujamos la zapata del eje A2 y dividimos el elemento shell como en los pasos anteriores.

Ahora vamos dibujar las zapatas de los ejes A3 y A4.

Procedemos a dibujar las zapatas de los ejes C2, C3 y C4.

Hacemos ok.

Dibujar la zapata B1.

Hacemos ok y tendremos dibujado la zapata B1.

Por último dibujamos la zapata B5.

Hacemos ok y tendremos dibujado la zapata B1.

3. Definir Material.

Las zapatas se van a considerar infinitamente indeformable por eso su modulo de elasticidad es E =

9E8 y el modulo de poisson µ = 0,05.

Hacemos ok dos veces y tenemos definido el material como infinitamente indeformable.

4. Definir secciones.

De las zapatas tanto para las zapatas esquineras, perimetrales, y centradas.

Las zapatas esquineras y perimetrales son de espesor de 60 cm

Las zapatas centradas son de 80 cm

Hacemos ok dos veces y quedan definidas las secciones de las zapatas.

Asignamos las secciones a las zapatas esquineras y perimetrales como se muestran a continuación.

Hacemos ok

Para las zapatas centradas se procede de la misma forma.

Hacemos ok y tendremos asignado las secciones para las zapatas centradas.

5. Asignar masas.

ZAPATA Mt (T.s2/m) Mϕx' (T.s

2.m) Mϕy' (T.s

2.m) Mψz' (T.s

2.m)

ESQUI. (Z1) 0,7105 0,3718 0,3718 0,5731

EXCEN. (Z2) 0,4756 0,1855 0,1855 0,2568

CENTR. (Z3) 0,9473 0,5842 0,5842 0,7641

Marcamos los centroides de las zapatas esquineras, y asignamos sus masas. Como se muestra a

continuación.

Hacemos ok y tendremos definido sus masas.

Para las zapatas perimetrales se procede de la misma forma.

Hacemos ok y tendremos asignados sus masas.

De la misma forma se procede con las zapatas centradas.

Hacemos ok y tendremos asignado sus masas.

6. Coeficiente de Rigidez.

ZAPATA Kx = Ky

(T/m)

Kz

(T/m)

Kϕx

(T/m)

Kϕy

(T/m)

ESQUI. (Z1) 94746,11 120283,14 79813,69 79813,69

EXCEN. (Z2) 72518,28 92064,22 42000,33 42000,33

CENTR. (Z3) 94746,11 120283,14 79813,69 79813,69

Marcamos los centros de gravedad de las zapatas esquineras e introducimos sus coeficientes de

rigidez.

Hacemos ok, y tenemos asignados sus coeficientes de rigidez para las zapatas esquineras.

De la misma forma se procede para las zapatas perimetrales.

Hacemos Ok.

Para las zapatas céntricas de la misma manera.

Hacemos ok. Y tendremos asignados todos los coeficientes de rigidez.

7. Restringir los centros de gravedad de las zapatas.

Marcamos todos los centros de masas de las zapatas

Restringimos el giro alrededor del eje vertical.

Hacemos ok.

Hacemos click en el centro de masa de la zapata que corresponde al nudo 25 y podemos observar

sus masas, masas rotacionales, coeficientes de rigidez y giro alrededor del eje vertical.

Con todos los datos ingresados procedemos a correr el modelo.

Primer modo.

Segundo modo.

Tercer modo.

Cuarto modo.

Quinto modo.

Sexto modo.

Séptimo modo.

Octavo modo.

MODO PERIODO (Seg)

1 0,96543

2 0,86713

3 0,65101

4 0,27424

5 0,25636

6 0,18580

7 0,12890

8 0,12683

v. Efectuar el control de desplazamientos laterales para ambas direcciones.

Desplazamiento en X.

PISO Dx

(cm)

Altura

(cm) Deriva en X NEC (0,020)

5 24,96 400 0,00813 Si

4 21,71 400 0,01093 Si

3 17,34 400 0,01345 Si

2 11,96 400 0,01465 Si

1 6,1 500 0,01220 Si

Desplazamiento en Y.

PISO Dy

(cm)

Altura

(cm) Deriva en Y NEC (0,020)

5 19,75 400 0,0056 Si

4 17,52 400 0,0080 Si

3 14,32 400 0,0103 Si

2 10,19 400 0,0118 Si

1 5,47 500 0,0109 Si

La estructura es estable en las dos direcciones.

vi. Determinar las fuerzas internas máximas, indicando los elementos en los cuales surgen

dichas fuerzas internas.

Fuerza Axial Máximo debido al Sismo X.

Fuerza Axial Máximo debido al Sismo Y.

Fuerza Cortante Máximo debido al Sismo X.

Momento Máximo debido al Sismo X.

Fuerza Cortante Máximo debido al Sismo Y.

Momento Máximo debido al Sismo Y.

Desplazamiento

y fuerza interna

Barkan D.D.

(Sismo X+)

Barkan D.D.

(Sismo Y+)

Xmax (Edificio) 24,96cm -

Ymax (Edificio) - 19,75cm

Nmax 40,73T 44,98T

Vmax 18,17T 17,43T

Mmax 81,14T-m 70,67T-m

vii. Comparar los resultados obtenidos del análisis sísmico estático, del análisis dinámico

espectral y la Interacción suelo-estructura.

Desplazamiento

y fuerza interna

Estático

(Sismo X+)

Estático

(Sismo Y+)

Espectral

(Sismo X+)

Espectral

(Sismo Y+)

Barkan D.D.

(Sismo X+)

Barkan D.D.

(Sismo Y+)

Xmax (Edificio) 30,92cm - 23,2cm - 24,96cm

Ymax (Edificio) - 24,43cm - 18,42cm - 19,75cm

Nmax 49,02T 75,10T 40,88T 36,88T 40,73T 44,98T

Vmax 28,05T 26,76T 22,73T 22,92T 18,17T 17,43T

Mmax 145,43T-m 126,16T-m 114,05T-m 105,54T-m 81,14T-m 70,67T-m

viii. Comparar los periodos y desplazamientos obtenidos del análisis sísmico estático, del

análisis dinámico espectral, y la Interacción suelo-estructura.

PISO DESPLAZAMIENTO EN X (cm) DESPLAZAMIENTO EN Y (cm)

Estático Espectral Barkan D.D. Estático Espectral Barkan D.D.

1 5,61 4,36 6,1 5,05 3,96 5,47

2 13,04 9,99 11,96 11,1 8,59 10,19

3 20,37 15,43 17,34 16,77 12,82 14,32

4 26,45 19,89 21,71 21,3 16,14 17,52

5 30,92 23,2 24,96 24,43 18,42 19,75

1 2 3 4 5

Estático 5,61 13,04 20,37 26,45 30,92

Espectral 4,36 9,99 15,43 19,89 23,2

Barkan D.D. 6,1 11,96 17,34 21,71 24,96

0

5

10

15

20

25

30

35

DE

SP

LA

ZA

MIE

NT

O (

cm

)

DESPLAZAMIENTO EN X

1 2 3 4 5

Estático 5,05 11,1 16,77 21,3 24,43

Espectral 3,96 8,59 12,82 16,14 18,42

Barkan D.D. 5,47 10,19 14,32 17,52 19,75

0

5

10

15

20

25

30

DE

SP

LA

ZA

MIE

NT

O (

cm

)

DESPLAZAMIENTO EN Y

MODO PERIODO (seg)

Espectral Barkan D.D.

1 0,88997 0,96543

2 0,79923 0,86713

3 0,59424 0,65101

4 0,25429 0,27424

5 0,23857 0,25636

6 0,16975 0,1858

7 0,12083 0,1289

8 0,11974 0,12683

ANALISIS COMPARATIVO

Como se podrá apreciar, el efecto de interacción suelo-estructura incrementa los períodos de

vibración y los desplazamientos laterales, haciendo más exigente el control de derivas de entrepisos.

Esto se debe, a que el cimiento se desplaza lateralmente, verticalmente y gira alrededor de sus ejes.

Respecto a las fuerzas internas, el efecto de interacción suelo-estructura reduce en ambas

direcciones la fuerza axial, fuerza cortante y momento flector. Esto se debe, a que la cimentación

absorbe parte de la energía del sismo y transmite una menor cantidad a ser disipada por la

superestructura.

Un comentario especial merece el caso del momento flector, considerando la interacción suelo-

estructura, porque en ambas direcciones los valores máximos surgen en la conexión columna-viga,

lo que nos hace pensar que para este edificio será necesario efectuar un análisis adicional de posible

aparición de rótula plástica en dicha zona, debido a su concentración de esfuerzos.

1 2 3 4 5 6 7 8

Espectral 0,88997 0,79923 0,59424 0,25429 0,23857 0,16975 0,12083 0,11974

Barkan D.D. 0,96543 0,86713 0,65101 0,27424 0,25636 0,1858 0,1289 0,12683

0

0,2

0,4

0,6

0,8

1

1,2

PE

RIO

DO

(se

g)

PERIODO (Seg)

top related