estadistica descriptiva upc

Post on 07-Jan-2017

402 Views

Category:

Economy & Finance

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Universidad Peruana de Ciencias Aplicadas

Estadística Descriptiva MA460 201601 Las profesoras y los profesores del curso

Temario La Estadística y sus subdivisiones.

Definiciones de población, muestra, variables, clasificación de variables, parámetros y estadísticos.

Métodos de organización y presentación de datos:

• Datos cualitativos

• Datos cuantitativos

• Tablas de distribución de frecuencias y representaciones gráficas (circular, barras, Pareto)

• Tablas de doble entrada

Al finalizar la unidad 1,

el estudiante interpreta con rigurosidad tablas y gráficos,

con ayuda del programa MS Excel 2010.

Logro de la unidad 1

Unidad 1: Organización de datos

4 Estadística Descriptiva 201601

Notas importantes

1.1. Definición de Estadística

Es la ciencia que proporciona un conjunto de métodos, técnicas y procedimientos para recopilar, organizar, presentar y analizar datos con el fin de describirlos o realizar gene-ralizaciones válidas.

Subdivisión de la Estadística

La Estadística se puede dividir en Estadística descriptiva y Estadística inferencial.

Ejercicio 1

Según la encuesta nacional realizada por la encuestadora CPI publicada el 18 de marzo del 2016, la intención de voto para las próximas elecciones es la siguiente:

La encuesta fue realizada del viernes 11 al lunes 14 de mar-zo de 2016 tuvo una muestra de 1200 casos y cuenta con un margen de error +/- 2,83%. Indique si, estas afirmaciones son afirmaciones de tipo des-criptiva o Inferencial.

Recolección Organización Presentación Análisis

Estadística descriptiva

Son métodos y técnicas de recolección, caracterización, resumen y presentación que permiten describir apropiadamente las características de un conjunto de datos.

Comprende el uso de gráficos, tablas, diagramas y criterios para el análisis.

Estadística inferencial

Son métodos y técnicas que hacen posible estimar una o más características de una población o tomar decisiones sobre población basadas en el resultado de muestras.

Estas conclusiones no son totalmente válidas y tienen cierto margen de error.

Unidad 1. Organización de Datos 5

Notas importantes

1.2. Definiciones

Unidad elemental, variables y observación

Ejemplo 1

Dato

Es el resultado de medir una característica observable de una unidad elemental.

Caso Aerolínea Wayra

Aerolínea Wayra S.A es una empresa peruana de transporte aéreo con vuelos nacionales e internacionales, ofrece un servicio alta calidad a sus pasajeros y busca mejorar conti-nuamente la eficiencia de sus operaciones, valorando el empeño diario de su personal.

Actualmente, la flota de la empresa está constituida por cuatro aviones Boeing, que brindan una gran capacidad de empuje y autonomía. Sus aviones han sido remodelados en su interior. Juan, gerente de la compañía, desea determinar si las remodelaciones en la flota han servido para brindar un mejor servicio a los usuarios. Por esta razón, le ha encargado a su asistente Felipe que realice un estudio.

Indique la unidad elemental en la investigación que hizo Felipe, dos variables que segu-ramente preguntó y una posible observación.

Unidad elemental es la entidad

acerca de la cual se reúne los datos

Variables son las características de

interés de las unidades

elementales

Observación es el conjunto de mediciones

obtenido de una unidad elemental

particular

A una persona (Unidad

elemental)

se le pregunta su género y edad.

(Variables)

Ella responde: “Soy mujer y tengo

19 años” (Observación)

(Unidad elemental) (Variables) (Observación)

6 Estadística Descriptiva 201601

Notas importantes

Población y muestra

Ejemplo 2

La Secretaría Académica de una universidad está interesada en realizar un estudio sobre los motivos por los cuales algunos alumnos del pregrado han decidido dar exámenes de recuperación ese ciclo. La universidad cuenta con quince facultades y un total de 7500 alumnos, de los cuales 830 han decidido rendir exámenes de recuperación ese ciclo. De la población se va a entrevistar a una muestra aleatoria de 200 alumnos. Defina la po-blación y la muestra

Solución

Ejercicio 2

El objetivo de una investigación es estimar la estatura media de los peruanos de 18 años. Indique la población y la muestra.

Población

Población es el conjunto de todos las unidades elementales de interés en determinado estudio.

Es un conjunto de personas, objetos, conceptos, etc. de los cuales se sacan conclusiones a partir de una o más características observables de naturaleza cualitativa o cuantitativa.

Muestra

Muestra es un subconjunto de la población.

Será representativa si se parece a la población de la que proviene.

Población

Los 830 alumnos que han decidido dar exámenes de recuperación ese ciclo.

Muestra

Los 200 alumnos que han decidido dar exámenes de recuperación ese ciclo.

Población

......................................................................

......................................................................

......................................................................

Muestra

.....................................................................

.....................................................................

Unidad 1. Organización de Datos 7

Notas importantes

Caso Aerolínea Wayra

Actualmente, la flota de la empresa está constituida por aviones Boeing, que brindan una gran capacidad de empuje y autonomía. Sus aviones han sido remodelados en su in-terior.

Juan, gerente de la compañía, desea determinar si las remodelaciones en la flota han servido para que los pasajeros mejoren su percepción acerca del servicio. Por esta razón, le ha encargado a su asistente Felipe que realice un estudio. Indique la población y la muestra de dicha investigación.

Además, Juan quiere determinar el porcentaje de vuelos que salen sin retraso, con el fin de ver si es necesario establecer políticas de mejora. Indique la población y la muestra de dicha investigación.

Por otro lado, Juan quiere determinar la media del número mensual de pasajeros de la aerolínea Wayra. Indique la población y la muestra de dicha investigación.

Población

......................................................................

......................................................................

......................................................................

Muestra

.....................................................................

.....................................................................

Población

......................................................................

......................................................................

......................................................................

Muestra

.....................................................................

.....................................................................

Población

......................................................................

......................................................................

......................................................................

Muestra

.....................................................................

.....................................................................

8 Estadística Descriptiva 201601

Notas importantes

Escalas de medición de las variables

Son los tipos de valores asignados a las unidades elementales para una variable definida.

La escala de medición permite determinar la cantidad de información que contienen los datos y el análisis estadístico más apropiado.

Escalas de medición

Nominal Ordinal Intervalo Razón

Nominal •Una variable está medida en escala nominal cuando los datos son etiquetas que se emplean para definir un atributo del elemento.

Ordinal

•Una variable está medida en escala ordinal cuando los datos son etiquetas y el orden es significativo.

•Se pueden ordenar, de tal manera que puedan expresar grados de la característica medida.

•No tiene sentido medir la distancia entre los valores de la variable ni realizar operaciones aritméticas con ellos pues no toman valores numéricos específicos ni existe proporcionalidad entre categorías vecinas.

Intervalo

•Una variable está medida en escala de intervalo si los datos tienen propiedades de datos ordinales y el intervalo entre observaciones se expresa en términos de una unidad fija de medida.

•Los datos de intervalo siempre son numéricos.

•El cero es relativo, es decir, no indica la ausencia de la característica medida.

Razón

•Una variable está medida en escala de razón si los datos tienen todas las propiedades de los datos de intervalo y se puede realizar cualquier operación aritmética (suma, resta, multiplicación y división) y lógica (comparación y ordenamiento).

•El cero es absoluto, es decir, indica la ausencia total de la característica medida.

Unidad 1. Organización de Datos 9

Notas importantes

Ejemplo 3

Caso Aerolínea Wayra

Se realizó una encuesta a una muestra de 150 pasajeros de la aerolínea. Algunas de las variables fueron las siguientes. Indique la escala de medición de cada variable.

Variable Nominal Ordinal Intervalo Razón

Edad del pasajero, en años

Género del pasajero

Nacionalidad del pasajero

Número de pasaporte

Opinión respecto al servicio: malo regular, bueno, muy bueno

Ciudad de destino del viaje

Altura sobre el nivel del mar de la ciudad de destino del viaje

Número de viajes al mes del pasa-jero en la aerolínea Wayra

Precio del pasaje

Número de asiento (1A, 1B,…)

Peso del equipaje de mano, en kilogramos

Nominal •El género de las personas

•El estado civil de los empleados de una empresa

•Las carreras profesionales universitarias

Ordinal •El orden de mérito de los atletas en una competición

•El grado de instrucción de los clientes de un banco

Intervalo •Las escalas de temperatura. Las temperaturas en grados centígrados 0ºC, y 20ºC equivalen a, en grados Fahrenheit, 32ºF, y 68ºF

Razón •El sueldo de los empleados de una empresa

•El tiempo en terminar un examen

10 Estadística Descriptiva 201601

Notas importantes

Tipos de variables según su naturaleza

Las variables se pueden clasificar en cualitativas o cuantitativas.

Ejemplo 4

Variables Tipo de variable Escala de medición

Marca de computadora personal que utiliza Cualitativa Nominal

Tiempo que usa la computadora por semana Cuantitativa continua Razón

Número de perros en una casa Cuantitativa discreta Razón

Número de granos de arena en una gran playa Cuantitativa discreta Razón

Caso Aerolínea Wayra

Se tienen otras variables como las siguientes. Indique su escala de medición y tipo.

Variable Tipo de variable Escala de medición

Número de maletas del pasajero en un vuelo

Tiempo de retraso del último vuelo, en horas.

Tipo de boleto (Primera, business, económica)

Razón de elección de la aerolínea Wayra

Variable

cualitativa

Es una variable que puede ser expresada en escala nominal u

ordinal.

Variable

cuantitativa

Es una variable que puede ser medida en escala de intervalo o

de razón.

A su vez, la variable cuantitativa se

clasifica en discreta o continua.

Variable discreta

Tiene un número finito o infinito numerable de posibles valores; es

decir, que en un intervalo solo puede tomar ciertos valores.

Variable continua

Tiene un número infinito no numerable de posibles valores; es decir, que en un intervalo puede

tomar cualquier valor.

Unidad 1. Organización de Datos 11

Notas importantes

Parámetro y estadístico

Ejemplo 5

En un estudio entre alumnos de la UPC, se registró la edad de todos los alumnos de la UPC. La media de la edad fue de 19,3 años. Además, de una muestra de aleatoria de 300 alumnos se encontró que el 12% trabaja. Indique lo siguiente.

Medida de resumen Variable Valor Parámetro o estadístico

Media Edad 19,3 años Parámetro

Porcentaje Condición de trabajo 12% Estadístico

Ejercicio 3

El objetivo de una investigación es estimar el sueldo promedio de un obrero en la ciudad de Lima. En una muestra aleatoria, se encontró una media de 1650 soles. Indique lo si-guiente.

Población: …………………….……………………………………………………………………………………………….

Medida de resumen Variable Valor Parámetro o estadístico

Caso Aerolínea Wayra

En una muestra de 150 pasajeros se encontró que el 55% de los pasajeros considera que el menú de a bordo de la aerolínea Wayra es regular. Indique lo siguiente.

Medida de resumen Variable Valor Parámetro o estadístico

Usando el registro del aeropuerto Jorge Chávez, se encontró que la media del tiempo de retraso de todos los vuelos de la aerolínea Wayra fue 32 minutos. Indique lo siguiente.

Medida de resumen Variable Valor Parámetro o estadístico

•Es cualquier resumen de la población. Parámetro

•Es cualquier resumen de la muestra. Estadístico

12 Estadística Descriptiva 201601

Notas importantes

Estudios estadísticos

Los datos se obtienen mediante la realización de un estudio estadístico. A esos estudios se les clasifica como experimentales u observacionales.

Ejercicio 5

Indique a qué tipo de estudio, experimental u observacional, corresponden los siguien-tes ejemplos.

Tomado de http://elcomercio.pe/economia/peru/turistas-gastan-nuestra-gastronomia-us350-millones

Actualizado el 27 de julio de 2015 a: 03:54 p.m. Por: AFP

Estudio clínico confirma eficacia de vacuna contra el dengue La vacuna contra el dengue del laboratorio Sanofi es eficaz en más de 80% de los afectados de es-ta infección tropical transmitida por el mosquito, según un nuevo análisis independiente.

Estudio experimental

•En un estudio experimental, se identifican las variables de interés, las cuales son controladas por el investigador. Luego, se identifican otras variables que influyan en las variables de interés.

Estudio observacional

•En un estudio observacional, no se trata de controlar las variables de interés, ni de influir sobre ellas, por ejemplo, en una encuesta.

Unidad 1. Organización de Datos 13

Notas importantes

Errores en la adquisición de datos

Un error en adquisición de datos se presenta cuando el valor obtenido de los datos no es igual al valor real que se hubiera obtenido con un procedimiento correcto.

Se debe comprobar la consistencia interna de los datos.

También se analiza la existencia de valores demasiado grandes o demasiado pequeños, conocidos atípicos, que son datos candidatos a posibles errores.

Fuentes de datos

Los siguientes sitios web son ejemplos donde conseguir datos de fuente secundaria.

Fuentes públicas: bases de datos de ministerios y de oficinas gubernamentales de esta-dística, como por ejemplo.

Instituto Nacional de Estadística e Informática www.inei.gob.pe

Banco Central de Reserva del Perú www.bcrp.gob.pe/

Ministerio de Salud del Perú www.minsa.gob.pe

Fuentes privadas: bases de datos de las empresas, bases de datos que se compran a empresas de estudios de mercado, bases de datos en Internet, como por ejemplo.

Datum Perú www.datum.com.pe/

Ipsos Apoyo. Opinión y Mercado www.ipsos-apoyo.com.pe/

Instituto de Opinión Pública PUCP www.pucp.edu.pe/iop/

Caso Aerolínea Wayra

Luego de la encuesta realizada por Felipe se tiene una base de datos. Parte de los resul-tados se muestra en la siguiente tabla:

Pasajero Edad Género Nacionalidad Motivo de viaje Destino Número de

viajes realizados Precio

pagado Queja

1 20 M Peruana Negocios México DF 1 $899,00 Desinformación

2 43 M Chileno Turismo Cuzco 2 $399,00 Precio

…..

¿Qué podemos hacer para resumir esta información?

Fuentes primarias

•Los datos se obtienen por medio de encuestas y estudios experimentales realizados con el objeto de recolectar nuevos datos.

Fuentes secundarias

•Los datos se han compilado y están disponibles para el análisis estadístico.

14 Estadística Descriptiva 201601

Notas importantes

1.3. Estadística Descriptiva

Frecuencias absolutas, relativas y porcentuales

Se tiene que:

n

f

casosdenúmero

absolutafrecuenciahrelativafrecuencia i

i

%100%100% n

f

casosdenúmero

absolutafrecuenciahpporcentualfrecuencia i

ii

Distribución de frecuencias

Es un resumen, expresado en un cuadro, de un conjunto de datos que muestra las fre-cuencias absolutas, relativas y porcentuales en cada una de varias clases que no se tras-lapan.

Título: ……………………………………………………………………………………

Categorías Frecuencia absoluta fi Frecuencia relativa hi Frecuencia porcentual pi = hi%

Categoría 1 f1 11

fh

n %1001

1 n

fp

Categoría 2 f2 22

fh

n %1002

2 n

fp

… … … …

Categoría k fk k

k

fh

n %100

n

fp k

k

Fuente: ………………………

Es usual, usar en estos cuadros la frecuencia relativa en el ámbito académico y la fre-cuencia porcentual fuera del ámbito académico.

Frecuencia absoluta (fi)

•de una clase es la cantidad de elementos que pertenecen a esa clase

Frecuencia relativa (hi)

•de una clase es la proporción de elementos que pertenecen a esa clase

Frecuencia porcentual (pi)

•de una clase es la frecuencia relativa multiplicada por 100%

Unidad 1. Organización de Datos 15

Notas importantes

Elementos de un cuadro estadístico

Ejemplo 6

3.1 PERÚ. POBLACIÓN TOTAL, CENSADA Y OMITIDA, SEGÚN CENSOS

REALIZADOS, 1940, 1961, 1972, 1981, 1993, 2005 Y 2007

Año Población

Total Censada Omitida

1940 7,023,111 6,207,967 815,144

1961 10,420,357 9,906,746 513,611

1972 14,121,564 13,538,208 583,356

1981 17,762,231 17,005,210 757,021

1993 22,639,443 22,048,356 591,087

2005 a/ 27,219,264 26,152,265 1,066,999

2007 28,220,764 27,412,157 b/ 808,607

a/ Censo de Derecho o De Jure. Se recopiló información de la población en su lugar de residencia. b/ No incluye la población del distrito de Carmen Alto, provincia Hua-manga, departamento Ayacucho. Autoridades locales no permitieron la ejecución de los Censos. Fuente: Instituto Nacional de Estadística e Informática (INEI) - Censos Nacionales de Población y Vivienda, 1940, 1961, 1972, 1981, 1993, 2005 y 2007.

16 Estadística Descriptiva 201601

Notas importantes

1.4. Distribución de frecuencias de variables cualitativas

Título: ………………………………………………..………………………

Categorías Frecuencia absoluta fi Frecuencia relativa hi

Categoría 1 f1 11

fh

n

Categoría 2 f2 22

fh

n

… … …

Categoría k fk k

k

fh

n

Fuente: ………………………

Ejercicio 6

En los Censos Nacionales 2007 ejecutados por el INEI se preguntó a todos los peruanos el idioma o lengua con el que aprendió hablar, obteniéndose los siguientes resultados.

Perú. Distribución de peruanos según idioma o lengua con el que aprendió hablar. 2007

Idioma o lengua con que aprendió a hablar Frecuencia absoluta fi Frecuencia relativa hi

Castellano 21 713 165

Quechua 3 360 331

Aymará 443 248

Otra lengua nativa 174 410 0,0068

Asháninka 67 724 0,0026

Es sordomudo 30 019 0,0012

Idioma extranjero 21 434 0,0008

Total 25 810 331 1,0000

Fuente ………………………………………………………………………………………….

Indique e interprete el valor de f2.

Indique e interprete el valor de h1%.

Indique el número de peruanos que aprendieron a hablar en una lengua diferente al cas-tellano.

Indique el porcentaje de peruanos que aprendieron a hablar en aymará.

Unidad 1. Organización de Datos 17

Notas importantes

1.5. Gráficos

“Un gráfico puede valer más que mil palabras,

pero puede tomar muchas palabras para hacerlo”

John Wilder Tukey (1915-2000)

Gran estadístico del siglo XX, con gran influencia en la visualización de información

William Playfair (1759-1823), economista e ingeniero escocés es considerado el pionero de la estadística gráfica. Fue el creador del gráfico circular, de sectores y de barras. Los principios de su trabajo fueron los siguientes:

Recomendaciones sobre la presentación de gráficos

Descripción del diagrama

El método gráfico es una forma de

simplificar lo tedioso y lo

complejo

Las personas ocupadas

necesitan ayuda visual

Un gráfico es más accesible que una

tabla

El método gráfico ayuda al cerebro, ya que permite

entender y memorizar mejor.

El título del gráfico siempre debe ser indicado.

En los ejes, siempre se debe indicar explícitamente las variables que se está

representando y las respectivas unidades.

Las fuentes de donde se obtuvieron los datos que permitieron su construcción, así como quiénes o qué entidad elaboró el diagrama y cualquier otra información se

debe indicar siempre que sea relevante.

18 Estadística Descriptiva 201601

Notas importantes

Elección de la base de comparación

Uso adecuado de la escala de los ejes

Eliminación de ruido

Uso del punto inicial del eje vertical

Si se va a representar gráficamente los datos de solo

una muestra, el mismo diagrama sirve para representar las

frecuencias absolutas y relativas.

Si se va a comparar el comportamiento de una variable en dos o más poblaciones distintas, pero

solo se tiene muestras representativas de las poblaciones, entonces es conveniente usar la

frecuencia relativa.

Si se va a comparar el comportamiento de una variable en dos o más poblaciones y se tiene los datos de las poblaciones, entonces

se puede realizar la comparación por separado de las frecuencias absolutas y de

las relativas.

Si bien es totalmente factible comparar gráficamente dos o más series de datos que han sido agrupados en intervalos

distintos en amplitud y límites, es preferible para facilitar la comparación que todas las series de datos utilicen los

mismos intervalos.

La escala utilizada en los ejes debe mantenerse. El cambio de proporciones

distorsiona el propósito de usar gráficos, el cual

consiste en ver rápidamente la proporción

con que se está distribuyendo la variable.

Si se ha utilizado una escala especial en alguno de los

ejes del diagrama, por ejemplo, escala logarítmica,

esta se debe indicar.

Debe hacer que los valores de la variable abarquen

adecuadamente la longitud de cada eje.

Los excesivos adornos y la inclusión de figuras, muchas veces, en lugar de

aclarar más los diagramas, terminan confundiendo o dificultando su rápida

comprensión.

El uso de algunas figuras en lugar de barras o columnas puede distorsionar visualmente la real proporción de las

magnitudes que se están representando.

El punto de inicio del eje vertical debe empezar con un cero para no

distorsionar la impresión visual respecto de la magnitud.

El cambio de punto de inicio distinto de cero debe estar completamente

justificado.

Unidad 1. Organización de Datos 19

Notas importantes

Gráfico de barras

Es una forma de representar datos cualitativos resumidos en una distribución de fre-cuencias.

En uno de los ejes, se representan las categorías o clases de la variable; para el otro eje, se puede usar una escala de frecuencias absolutas, relativas o porcentuales. Se traza una barra sobre cada indicador de clase de una altura proporcional a la frecuencia corres-pondiente.

Las barras deben estar separadas para enfatizar el hecho de que cada clase es diferente de otra.

Diagrama circular

Cuando se utiliza el gráfico circular, también llamado pastel, cada sector circular repre-senta la frecuencia observada de una clase o categoría.

El sector circular que representa a una determinada clase de la variable tiene un ángulo en el centro proporcional a la frecuencia relativa de dicha clase. El ángulo que le corres-ponde a cada clase se obtiene multiplicando 360º por la respectiva frecuencia relativa.

20 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo: Determinar la composición porcentual de los usuarios según motivo de viaje

Felipe realizó una encuesta a una muestra de 150 pasajeros de la aerolínea, en base a la siguiente información complete la siguiente gráfica.

Complete los siguientes enunciados.

- El motivo de viaje menos frecuente es ______________ por tener el ________ %.

- Para hallar el ángulo en un diagrama circular se multiplica la frecuencia ____________________ por 360° que tiene la circunferencia.

- Son _______ el total de pasajeros cuyo motivo de viaje fue estudios o trabajo.

Frecuencias acumuladas, absolutas relativas y porcentuales

Se tiene que:

ii

frecuencia absoluta acumulada Ffrecuencia relativa acumulada H

número de datos n

100% 100%ii

frecuencia absoluta acumulada Ffrecuencia porcentual acumulada P

número de datos n

20%

34%

10%

20%

10%

0%

5%

10%

15%

20%

25%

30%

35%

40%

CompetenciaDeportiva

Estudios Retorno a casa Trabajo Turismo Visita Familiar

______________________

Título: _________________________________________

Fuente:_________

Frecuencia acumulada absoluta (Fi)

•de una clase es la cantidad de elementos que pertenecen hasta esa clase

Frecuencia acumulada relativa (Hi)

•de una clase es la proporción de elementos que pertenecen hasta esa clase

Frecuencia acumulada porcentual (Pi)

•de una clase es la frecuencia acumulada relativa multiplicada por 100%

Unidad 1. Organización de Datos 21

Notas importantes

“pocos factores son vitales y muchos son triviales”.

lo que se podría

resumir como

pocos factores pueden

producir la mayoría de las consecuencias,

El diagrama de Pareto permite

ver que, en muchos casos,

Diagrama de Pareto

El diagrama de Pareto, también llamado curva 80%-20%, es una gráfica para organizar datos de forma que queden en orden descendente, de izquierda a derecha.

Permite asignar un orden de prioridades, afirmando que en todo grupo de factores que contribuyen a un mismo efecto, unos po-cos son responsables de la mayor parte de dicho efecto.

Por ejemplo, en control de calidad, se puede mostrar que la mayoría de los defectos surgen de un número pe-queño de causas.

En 1909 el economista y sociólogo Vilfredo Pareto (1848 – 1923) publicó su estudio sobre la riqueza: “El 80% de la riqueza se concentra en el 20% de la población”.

En base al principio de Pareto, el diagrama fue creado por el estadístico Joseph Juran (1904 – 2008) para sus trabajos sobre control de calidad. La curva de la frecuencia acu-mulada fue agregada por el economista Max Lorenz (1876 – 1959).

Los pasos para realizar un gráfico de Pareto son los siguientes:

Construya la distribución de frecuencias, ordenando las categorías en forma descendente respecto de la

frecuencia.

La categoría “Otros” es colocada en la última posición. No importa cuán

grande sea.

Dibuje dos ejes verticales y uno horizontal.

En el eje vertical derecho, marque este eje con una escala de 0% a 100%.

En el eje vertical izquierdo, marque una escala de 0 hasta el número total de observaciones o de 0% a 100%.

En el eje horizontal: marque los espacios donde estarán dibujadas las

barras para cada una de las categorías, incluida la categoría “Otros”.

Elabore el diagrama de barras y dibuje la línea de frecuencias acumuladas

(Curva de Pareto)

22 Estadística Descriptiva 201601

Notas importantes

Ejemplo 7

El gerente de producción de una empresa, que produce asientos de fibra de vidrio, quie-re identificar los problemas más frecuentes reportados en la fabricación de este produc-to, y planear soluciones de acuerdo con la recurrencia del problema. Al extraer una muestra aleatoria de productos fallados, obtuvo los siguientes resultados:

Distribución de productos según problemas reportados de asientos de fibra de vidrio

Tipo de problema reportado Número de ocurrencias (fi)

Color inadecuado 28

Forma no simétrica 16

Medidas fuera de norma 50

Superficie rugosa 71

Bordes afilados 9

Desprendimiento de capa protectora 12

Otros 14 Fuente: Gerencia de Producción

Elabore el diagrama de Pareto.

Solución

Lo primero es ordenar los datos en orden descendente a la frecuencia fi. La categoría Otros va al final. Luego, se calcula las frecuencias relativas y las relativas acumuladas.

Distribución de productos según problemas reportados de asientos de fibra de vidrio

Tipo de problema reportado fi hi Fi Hi

Superficie rugosa 71 0,355 71 0,355

Medidas fuera de norma 50 0,250 121 0,605

Color inadecuado 28 0,140 149 0,745

Forma no simétrica 16 0,080 165 0,825

Desprendimiento de capa protectora 12 0,060 177 0,885

Bordes afilados 9 0,045 186 0,930

Otros 14 0,070 200 1,000 Fuente: Gerencia de Producción

Se puede realizar el gráfico usando las frecuencias relativas hi y las frecuencias relativas acumuladas Hi.

Distribución de productos según problemas reportados de asientos de fibra de vidrio

Unidad 1. Organización de Datos 23

Notas importantes

Caso Aerolínea Wayra

Objetivo: Identificar las principales quejas de los pasajeros sobre el servicio que brinda la aerolínea.

Teniendo en cuenta la siguiente información, elabore el diagrama de Pareto:

Distribución de pasajeros según principal queja del servicio de la aerolínea

Principal queja fi

Impuntualidad 10

La comida no es buena 60

Mala información 19

Mucho tiempo en cola 51

Otros 7

Personal poco amable 3

Fuente: Wayra S.A

Construya la tabla completa para realizar un diagrama de Pareto.

Distribución de pasajeros según principal queja del servicio de la aerolínea

Principal queja fi hi Fi Hi

Fuente: Wayra S.A

Construya el gráfico completo y realice una conclusión al respecto.

24 Estadística Descriptiva 201601

Notas importantes

1.6. Tabulaciones cruzadas

También llamadas tablas de contingencia o de doble entrada. Se usan para resumir de manera simultánea los datos para dos variables.

Ejercicio 7

En los Censos Nacionales 2007 ejecutados por el Instituto Nacional de Estadística e In-formática se preguntó a las peruanas de 12 a más años por la cantidad de hijos que han tenido vivos, obteniéndose los siguientes resultados.

Perú. Distribución de madres según edad de la madre y número de hijos nacidos vivos

Número total de hijos/a que ha tenido nacidos vivos

Edad de la madre Cero hijos Un hijo Dos hijos Tres hijos Cuatro hijos Total

12 años 298,985 1,028 300,013

13 años 284,650 1,162 285,812

14 años 285,732 1,638 734 288,104

15 años 283,045 4,909 994 288,948

16 años 247,888 12,358 922 576 261,744

17 años 231,839 24,243 2,280 636 258,998

18 años 216,999 38,938 5,089 586 481 262,093

19 años 193,952 52,797 9,273 1,118 496 257,636

Total 2,043,090 137,073 19,292 2,916 977 2,203,348

Fuente: INEI - Censos Nacionales 2007: XI de Población y VI de Vivienda

Rellene los espacios en blanco.

El número de peruanas menores de 16 años que han tenido hijos es …………………

El ………….…….% de las mujeres peruanas de 18 años ha tenido hijos.

Gráfico de barras agrupadas

Un gráfico de barras agrupadas muestra todas las series en una sola barra por cada ca-tegoría. El alto de cada barra es proporcional a la frecuencia de cada categoría.

Unidad 1. Organización de Datos 25

Notas importantes

Gráfico de barras apiladas

Un gráfico de barras apiladas muestra todas las series apiladas en una sola barra para cada categoría. El alto de cada barra es proporcional a la frecuencia de cada categoría.

Gráfico de barras apiladas al 100%

Un gráfico de barras apiladas 100% muestra todas las series apiladas en una sola barra para cada categoría. El alto de cada barra es el mismo para cada categoría.

26 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo: Identificar el porcentaje de pasajeros que siendo de nacionalidad peruana via-jan al extranjero y porcentaje de pasajeros que siendo de nacionalidad extranjera viajan al interior de nuestro país.

A continuación, se muestra la información de una tabla de contingencia y un gráfico in-completo para las variables lugar de destino y nacionalidad.

Distribución de pasajeros según su lugar de destino y nacionalidad

Lugar de destino Nacionalidad

Total Peruana Extranjero

Arequipa 8 8 16

Cuzco 15 20 35

Miami 20 10 30

México D.F 22 10 32

Piura 2 7 9

Río de Janeiro 23 5 28

Total 90 60 150

Fuente: Wayra S.A

Complete todos los elementos del siguiente gráfico.

Distribución de pasajeros según su lugar de destino y nacionalidad

Usando la información pertinente, de respuesta al objetivo propuesto

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Arequipa Cuzco Miami México D.F Piura Río deJaneiro

Peruano

Extranjero

Unidad 1. Organización de Datos 27

Notas importantes

Complete todos los elementos del siguiente gráfico.

Complete todos los elementos del siguiente gráfico.

50.0%

33.3% 31.3%

77.8%

17.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Arequipa Cuzco Miami MéxicoD.F

Piura Río deJaneiro

Extranjero

Peruana

8.9% 13.3%

16.7%

22.2%

24.4%

2.2%

25.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Peruana Extranjero

Río de Janeiro

Piura

México D.F

Miami

Cuzco

Arequipa

28 Estadística Descriptiva 201601

Notas importantes

1.7. Resumen de datos cuantitativos

Distribución de frecuencias de variables discretas

Es un resumen de un conjunto de datos que consiste en presentar para cada valor de la variable el número de elementos (frecuencia) que la componen. Es un cuadro que se calcula de la siguiente manera.

Título: ……………………………………………………………….……

Valores de la variable discreta

Frecuencia absoluta fi

Frecuencia relativa hi

Frecuencia absolu-ta acumulada Fi

Frecuencia relati-va acumulada Hi

x1 f1 11

fh

n 1 1F f 1 1H h

x2 f2 22

fh

n 2 2 1F f F 2 2 1H h H

… … … … …

xk fk k

k

fh

n 1k k kF f F 1k k kH h H

Fuente: ……………………………..

Gráfico de bastones

En este caso, la variable se ubica en el eje de las abscisas y las frecuencias, absolutas, re-lativas o porcentuales, en el eje ordenado.

576,215

119,642

58,315 18,748 9,908 81 32 22 7

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 1 2 3 4 5 6 7 8 9

me

ro d

e a

lum

no

s

Número de veces que postuló

Distribución de alumnos de pregrado según número de veces que postuló a la universidad donde estudia

Fuente: PERÚ, II Censo Nacional Universitario 2010. INEI

Unidad 1. Organización de Datos 29

Notas importantes

Caso Aerolínea Wayra

Objetivo: Determinar el número de viajes más frecuente realizados por los pasajeros.

Complete los valores de la tabla.

Realice el gráfico de bastones.

Responda al objetivo.

Para Fiestas Patrias, la empresa está dispuesta a realizar una promoción en los pasajes de su aerolínea siempre y cuando el porcentaje de pasajeros que hayan realizado como mínimo cuatro viajes supere el 70%. ¿La empresa debe realizar una promoción en los pasajes para Fiestas Patrias para este grupo de pasajeros?

Título: ……………………………………………………………………………………………………………

Número de viajes Número de pasajeros pi Pi

1 15

2

12%

3

38%

4 30

5

150

Fuente: ……………………………………………….

Número de viajes

30 Estadística Descriptiva 201601

Notas importantes

La regla de Sturges la propuso Herbert

Sturges (1926). La fórmula trata de que el histograma resul-

tante se aproxime a la distribución normal.

Distribución de frecuencias de variables continuas

Es un resumen de un conjunto de datos que consiste en presentar para cada categoría el número de elementos (frecuencia) que la componen.

Los tres pasos necesarios para definir en una distribución de frecuencias con datos cuan-titativos son los siguientes:

Cantidad de clases

Se recomienda usar entre 5 y 20 clases, inclusive.

La idea es emplear suficientes clases para mostrar la varia-ción de los datos, pero no tantas que varias contendrían unos cuantos elementos.

Para determinar el número de clases se usa la regla de Stur-ges. k=1+3,322 log n. Si la estimación tiene decimales, se to-ma el entero más próximo.

Amplitud de cada clase

Se usa el mismo ancho para todas las clases.

Se calcula de la siguiente manera:

rangoAmplitud

k

La amplitud se redondea al número inmediato superior de acuerdo con la cantidad de decimales que tienen los datos o según la precisión con que se desea trabajar.

Límites de cada clase

Los límites de clase se escogen de tal manera que cada valor de dato pertenezca a una clase y sólo a una.

El límite inferior de clase es el valor mínimo posible de los datos que se asigna a la clase. El límite superior de clase es el valor máximo posible de los datos que se asigna a la cla-se.

La marca de clase es el punto medio de los límites de cada intervalo.

Determine la cantidad

de clases

Determine el ancho

de cada clase

Determine los límites

de cada clase

Unidad 1. Organización de Datos 31

Notas importantes

Ejemplo 8

El jefe de la Oficina de Rentas de una Municipalidad ha realizado un estudio sobre los impuestos que pagan los vecinos del distrito. La tabla muestra los pagos de impuestos, en soles, en el 2014 de 48 viviendas elegidas al azar.

145,1 216,3 252,5 303,6 196,9 234,8 265,2 317,2 206,5 242,9 289,1 331,7

151,0 225,9 257,1 305,8 202,6 238,4 271,0 320,2 208,0 244,0 291,0 344,6

159,0 227,1 259,2 315,4 204,9 239,9 286,7 324,8 208,0 247,7 291,9 346,7

195,6 231,2 262,5 315,5 206,1 241,1 288,1 331,1 209,3 249,5 294,5 351,1

Elabore la tabla de frecuencias para la variable: pago por impuestos municipales año 2014.

Solución

El rango r se calcula con:

r = valor máximo – valor mínimo = 351,1 – 145, 1 = 206

Siguiendo la regla de Sturges, el número de intervalos es:

10 101 3,322log 1 3,322log (48) 6,585 7k n

El ancho del intervalo es:

20629,429 29,5

7

rw

k (Redondeo por exceso a un decimal)

Distribución de frecuencias del pago de impuestos municipales del año 2014

Pago de impuestos Marca de clase fi hi Fi Hi

[145,1 ; 174,6] 159,85 3 0,0625 3 0,0625

]174,6 ; 204,1] 189,35 3 0,0625 6 0,1250

]204,1 ; 233,6] 218,85 10 0,2084 16 0,3334

]233,6 ; 263,1] 248,35 12 0,2500 28 0,5834

]263,1 ; 292,6] 277,85 7 0,1458 35 0,7292

]292,6 ; 322,1] 307,35 7 0,1458 42 0,8750

]322,1 ; 351,6] 336,85 6 0,1250 48 1,0000

Total 48 1,0000

32 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo: Determinar el número de pasajeros que exceden el peso de equipaje de mano.

Se seleccionó una muestra al azar de pasajeros de la aerolínea Wayra que viajaron a di-ferentes destinos turísticos.

Peso del equipaje de mano por pasajeros, en kilogramos

4,2 4,6 4,9 5,7 5,9 7,3 7,3 7,5 7,5 7,5

7,6 7,7 7,9 8,0 8,0 8,1 8,3 8,4 8,4 8,5

8,6 8,8 8,9 9,0 9,0 9,1 9,4 9,4 9,4 9,5

9,7 9,7 9,7 9,8 9,8 9,9 9,9 9,9 9,9 10,0

10,5 10,6 10,7 11,0 11,5 12,0 12,0 12,3 12,4 12,7

Construya la tabla de frecuencia utilizando el método de Sturges.

El valor máximo es …………………..………………….

El valor mínimo es …………………..………………….

Luego, el rango es …………………..………………….

Siguiendo la regla de Sturges, la cantidad de intervalos es igual a k = 1 + 3,322 log(……….)

esto es igual a …………………..………………….

Como, la cantidad de intervalos es un número entero, entonces k = ……………….

La amplitud es igual al rango entre la cantidad de intervalos, esto es, w = ……………………..

El valor de la amplitud se redondea por exceso a ……………………… decimal(es), pues los

datos tienen ………………… decimal(es), entonces la amplitud (w) es ………………………………

Título: …………………………………………………………………………………………………………………….

Intervalo Marca de

clase

Frecuencia absoluta fi

Frecuencia relativa hi

Frecuencia absoluta acumulada Fi

Frecuencia relati-va acumulada Hi

Fuente: ………………………………..……………………………………

Unidad 1. Organización de Datos 33

Notas importantes

Indique e interprete el valor de las siguientes frecuencias para la distribución de fre-cuencias anterior.

f3

F2

H4

Si el peso máximo permitido en equipaje de mano por persona es de 10 kg y el pago por cada kilo o fracción adicional es de tres dólares. ¿Cuál fue el monto total de dinero que recibió la compañía Wayra por exceso de peso de equipaje de mano?

Distribuciones de frecuencias de dos o más grupos de datos con intervalos co-munes

La idea básica para distribuciones de frecuencias de dos o más grupos de datos es tener intervalos comunes, es decir, que los límites de los intervalos para ambas distribuciones sean iguales. Para ello, debemos seguir los siguientes pasos:

Hallar el mínimo de todos los datos y el máximo de todos los grupos de datos, y usarlos para calcular el rango.

Calcular el número de categorías, el número de datos es el máximo número de datos de cada grupo. Tener en cuenta que no es la suma de ambos tamaños muestrales.

Siguiendo la regla de Sturges, el número de intervalos es

101 3,322logk n

34 Estadística Descriptiva 201601

Notas importantes

Ejemplo 9

La empresa de investigación de mercado “Eléctrico” lleva a cabo un estudio para obte-ner indicadores que le permitan inferir respecto al consumo de energía eléctrica men-sual (medido en kilovatios, redondeado al entero más próximo) de las familias en los departamentos de Arequipa y Tacna. Dicho estudio, sustentado en el análisis de mues-tras aleatorias tomadas en ambos departamentos, arrojó los siguientes resultados:

Arequipa

227 231 261 270 291 351 359 369 371 382 387 392 393 395 396 413 420 422 424 436

453 461 463 471 495 498 510 512 533 534 541 542 584 589 591 628 630 630 657 666

Tacna

217 219 263 287 294 340 346 347 348 377 390 392 395 396 397 408 418 424 426 429

438 438 442 446 447 450 456 481 496 508 511 533 549 583 609 636

Usando la regla de Sturges, calcule intervalos comunes y marcas de clase de una tabla de distribución de frecuencias que permita comparar los datos.

Solución

Hallar el mínimo de todos los datos (217) y el máximo de todos los datos (666) de ambas ciudades, y usarlos para calcular el rango.

Calcular el número de categorías, el número de datos es el máximo número de datos (40) entre ambas ciudades. Tener en cuenta que no es la suma de ambos tamaños muestrales.

Siguiendo la regla de Sturges, el número de intervalos es:

10 101 3,322log 1 3,322log (40) 6,322 6k n (Redondeo simple)

Tabla 1. Distribución de clientes según consumo eléctrico

Consumo de energía Marca de clase

217 ; 292 254,5

292 ; 367 329,5

367 ; 442 404,5

442 ; 517 479,5

517 ; 592 554,5

592 ; 667 629,5

Fuente: Empresa A

Unidad 1. Organización de Datos 35

Notas importantes

Caso Aerolínea Wayra

Objetivo: Comparar la distribución de las horas diarias trabajadas según las horas extras.

El jefe de recursos humanos de la aerolínea Wayra está interesado en analizar el impac-to en los empleados al suprimir las horas extras de trabajo pagadas que anteriormente se aplicaba. Con este fin se extraen dos muestras aleatorias. La primera de 80 emplea-dos tomando de los datos históricos de un día al azar con el sistema anterior y la segun-da de 60 empleados tomando los datos de un día al azar con el sistema vigente. Se muestran las horas de trabajo por día por empleado.

Datos sobre horas diarias trabajadas con y sin horas extras pagadas

Horas diarias trabajadas con horas extras pagadas Horas trabajadas sin horas extras pagadas

6,7 8,9 9,8 10,8 11,2 11,8 12,3 13,2 5,0 8,2 8,5 8,9 9,7 10,8

7,9 8,9 10,1 10,8 11,3 11,9 12,4 13,4 7,0 8,2 8,5 8,9 9,8 11,0

8,0 9,0 10,2 10,9 11,4 12,0 12,4 13,5 7,0 8,2 8,5 8,9 9,9 11,2

8,0 9,1 10,2 11,0 11,4 12,0 12,4 13,6 7,0 8,3 8,6 9,0 9,9 11,6

8,1 9,1 10,3 11,0 11,5 12,1 12,5 13,7 7,0 8,3 8,6 9,1 10,0 11,7

8,1 9,3 10,4 11,0 11,5 12,1 12,5 13,9 7,1 8,3 8,7 9,1 10,0 12,2

8,2 9,4 10,6 11,1 11,5 12,1 12,6 14,6 8,1 8,4 8,7 9,3 10,3 12,5

8,5 9,5 10,6 11,1 11,6 12,2 12,7 14,8 8,2 8,4 8,7 9,4 10,5 12,9

8,6 9,7 10,7 11,1 11,7 12,2 12,9 15,0 8,2 8,4 8,8 9,6 10,5 13,3

8,8 9,7 10,8 11,2 11,7 12,3 13,1 15,5 8,2 8,4 8,8 9,7 10,6 14,0

Fuente: Aerolínea Wayra

Determine los intervalos comunes de las distribuciones de frecuencias que permitan comparar los datos de ambas muestras.

36 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo: Comparar el exceso de peso del equipaje de los pasajeros según su género.

Se realizó un estudio en el cual, se elaboró bajo una muestra elegida al azar de 40 pasa-jeras y 110 pasajeros, obteniéndose la siguiente gráfica. Además, se considera exceso de peso cuando el pasajero lleva consigo maletas que sobrepasan los 32 kilogramos.

Complete las siguientes afirmaciones, tenga en cuenta que se considera exceso de peso cuando las maletas sobrepasan los 32 kilogramos.

a. El número de pasajeros hombres _______ que llevan consigo maletas que pesan más de 36 kilogramos pero a lo más 40 kilogramos.

b. El _______ % de las pasajeras mujeres lleva consigo maletas que pesan hasta 36 ki-logramos.

c. El _______% de los pasajeros hombres lleva consigo maletas con exceso de peso.

d. El género que presenta un mayor porcentaje de pasajeros con exceso de peso del equipaje es _____________ y representa en __________ % superior con respecto al otro género.

0% 13%

31%

65% 74%

83%

100%

20%

31%

61%

83%

93%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 24 28 32 36 40 44

Po

rcen

taje

de

pas

ajer

os

Peso, en kilogramos

Distribución porcentual de los pasajeros según el peso de sus maletas por género

Femenino

Masculino

Fuente: Aerolínea Wayra

Unidad 1. Organización de Datos 37

Notas importantes

1.8. Gráficos de datos cuantitativos

Histograma

Un histograma es una representación gráfica de una variable en forma de barras, donde la altura de cada barra es proporcional a la frecuencia de los valores representados.

Un ejemplo de histograma es el siguiente gráfico.

Se traza colocando la variable

sobre el eje horizontal y las frecuencias

sobre el eje vertical.

Cada frecuencia de clase se representa trazando un rectángulo, cuya base es el intervalo de clase sobre el eje horizontal

y cuya altura es proporcional a la frecuencia correspondiente (absoluta,

relativa o porcentual).

Los rectángulos adyacentes se tocan entre sí.

38 Estadística Descriptiva 201601

Notas importantes

Polígono de frecuencias

Un polígono de frecuencias es un gráfico de líneas que une los puntos asociados a las marcas de clase de una variable. La altura del punto asociado a cada marca de clase es proporcional a la frecuencia de dicho valor.

Un ejemplo de polígono de frecuencias es el siguiente gráfico.

Se realiza uniendo con segmentos de recta

los puntos de intersección de las marcas de clase

con las frecuencias (absolutas, relativas o porcentuales).

Los polígonos de frecuencias se cierran creando

dos intervalos ficticios, uno antes del primer intervalo

y uno después del último.

Si los intervalos creados toman valores

que pueden no ser reales, igual se crea el intervalo, como,

ejemplo, tiempos negativos.

Unidad 1. Organización de Datos 39

Notas importantes

Distribuciones acumuladas

La distribución de frecuencias acumuladas muestra la cantidad de elementos con valores menores o iguales al límite superior para cada clase.

Ojiva

La ojiva es la gráfica de una distribución acumulada de frecuencias.

Un ejemplo de ojiva es el siguiente gráfico.

Se obtiene uniendo con segmentos de recta

los puntos de intersección del límite superior de cada intervalo

y la frecuencia acumulada respectiva.

La ojiva usa los líimtes de los intervalos

y no las marcas de clase.

Con la ojiva se puede estimar fácilmente

el número o porcentaje de observaciones

que corresponden a un intervalo determinado.

19.82%

57.62%

84.75%

95.42%

100.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 4 8 12 16 20

Po

rce

nta

je a

cum

ula

do

Número de años

Distribución porcentual de empleados según el tiempo de servicio

Fuente: Empresa A. Gerencia de RRHH

40 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo: Determinar el porcentaje de pasajeros que exceden el peso de equipaje de mano.

Grafique el histograma, el polígono de frecuencias y la ojiva con los datos de la muestra.

Use uno de los gráficos para calcular, aproximadamente, porcentaje necesario para re-solver el objetivo.

Unidad 1. Organización de Datos 41

Notas importantes

Ejercicios adicionales de la Unidad 1

1. El objetivo de una investigación es estimar la media, en años, de la edad de los egresados de la UPC. Indique el elemento, una variable a medir y una posible observación.

2. Según el estudio “Rumores de oficina”, el 42% de los ejecutivos limeños considera que los rumores influyen mucho en el clima laboral de la oficina. Indique el elemento, una va-riable a medir y una posible observación.

3. En una investigación, se quiere estimar el promedio del número de asistentes a los con-ciertos de artistas internacionales realizados en Lima durante el año 2014. Indique el elemento, una variable a medir y una posible observación.

4. El objetivo de una investigación en la ciudad de Lima es determinar la ocupabilidad en hoteles de 4 y 5 estrellas en Cusco durante el día de año nuevo del 2013, es decir, el por-centaje de habitaciones ocupadas durante ese día. Indique la población y la muestra.

5. El objetivo de una investigación en el Perú es determinar el promedio de la edad de las mujeres en edad fértil que usan métodos anticonceptivos. Defina la población, muestra, elemento y variable. El INEI considera a la edad fértil en las mujeres desde los 15 hasta los 49 años.

6. Según los Censos Nacionales XI de Población y VI de Vivienda 2007 ejecutados por el INEI, el 50,30% de los peruanos son mujeres. Indique si este dato es un parámetro o un esta-dístico.

7. La nueva lista roja de aves de 2014, confeccionada con datos de BirdLife, muestra que de las 10.425 especies de aves identificadas en el mundo, el 13% están amenazadas de ex-tinción. Estas listas, dice Juan Carlos Atienza, de SEO BirdLife, contribuyen establecer prioridades a la hora de favorecer políticas de conservación y declarar nuevos espacios protegidos. Indique si este valor corresponde a un parámetro o a un estadístico.

8. El gráfico muestra la evolución de la inflación desde el año 1980 al 2013. Indique si el ín-dice de precios al consumidor IPC que obtiene el INEI es un parámetro o un estadístico.

9. Según el estudio “Rumores de oficina” realizado por la empresa Transearch publicado en julio del 2014, el 42% de los ejecutivos limeños considera que los rumores influyen mu-cho en el clima laboral de la oficina. Indique los siguientes conceptos con respecto a di-cho estudio: población, muestra, elemento, variable, estadístico, valor del estadístico. ¿Por qué los encargados del estudio calcularon estadísticos y no parámetros?

42 Estadística Descriptiva 201601

Notas importantes

10. El objetivo de una investigación es estimar el porcentaje de peruanos que aprueban la gestión de Ollanta Humala como presidente de la República, para lo cual se tomó una muestra aleatoria de personas de 18 a 70 años y se les preguntó por su opinión. Los re-sultados son los siguientes.

Desaprueba Aprueba Desaprueba Aprueba Desaprueba Desaprueba Desaprueba

No sabe Aprueba Aprueba Desaprueba Aprueba Aprueba Aprueba

Desaprueba Desaprueba Aprueba Aprueba Desaprueba No sabe Desaprueba

Aprueba Desaprueba Aprueba Aprueba Desaprueba Desaprueba Aprueba

Desaprueba Desaprueba Desaprueba Desaprueba Aprueba Desaprueba Desaprueba

Aprueba No sabe Desaprueba Desaprueba Aprueba Desaprueba No sabe

Aprueba Desaprueba Desaprueba Desaprueba Aprueba Aprueba Desaprueba

Desaprueba Desaprueba Desaprueba Aprueba Aprueba Desaprueba Desaprueba

Aprueba Desaprueba No sabe Aprueba Desaprueba Desaprueba Aprueba

Aprueba Aprueba Aprueba Desaprueba Desaprueba Desaprueba Desaprueba

Construya la distribución de frecuencias de los datos. Interprete los valores f2 y h1.

11. Se tiene como objetivo mostrar la composición porcentual de alumnos universitarios en el Perú por tipo de institución educativa al final de la secubdaria, para lo cual se tomó como referencia los datos del II Censo Universitario 2010 realizado por el INEI, donde se preguntó a los alumnos universitarios por el tipo de institución educativa donde terminaron su educación secundaria. Los resultados se muestran en la siguiente tabla.

Tabla. …………………………………….………………………………………………………………………

Tipo de institución fi hi Ángulo

Estatal 256 060 0,5405

Particular 154 275 0,3256

Particular religioso 58 673 0,1238

No escolarizado 4 472 0,0094

Otro 309 0,0007

Total 473 789

Realice un diagrama circular con dichos datos.

12. Observe el siguiente gráfico e indique un posible error.

Unidad 1. Organización de Datos 43

Notas importantes

13. En la publicación Revista Científica-Estudiantil de Ciencias Médicas de Cuba se publicó el artículo “Pancreatitis aguda. Retos y perspectivas” el cual contenía el siguiente gráfico. Observe el gráfico e indique un posible error.

Distribución de pacientes según hábito tóxico

Fuente: Datos tomados de HC del departamento de archivo del HDCQ “10 de Octubre”

Tomado de http://www.16deabril.sld.cu/rev/228/articulo3.html

14. Observe los dos gráficos siguientes e indique la posible diferencia de interpretación entre ambos.

15. En la agencia de viajes A se realizó una encuesta a 330 clientes respecto a las principales quejas que tienen clientes acerca de los tours del tipo todo incluido al exterior. Las cuales se detallan en el siguiente cuadro:

Agencia A. Distribución de clientes según principales quejas de clientes

Queja Número de quejas

Cambio de fecha de los vuelos 120

El hotel no era de la categoría que se veía en el folleto 94

Los hoteles no incluyen bebidas premium 61

La comida de los hoteles no es de calidad excelente 23

Otros 25

Que les venden otros servicios como tiempo compartido 7

Fuente: Dirección de Atención al cliente. Agencia A

Realice el diagrama de Pareto correspondiente a estos datos.

44 Estadística Descriptiva 201601

Notas importantes

16. Uno de los objetivos de una investigación en la empresa A es mostrar la composición porcentual del número de cursos de capacitación dadas a sus trabajadores. Los siguien-tes datos muestran el número de capacitaciones que 48 trabajadores han recibido en el presente año.

3 3 1 2 1 1 2 2 1 6 3 1 3 1 3 2

1 1 1 1 3 2 2 4 1 2 2 2 1 3 1 2

3 2 2 3 2 2 1 2 2 2 2 1 1 1 6 2

Complete el cuadro y construya el gráfico de bastones de frecuencias porcentuales para la variable “número de capacitaciones”.

17. El objetivo de una investigación sobre la lúcuma, de la empresa A en el presente mes, es establecer la distribución de su peso para la exportación. La lúcuma es originaria de las regiones tropicales de Sudamérica. Es empleada, sobre todo, en la preparación de dulces, postres y helados. En el siguiente cuadro se muestra el peso, en gramos, de una muestra de 60 frutos.

167 172 173 180 182 182 183 183 183 184 185 186

186 186 187 189 190 191 191 192 193 194 194 194

194 195 195 195 197 197 199 201 201 201 201 201

203 204 205 207 207 207 207 209 210 212 212 213

213 214 218 218 218 219 220 222 223 226 228 232

Realice la tabla de distribución de frecuencias de los datos.

18. La siguiente tabla corresponde a la distribución de frecuencias de los salarios, en soles, del último mes de los empleados de la empresa A. Complete la tabla.

Empresa. A. Distribución de trabajadores según salarios, en soles, del último mes

Clase Marca de clase

Frecuencia absoluta fi

Frecuencia relativa hi

Frecuencia abso-luta acumulada

Fi

Frecuencia rela-tiva acumulada

Hi

1200 - 120

- 1 800 300 0,42

- 780

- 150

-

Fuente. Gerencia de Recursos Humanos. Agosto 2014. Empresa A

19. En economía, la prima de riesgo es el sobreprecio que paga un país para financiarse en los mercados en comparación con otros países. De esta forma, cuanto mayor es el riesgo país, más alta será su prima de riesgo. Significa la confianza de los inversores en la solidez de una economía. La prima de riesgo de los países de la Unión Europea se calcula respec-to de Alemania porque se supone que su deuda pública es la que tiene menor riesgo de impago. Para el caso de España, la agencia de calificación de riesgos A ha medido la pri-ma de riesgo durante 50 días desde junio del 2015.

Unidad 1. Organización de Datos 45

Notas importantes

España. Distribución de días según prima de riesgo. Junio y julio del 2015

Prima de riesgo Marca de clase fi hi Fi Hi

[ 120 ; 130 ] 125 1 0,0200 1 0,0200

] 130 ; 140 ] 135 3 0,0600 4 0,0800

] 140 ; 150 ] 145 11 0,2200 15 0,3000

] 150 ; 160 ] 155 14 0,2800 29 0,5800

] 160 ; 170 ] 165 12 0,2400 41 0,8200

] 170 ; 180 ] 175 6 0,1200 47 0,9400

] 180 ; 190 ] 185 3 0,0600 50 1,0000

Fuente: Agencia de Calificación de Riesgos A.

Grafique el histograma de frecuencias relativas, el polígono de frecuencias absolutas y la ojiva de frecuencias relativas.

20. Indique el tipo y escala de medición de las siguientes variables y su escala de medición.

Variable

Número de personas que van a ver una película

Género de una película (drama, comedia, acción, etc.)

Duración de una película

Opinión sobre la película (buena, regular, mala)

21. En el II Censo Nacional Universitario del año 2010 realizado por el INEI se preguntó a los alumnos de todo el Perú por su tipo de universidad y su género. Los datos se muestran en el siguiente cuadro.

Perú. Distribución de alumnos de pregrado por género y tipo de universidad. 2010

Género Pública Privada Total

Mujer 135 082 247 743 382 825

Hombre 174 093 226 052 400 145

Total 309 175 473 795 782 970

Fuente: INEI. II Censo Universitario. 2010

Interprete el valor “135 082” de la tabla.

Elabore un gráfico comparativo que permita ver la composición porcentual por género y tipo de universidad.

Elabore un gráfico comparativo que permita ver la composición porcentual por género según tipo de universidad.

Elabore un gráfico comparativo que permita ver la composición porcentual por tipo de universidad según género.

46 Estadística Descriptiva 201601

Notas importantes

22. Encuentre todos los errores del siguiente gráfico, realizado a partir de la Encuesta Nacio-nal de Hogares realizada por el Instituto Nacional Estadística e Informática del Perú entre los años 2005 y 2011.

Tomado de http://www.inei.gob.pe/perucifrasHTM/inf-soc/cuadro.asp?cod=3718&name=edu14&ext=gif

23. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación

El valor de un parámetro se puede conocer solamente si se realiza un censo

En un estudio observacional se controlan las variables de interés

Solo las variables cuantitativas continuas pueden toman valores con decimales

Variable es el conjunto de mediciones obtenido de un elemento particular

Para graficar las ojivas se usan las marcas de clase

Con la ojiva se puede estimar el porcentaje de observaciones que corresponde a un intervalo determinado

Para el polígono de frecuencias solamente se usa las frecuencias relativas

Los cuadros de doble entrada usan exclusivamente variables ordinales o nominales.

En un gráfico circular, el ángulo que le corresponde a cada parte se obtiene multiplicando 360º por la respectiva frecuencia absoluta dividida entre la cantidad de datos.

La frecuencia porcentual de una clase es la proporción de elementos que pertenecen a esa clase.

En un gráfico de barras apiladas al 100%, el alto de las barras es igual en cada categoría.

24. Se ha tomado un examen a 100 personas y registrado el tiempo empleado en terminarlo. Indique si son verdaderas o falsas las siguientes afirmaciones con respecto al gráfico.

Unidad 1. Organización de Datos 47

Notas importantes

Afirmación

El número de personas que tarda 20 minutos o menos es 30

El número de personas que tarda más de 20 pero menos o igual a 70 minutos es 42

El porcentaje de personas que tarda más de 60 minutos es 28%

El porcentaje de personas que tarda 25 minutos o menos es 40%

El porcentaje de personas que tarda 20 minutos es 30%

25. A nivel nacional, se observa que la curva de frecuencia acumulada del ingreso real para el año 2012 se ha desplazado ligeramente hacia la derecha, lo que indica un …………………….. (aumento o decremento) del ingreso en todos los segmentos de la distribución.

26. Loy Toy es una red de librerías, con sucursales en los distritos de Santiago de Surco, San Borja y San Luis. Se ha observado que durante los últimos meses los montos de ventas vienen disminuyendo, por lo que el administrador desea conocer los factores que están originando este problema y le ha encargado a su equipo de trabajo realizar una encuesta entre sus clientes, seleccionados aleatoriamente de cada sucursal.

Entre los clientes que respondieron la pregunta sobre el aspecto que considera deficien-te del local, se tiene:

30 40

72

80

100

0

20

40

60

80

100

0 20 40 60 80 100

Fre

cue

nci

a ac

um

ula

da

Tiempo (en minutos)

Distribución porcentual de alumnos según el tiempo en resolver un examen

Fuente: Calidad Educativa Universidad A

48 Estadística Descriptiva 201601

Notas importantes

Distribución de clientes según aspecto que considera deficiente del local

Aspecto deficiente Número de clientes

Local muy pequeño 53

Poco stock de libros 56

Limpieza 10

Otros 12

Pocas ofertas 38

Personal no capacitado 31

Fuente: Loy Toy

Elabore el gráfico de Pareto y realice una conclusión.

Al procesar los datos de 50 clientes del local de San Borja, se obtuvo la siguiente infor-mación:

Número de hijos en edad escolar fi hi

1 a

2 2a

3 12

4 6

5 2

Complete la tabla y responda: - La variable en estudio es ______________________ y su escala es _____________. - El gráfico a usar para esta variable es _______________. - Calcule el valor de interprete f2 y h5.

El siguiente gráfico se ha obtenido a partir de la información brindada por 100 clientes de la sucursal de San Borja y 110 clientes de la sucursal de San Luis.

En base a esta información, complete: - La cantidad de clientes de San Borja que cuentan con un ingreso familiar mensual

superior a 180 soles es: ____________ - En el distrito de ………………….. es mayor el porcentaje de clientes cuyo ingreso fami-

liar mensual es como máximo 220 soles, cuyo valor es …………...clientes de San Borja cuentan con un ingreso familiar superior a 140 hasta 220 soles.

- Presente la tabla comparativa usando intervalos y marcas de clase comunes.

Unidad 2. Medidas descriptivas 49

Notas importantes

Temario Medidas de tendencia central: media aritmética, mediana, moda, media ponderada

Medidas de posición: cuartiles, deciles, percentiles

Medidas de dispersión: varianza, desviación estándar, coeficiente de variación

Medidas de asimetría

Diagramas de cajas

Unidad 2: Medidas descriptivas

Al finalizar la unidad 2,

el estudiante analiza el comportamiento de datos reales

aplicando las medidas de resumen de datos,

utilizando el programa MS Excel 2010.

Logro de la unidad 2

50 Estadística Descriptiva 201601

Notas importantes

Datos simples y datos agrupados

Ejemplo de datos simples

10,6 14,5 17,2 12,8 13,6 11,6 11,3 13,0 13,5 10,8 13,9 14,2 15,3 14,3 14,3 14,3

11,8 16,1 16,8 18,8 14,8 14,0 16,4 14,2 16,5 12,1 13,3 12,0 14,3 14,9 15,1 14,4

Ejemplo de datos agrupados por intervalos

Empresa A. Distribución de obreros según descuentos en su planilla en el presente mes

Descuentos, en soles Marca de

clase fi hi Fi Hi

[204,1 ; 233,6] 218,85 16 0,2084 16 0,3334

]233,6 ; 263,1] 248,35 12 0,2500 28 0,5834

]263,1 ; 292,6] 277,85 7 0,1458 35 0,7292

]292,6 ; 322,1] 307,35 7 0,1458 42 0,8750

]322,1;351,6] 336,85 6 0,1250 48 1,0000

Total 48 1,0000

Fuente: RRHH Empresa A

Ejercicio 8

Luego de una investigación se tiene muchos datos, con ellos se puede realizar algunos gráficos y distribuciones de frecuencias, pero ¿cómo resumir alguna característica de la información en un solo número?

Datos simples

•Se denomina datos simples (datos no agrupados) a los valores que no están agrupados en distribuciones de frecuencia.

Datos agrupados

•Se denomina datos agrupados a los valores que están agrupados en distribuciones de frecuencia.

Si se tienen datos simples no se construye la distribución de frecuencias para calcular la media, la mediana o cualquier estadístico,

se prefiere el cálculo con los datos simples.

Unidad 2. Medidas descriptivas 51

Notas importantes

1.1. Medidas de tendencia central

Una medida de localización o de tendencia central se refiere al valor central que repre-senta a los datos de una determinada variable.

Media

La media aritmética (media o promedio) de un conjunto de valores de una variable es la suma de dichos valores dividida entre el número de valores.

52 Estadística Descriptiva 201601

Notas importantes

Cálculo de la media aritmética

La fórmula para la media poblacional es

1

N

ii

x

N

Las fórmulas para la media muestral son:

Caso Aerolínea Wayra

A una muestra de tripulantes de la aerolínea Wayra se les preguntó el tiempo, en años, que venían trabajando en Wayra. Calcule e interprete la media muestral.

4 5 7 2 3,5 5 2 0,5 6 7 1 2

Si la media muestral es mayor a 3,5 años, se implementará un programa de incentivo para que los tripulantes postulen a ascensos. Indique lo que hará la compañía

Unidad 2. Medidas descriptivas 53

Notas importantes

A una muestra de viajeros frecuentes se les preguntó por el número de veces que viajó con Wayra en el último mes. Calcule e interprete la media muestral.

Distribución de viajeros frecuentes según el número de veces que viajó en el último mes

Número de veces fi

1 71

2 133

3 346

4 85

6 15

Fuente: Wayra

A una muestra de 500 pasajeros premium se les preguntó por la cantidad de dinero que estarían dispuestos a pagar por un menú gourmet durante un vuelo nacional. Los datos se muestran a continuación.

Distribución de viajeros premium según lo que pagarían por menú gourmet en vuelo nacional

Dinero (en soles) Marca de clase fi hi Fi Hi

,

20

0,05

,

225

,

30

0,75

,

Fuente: Wayra

Calcule e interprete la media muestral.

54 Estadística Descriptiva 201601

Notas importantes

Ejercicio 9

Calcule la media de los siguientes grupos de números.

Grupo 1 1 2 3 4 5 6 7

Grupo 2 1 2 3 4 5 6 700

¿Qué nota al calcular la media de cada grupo?

Características de la media

- Se puede calcular para datos medidos en escala de intervalo o razón.

- El cálculo de la media es sencillo y es una medida muy conocida.

- El valor de la media es sensible a los valores extremos, por lo que varía mucho con valores muy grandes o muy pequeños con respecto a los demás.

- Si cada uno de los n valores xi es transformado en: yi = a xi + b, siendo a y b constan-tes, entonces, la media de los n valores yi es:

y ax b

Caso Aerolínea Wayra

La empresa Wayra ha decidido hacer dos ofertas a su sindicato sobre el aumento de sueldo anual a sus trabajadores:

- Aumento general del 5%.

- Aumento del 2% más un bono de 200 soles.

Si el sueldo promedio es de 4100 soles, ¿cuál de las dos ofertas debe aceptar el sindicato si lo que desea es hacer máximo el sueldo medio de los trabajadores

Unidad 2. Medidas descriptivas 55

Notas importantes

Mediana

La mediana de un conjunto de datos ordenados es el valor que divide en dos partes a di-cho conjunto.

Ejercicio 10

Interprete alguna de las siguientes medianas.

56 Estadística Descriptiva 201601

Notas importantes

Cálculo de la mediana

Caso Aerolínea Wayra

A una muestra de pasajeros se les registró el tiempo, en minutos, que demoraron en la cola hasta ser atendidos en los counters del aeropuerto. Los datos se muestran en la ta-bla siguiente. Calcule e interprete la mediana muestral.

8 20 15 14 20 10 5 14 13 16 17 14 8 25

Si la mediana es mayor a 15 minutos se aumentará la cantidad de personas en los coun-ters de atención del aeropuerto. Indique lo que hará la compañía.

Unidad 2. Medidas descriptivas 57

Notas importantes

De una muestra de 50 vuelos, se ha registrado el número de personas que pierden su vuelo por presentarse tarde al counter del aeropuerto. Los datos se muestran a conti-nuación.

Distribución de …………………………………………………………………………………………………………………….

Número de pasajeros fi hi%

0 10

1 17

2 13

3 7

5 3

Fuente: Wayra

Calcule e interprete la mediana muestral.

De una muestra de 600 pasajeros que habían realizado compras en el duty free durante el vuelo, se registró la cantidad de dinero, en dólares, que habían gastado. Los datos se muestran a continuación.

Distribución de …………………………………………………………………………………………………………………….

Dinero (en dólares) Marca de clase fi hi Fi Hi

0 ,

162

, 70 240

,

143

,

Fuente: Wayra

Calcule e interprete la mediana muestral.

58 Estadística Descriptiva 201601

Notas importantes

Ejercicio 11

Calcule la mediana de los siguientes grupos de números.

Grupo 1 10 11 12 13 14 15 16

Grupo 2 10 11 12 13 14 15 700

¿Qué concluye al calcular la mediana de cada grupo?

Características de la mediana

- Se puede calcular para variables medidas en escala de ordinal, intervalo o razón.

- La mediana no se ve afectada por valores extremos, por lo que se prefiere como medida de tendencia central cuando hay datos extremos o la distribución de fre-cuencias no es simétrica.

Unidad 2. Medidas descriptivas 59

Notas importantes

Moda

La moda de un conjunto de datos observados de una variable es el valor que se presenta con mayor frecuencia.

Ejercicio 12

Interprete alguna de las siguientes modas.

60 Estadística Descriptiva 201601

Notas importantes

Cálculo de la moda

Para datos en distribuciones de frecuencia por intervalo, - si la moda está en el primer intervalo, entonces d1 es igual a la primera frecuencia

- si la moda está en el último intervalo, entonces d2 es igual a la última frecuencia.

Caso Aerolínea Wayra

A una muestra de pasajeros de clase económica se les preguntó si pagarían un suple-mento de diez dólares por estar en las primeras filas de la clase económica en un vuelo nacional. Los datos se muestran en la tabla siguiente. Calcule e interprete la moda muestral.

No No Sí No No Sí No Sí Sí Sí No No No Sí

Sí No Sí Sí No Sí No No No Sí Sí No Sí Sí

Si la moda es “Sí” se implementará esta opción. Indique lo que hará la compañía.

Unidad 2. Medidas descriptivas 61

Notas importantes

De una muestra de 500 vuelos de Wayra, se ha registrado el número de personas por vuelo que han tenido problemas de salud. Los datos se muestran a continuación.

Distribución de …………………………………………………………………………………………………………………….

Número de pasajeros fi

0 310

1 146

2 33

3 7

4

Fuente: Wayra

Calcule e interprete la moda muestral.

De una muestra de 600 pasajeros se registró la cantidad de tiempo de anticipación, en días, con la que los pasajeros compran sus vuelos internacionales. Los datos se muestran a continuación.

Distribución de …………………………………………………………………………………………………………………….

Tiempo de anticipación (en días) Marca de clase fi hi Fi Hi

0 , 25 13 154 0,26 154 0,26

25 , 50 38 240 0,40 394 0,66

50 , 75 63 157 0,26 551 0,92

75 , 100 88 49 0,08 600 1,00

Fuente: Wayra

Calcule e interprete la moda muestral.

62 Estadística Descriptiva 201601

Notas importantes

Ejercicio 13

Calcule la moda de los siguientes grupos de números.

Grupo 1 1 2 3 3 4 4 5

Grupo 2 1 2 3 3 4 4 500

¿Qué concluye al calcular la moda?

Características de la moda

- La moda se puede calcular para cualquier escala de medición.

- El valor de la moda no se ve afectada por valores extremos.

- La moda no siempre es un valor único. Una serie de datos puede tener dos modas (bimodal) o más modas (multimodal). Algunas series de datos no tienen moda.

Media ponderada

Permite calcular el valor medio considerando la importancia o peso de cada valor sobre el total.

Cálculo de la media ponderada

La fórmula es:

1

1

n

i ii

ww n

ii

x w

x

w

donde:

xi: Observación individual wi: Peso asignado a cada observación

Ejercicio 14

Las notas de un alumno de Estadística Descriptiva son:

PC1 PC2 Promedio de laboratorios

Promedio de controles

Examen parcial

Examen final

Trabajo final

15 14 13 15 13 9 15

Si las prácticas pesan ………………………………..…………..…………………………de la nota final, los

laboratorios ………………………………………., los controles ……………………………………, el examen

parcial …….……………, el examen final …………………y el trabajo final………………. ¿cuál es el

promedio final del alumno?

Unidad 2. Medidas descriptivas 63

Notas importantes

Caso Aerolínea Wayra

Objetivo: Comparar la media de los precios de pasajes por tipo de cliente.

Distribución de pasajeros según precio de pasajes, en dólares, por tipo de cliente

Precios de pasajes

Marca de clase

hi% Grupos

hi% Ocasional

hi% Premium

hi% Viajero frecuente

0 176 88 50,0% 43,5% 39,4% 52,9%

176 352 264 12,5% 13,0% 21,2% 13,7%

352 528 440 0,0% 9,8% 18,2% 0,0%

528 704 616 37,5% 9,8% 18,2% 33,3%

704 880 792 0,0% 13,0% 3,0% 0,0%

880 1056 968 0,0% 7,6% 0,0% 0,0%

1056 1232 1144 0,0% 2,2% 0,0% 0,0%

1232 1408 1320 0,0% 1,1% 0,0% 0,0%

Fuente Aerolínea Wayra S.A.

Wayra lanzará una campaña de marketing a los dos tipos de clientes con los precios me-dios de pasajes más altos. Indique los tipos de clientes a los que lanzará la campaña.

Objetivo: Establecer el costo medio de una campaña de fidelización de clientes.

Wayra lanzará una campaña de fidelización de clientes y rebajará 15% los precios de los pasajes a Miami. Si la media del precio de estos pasajes es 740 dólares. Indique el nuevo precio medio.

Wayra lanzará una campaña de fidelización de clientes y rebajará 10 dólares los precios de los pasajes a Cusco. Si la media del precio de estos pasajes es 105 dólares. Indique el nuevo precio medio.

64 Estadística Descriptiva 201601

Notas importantes

Objetivo. Analizar un reclamo de clientes Premium sobre el precio excesivo de pasajes.

Los clientes tipo Premium han expresado su malestar por las altas tarifas en los precios de los pasajes que pagan. Por ello, la empresa desea conocer cuál es el precio mínimo de los pasajes más costosos que paga la mitad de clientes Premium, con el fin de revisar un porcentaje de descuento en su próximo viaje ¿Cuál es este precio mínimo?

Objetivo. Lanzar una campaña para los clientes de tipo grupos.

La empresa desea lanzar una campaña de marketing directo a los clientes de tipo grupos considerando el precio de pasaje más frecuente que suelen pagar. ¿Cuál es ese precio?

Unidad 2. Medidas descriptivas 65

Notas importantes

1.2. Cuantiles

Los cuantiles son valores de la distribución que la dividen en partes iguales, es decir, en intervalos, que comprenden el mismo número de valores. Los más usados son:

- cuartiles, que dividen a la distribución en cuatro partes,

- deciles, que dividen a la distribución en diez partes,

- percentiles, que dividen a la distribución en cien partes.

Deciles

Un decil se refiere a cada uno de los nueve valores que dividen un grupo de datos (clasi-ficados con una relación de orden) en diez partes iguales, de manera que cada parte re-presenta un décimo de la población.

Ejercicio 15

El siguiente gráfico muestra la evolución del ingreso real promedio per cápita en el Perú del año 2013 al 2014. ¿Qué grupo mejoró porcentualmente más sus ingresos, las perso-nas con menores o con mayores ingresos?

66 Estadística Descriptiva 201601

Notas importantes

Percentil

El percentil k-ésimo Pk es un valor tal que por lo menos k por ciento de las observaciones son menores o iguales que este valor.

Ejercicio 16

Interprete alguno de los siguientes percentiles.

Unidad 2. Medidas descriptivas 67

Notas importantes

Cálculo del percentil

Ejercicio 17

Calcule el percentil 75 de los siguientes grupos de números.

Grupo 1 10 12 13 14 15 16 17

Grupo 2 10 12 13 14 15 16 17 700

¿Qué concluye al calcular dicho percentil?

Características de los percentiles

- Se puede calcular en variables medidas en escala ordinal, de intervalo y razón.

- El valor del percentil no se ve afectado por valores extremos.

68 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo. Analizar un reclamo de clientes Premium sobre el precio excesivo de pasajes.

Distribución de pasajeros según precio de pasajes de clientes Premium, en dólares

Precios de pasajes Marca de clase fi hi% Fi Hi%

0 176 88 394 39,4% 394 39,40%

176 352 264 212 21,2% 606 60,60%

352 528 440 182 18,2% 182 78,80%

528 704 616 182 18,2% 182 97,00%

704 880 792 30 3,0% 30 100,00%

Fuente Aerolínea Wayra S.A.

Calcule el precio máximo de un pasaje para estar en el 15% de los pasajes más baratos.

Calcule el precio mínimo de un pasaje para estar en el 25% de los pasajes más caros.

Calcule el porcentaje de clientes que pagó como máximo 500 dólares.

Unidad 2. Medidas descriptivas 69

Notas importantes

Ejemplo 10

La siguiente tabla corresponde a la distribución de frecuencias de los 200 trabajadores de la empresa A según salario, en soles, del último mes.

Distribución de empleados según salario del último mes

Salario (en soles) fi hi Fi Hi

450 - 650 32 0,160 32 0,160

650 - 850 40 0,200 72 0,360

850 – 1 050 60 0,300 132 0,660

1 050 – 1 250 48 0,240 180 0,900

1 250 – 1 450 20 0,100 200 1,000

Fuente: Empresa A

Calcule el sueldo mínimo para estar en el 15% de los trabajadores mejores pagados.

Solución

Usando las frecuencias absolutas se tiene:

85 4 1

4

85 200 200 851050 132 1208,33

100 48 100i

w nP L F

f

soles

Usando las frecuencias relativas se tiene:

85 4 1

4

85 200 851050 0,66 1208,33

100 0,24 100i

wP L H

h

soles

El sueldo mínimo para estar en el 15% de los trabajadores mejores pagados es S/.1208,33.

70 Estadística Descriptiva 201601

Notas importantes

1.3. Medidas de variabilidad

Con las medidas de tendencia central es posible determinar el valor central de una

distribución, pero no indican qué tan cercanos o lejanos están los datos de dicho

valor central.

Las medidas de variabilidad indican cuán alejados están los valores de una variable

del valor que los representa y, por lo tanto, permiten evaluar la confiabilidad de ese

valor central.

Si la medida de dispersión:

- tiene un valor pequeño, los datos están concentrados alrededor de la medida de tendencia central,

- tiene un valor grande, los datos no están concentrados alrededor de la medida de tendencia central.

Unidad 2. Medidas descriptivas 71

Notas importantes

Varianza

La varianza es el promedio de los cuadrados de la diferencia de cada dato con la media.

Las unidades de la varianza son las unidades de los datos al cuadrado.

Cálculo de la varianza

La fórmula para la varianza poblacional es

2

2 1

N

ii

x

N

La fórmula para la varianza muestral es

Desviación estándar

La desviación estándar es la raíz cuadrada positiva de la varianza.

La desviación estándar poblacional se denota por y la muestral por s.

Ejercicio 18

Calcule la desviación estándar de los siguientes grupos de números.

Grupo 1 1 2 3 4 5 6 7

Grupo 2 1 2 3 4 5 6 700

¿Qué concluye al calcular dicha medida de dispersión?

72 Estadística Descriptiva 201601

Notas importantes

Características de la varianza y la desviación estándar

- La varianza y la desviación estándar se ven afectadas por valores extremos.

- La varianza y la desviación estándar son números reales no negativos.

- Se pueden calcular para variables medidas en escala de intervalo o razón.

- La varianza es expresada en unidades cuadráticas a las unidades de los datos, mien-tras que, la desviación estándar es expresada en las mismas unidades de los datos.

- Si cada uno de los n valores xi es transformado en yi = a xi + b, siendo a y b constan-tes, entonces, la varianza de los n valores yi es:

2 2 2Y Xs a s sY = a sX

Ejercicio 19

Calcule la desviación estándar de los siguientes grupos de números.

Grupo 1 1 2 3 4 5 6 7

Grupo 2 1 001 1 002 1 003 1 004 1 005 1 006 1007

¿Qué concluye al calcular dicha medida de dispersión?

Coeficiente de variación

El coeficiente de variación (CV) de un conjunto de datos indica lo grande que es la des-viación estándar en comparación con la media.

Cálculo del coeficiente de variación

La fórmula para el coeficiente de variación poblacional es 100%CV

La fórmula para el coeficiente de variación muestral es 100%s

CVx

Características del coeficiente de variación

- El coeficiente de variación se calcula en variables medidas en escala de razón.

- Se debe calcular para valores positivos.

Es útil al comparar la variabilidad de dos o más series de datos

que se expresan en distintas o iguales unidades, pero difieren a tal punto que

una comparación directa de las respectivas desviaciones estándar no es

muy útil,

por ejemplo, cuando las medias

están muy distantes.

Unidad 2. Medidas descriptivas 73

Notas importantes

Caso Aerolínea Wayra

Objetivo: Analizar si la compra con promociones genera mayor variabilidad de los tiem-pos de espera en la compra de un pasaje.

Con la siguiente información compare la variabilidad en los tiempos de espera en la compra de un pasaje entre pasajeros que compran con o sin promoción.

Ejemplo 11

Los siguientes datos representan resúmenes del número de mediciones de resistencia de cierto artículo que realizaron dos grupos de técnicos.

Grupo 1: media = 3 y desviación estándar = 1,10

Grupo 2: media = 5 y desviación estándar = 1,66

¿En cuál de los grupos el número de mediciones es más disperso?

Solución

Como los promedios son diferentes, se usa como indicador el coeficiente de variación:

1

1,10100% 36,67%

3CV

2

1,66100% 33,20%

5CV

El número de mediciones es más disperso en el grupo 1.

3.8%

17.5%

36.3%

25.0%

11.3%

1.3% 2.5% 2.5%

20.0%

23.3%

26.7% 30.0%

0.0% 0%

5%

10%

15%

20%

25%

30%

35%

40%

7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5

Po

rce

nta

je d

e p

asaj

ero

s

Tiempos de espera, en minutos

Distribución de pasajeros según tiempos de espera para adquirir un boleto por condición de compra

Sin promoción

Con promoción

Fuente: Aerolínea Wayra S.A.

74 Estadística Descriptiva 201601

Notas importantes

Rango

El rango (alcance, amplitud o recorrido) de un conjunto de datos observados es la dife-rencia entre el dato mayor y el dato menor.

Cálculo del rango

Rango = R = Xmax - Xmin

donde Xmax y Xmin son los valores máximo y mínimo observados de la variable

Características del rango

- Se puede calcular en variables medidas en escala de intervalo o razón

- Se ve muy afectado por valores extremos.

Rango intercuartil

Es la diferencia entre el tercer y primer cuartil.

Cálculo del rango intercuartil

Rango intercuartil = RIC = Q3 – Q1= P75 – P25

Características del rango intercuartil

- Se puede calcular en variables medidas en escala de intervalo o razón.

- No se ve afectado por valores extremos.

P25

P75

RIC = P75

- P25

50% 25% 25%

Rango = Xmáx

- Xmín

Mínimo valor Máximo valor

Unidad 2. Medidas descriptivas 75

Notas importantes

Ejercicio 20

Calcule la mediana y desviación estándar muestral de los siguientes grupos de datos.

Grupo 1 1 2 3 4 5 8 8 8 8

Grupo 2 2 2 2 2 5 6 7 8 9

En base a sus resultados, ¿qué puede afirmar sobre los datos de cada grupo?

1.4. Medidas de asimetría

Coeficiente de asimetría de Pearson

Mide si los datos aparecen ubicados simétricamente o no respecto de la media.

Cálculo del coeficiente de asimetría de Pearson

El coeficiente de asimetría para datos simples o agrupados se calcula con la siguiente fórmula:

s

MedianaxAs 3

Si el coeficiente de simetría As es:

positivo, indica sesgo a la derecha (cola derecha)

igual a cero la distribución es simétrica

alrededor de la media

negativo indica sesgo a la izquierda (cola izquierda)

76 Estadística Descriptiva 201601

Notas importantes

1.5. Diagrama de cajas

Un diagrama de cajas es una gráfica que describe la distribución de un conjunto de datos tomando como referencia los valores de los cuartiles como medida de posición y el valor del rango intercuartil como medida de referencia de dispersión. Además, nos permite apreciar visualmente el tipo de distribución de los datos (simétrica o asimétrica) y la identificación de valores extremos (datos atípicos).

Dato atípico

Es un dato inusualmente grande o pequeño con respecto a los otros datos. Se considera dato atípi-co a cualquier punto que esté:

- a más de 1,5(RIC) por arriba (o a la derecha) del tercer cuartil

- a más de 1,5(RIC) por debajo (o a la izquierda) del primer cuartil

Pasos para trazar un diagrama de cajas

Se traza un rectángulo con los extremos en el primer y tercer

cuartil

En la caja se traza una recta vertical en el lugar de la

mediana. Así, la línea de la mediana divide los datos en

dos partes iguales

Se ubican los límites mediante el rango intercuartil,

el límite superior está a 1,5 RIC arriba (o a la derecha) de Q3

el límite inferior está a 1,5 RIC debajo (o ala izquierda) de Q1

Se trazan los bigotes desde los extremos de las cajas hasta los

valores mínimo y máximo dentro de los límites inferior y

superior

Se marcan con un asterisco (*) las localizaciones de los valores

atípicos

Unidad 2. Medidas descriptivas 77

Notas importantes

Caso Aerolínea Wayra

Objetivo. Comparar el precio de los pasajes por condición de compra.

Complete el diagrama de cajas con la siguiente información:

Datos de precios de pasajes de clientes que compraron su pasaje con promoción

45 50 55 55 55 160 160 220 220 360 425 700 1150

Estadísticos Con promoción Sin promoción

Percentil 25 67,5

Percentil 50 355,0

Percentil 75 540,0

Rango intercuartil 472,5

Largo máximo del bigote = 1,5 RIC 708,75

Límite inferior = P25 – 1,5 RIC -641;25

Límite superior = P75 + 1,5 RIC 1248,75

Mínimo 45

Máximo 950

La condición de compra que presenta menor mediana en el precio de los pasajes es …….………………….…………. y este valor es ………………………………………………..

La condición de compra que presenta mayor variabilidad en el precio del 50% de los va-lores centrales es …….………………….…………. pues ……………………………………………………………..

La condición de compra que presenta valores atípicos en los precios de los pasajes es ………………..…………. y dichos valores atípicos son ……………………………………………………………..

78 Estadística Descriptiva 201601

Notas importantes

Ejemplo 12

Los registros policíacos del distrito A muestran los siguientes números de informes de delitos diarios para una muestra de días durante los meses de invierno y una muestra de días durante los meses de verano.

Invierno 5 5 6 7 7 8 12 14 15 15 17 17 18 18 20 21 21 21 21 22

Verano 5 5 8 8 9 9 10 12 18 20 20 20 24 24 26 27 27 27 28 28

Construya un gráfico que permita comparar, entre invierno y verano, los valores medios, la variabilidad y encontrar los valores atípicos del número de delitos diarios.

Solución

Se debe calcular los percentiles con datos simples. No calcule la distribución de fre-cuencias.

Calculemos los percentiles y los rangos intercuartiles.

Estadísticos Invierno Verano

Percentil 25 7,5 9,0

Percentil 50 16,0 20,0

Percentil 75 20,5 26,5

Rango intercuartil 20,5 – 7,5=13,0 26,5 – 9,0=17,5

Largo máximo del bigote = 1,5 RIC 1,5 x 13 = 19,5 1,5 x 17,5 = 26,25

Límite inferior = P25 – 1,5 RIC 7,5 – 19,5 = -12,0 9,0 – 26,25 = -17,25

Límite superior = P75 + 1,5 RIC 20,5 + 19,5 = 40 26,5 + 26,25 = 52,75

Para el invierno, de acuerdo con los datos, los bigotes llegan como mínimo a 5 y como máximo a 22.

Para el verano, de acuerdo con los datos, los bigotes llegan como mínimo a 5 y como máximo a 28.

No hay valores atípicos, pues ningún está fuera de los límites.

Unidad 2. Medidas descriptivas 79

Notas importantes

Ejercicios de la Unidad 2

1. Los datos siguientes corresponden a la estatura, en metros, de una muestra aleatoria de hombres peruanos de 18 años. Calcule e interprete la media de la estatura de la muestra.

1,67 1,70 1,83 1,65 1,70 1,65 1,60 1,70 1,61 1,69

2. Los datos siguientes corresponden a la estatura, en metros, de una muestra aleatoria de hombres peruanos de 18 años.

Distribución de una muestra de peruanos de 18 años, según su estatura

Estatura (en metros) fi hi

1,60 50 0,2778

1,63 78 0,4333

1,66 28 0,1556

1,70 14 0,0778

1,75 10 0,0556

Fuente: MINSA

Calcule e interprete la media de la estatura de la muestra.

3. Los datos siguientes corresponden a la estatura, en metros, de una muestra aleatoria de hombres peruanos de 18 años. Complete la distribución de frecuencias.

Distribución de una muestra de peruanos de 18 años, según su estatura

Estatura (en metros) Marca de clase fi hi Fi Hi

,

155

0,48

,

0,32

,

167

0,95

,

600

Fuente: MINSA

Calcule e interprete la media de la estatura de la muestra. Use las frecuencias absolutas.

4. Una tienda rebaja los precios, en 12%, a toda su línea de casacas. Si la media de los pre-cios de las casacas antes de la rebaja era de 155 soles. Calcule la nueva media de los pre-cios.

5. En una empresa el sueldo medio es 2500 soles. La gerencia, luego de la negociación con el sindicato, decide realizar un aumento del 3,5% y un bono de 150 soles a cada trabaja-dor. Calcule el nuevo sueldo medio.

6. Se registra los tiempos, en minutos, que se demora una cajera en atender a algunos clientes del supermercado A.

5,3 2,7 10,7 8,2 3,0 5,4 5,6 10,2 11,3 2,6 2,6 5,4 3,5 7,0 11,5

Calcule e interprete el valor de la mediana.

80 Estadística Descriptiva 201601

Notas importantes

7. En los Censos Nacionales 2007 ejecutados por el Instituto Nacional de Estadística e In-formática se preguntó a las madres peruanas que fueron menores de edad cuando nació su primer hijo(a) nacido vivo, obteniéndose los siguientes resultados.

Perú. Distribución de peruanas según edad al nacer su primer hijo(a) vivo. 2007

Edad de la madre fi hi Fi Hi

12 años 6,380 0,0054 6,380 0,0054

13 años 13,840 0,0118 20,220 0,0173

14 años 62,898 0,0537 83,118 0,0710

15 años 210,250 0,1795 293,368 0,2505

16 años 366,822 0,3132 660,190 0,5636

17 años 511,133 0,4364 1,171,323 1,0000

Fuente: PERÚ, INEI. Censos Nacionales 2007

Calcule e interprete la mediana de la variable en estudio.

8. En una ciudad, se tomó una muestra aleatoria de 1000 personas y se les preguntó por su ingreso mensual, en dólares, obteniéndose los siguientes resultados.

Distribución de personas según ingreso mensual

Ingreso (en dólares) Marca de clase fi hi Fi Hi

300

, 700

500 104 0,104 104 0,104

700

, 1 100

900 224 0,224 328 0,328

1 100

, 1 500

1 300 437 0,437 765 0,765

1 500

, 1 900

1 700 151 0,151 916 0,916

1 900

, 2 300

2 100 84 0,084 1000 1,000

Fuente: Empresa A

Calcule e interprete la mediana de la variable en estudio.

9. En la empresa A se tomó un examen de conocimientos sobre los procesos administrati-vos. Los resultados se muestran en la siguiente tabla:

Distribución de trabajadores según resultados del examen de conocimientos

Puntaje del examen Marca de clase fi hi Fi Hi

20 , 40 30 54 0,3103 54 0,3103

40 , 60 50 60 0,3448 114 0,6552

60 , 80 70 48 0,2759 162 0,9310

80 , 100 90 12 0,0690 174 1,0000

Fuente: Empresa A

Calcule e interprete la moda del puntaje.

10. Complete los siguientes textos:

“La mediana de un conjunto de datos ordenados es el valor que divide en dos partes a dicho conjunto. El …………………………………………….. son menores o igual a la mediana.”

“Usar la mediana como medida de tendencia central es preferible a usar la media cuan-do…………………………………………………….………………………”

Unidad 2. Medidas descriptivas 81

Notas importantes

11. Calcule e interprete la moda de los siguientes datos, que corresponden al número de errores ortográficos por correo electrónico que cometen algunos gerentes de una em-presa en una comunicación escrita.

2 2 5 2 3 3 2 3 2 1 2 0 0 1 3 0 3 2 1 2

4 2 1 3 1 1 3 3 3 1 2 4 2 0 1 4 2 2 2 2

12. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

La mediana se puede calcular solo en variables cuantitativas

La media es un valor que siempre está entre el mínimo valor y el máximo valor de los datos

Si se tienen datos simples se construye la distribución de frecuen-cias para calcular la mediana.

La media se puede calcular solo en variables medidas en escala de razón

13. Los siguientes datos corresponden a consumos, en soles, de alumnos en la cafetería de una universidad. Calcule la desviación estándar y la varianza.

3,0 7,5 5,5 12,0 6,5 2,7 2,0 4,5 8,0 4,0 2,5 3,0 1,5 7,0

14. Los datos corresponden a las notas de 327 alumnos en la primera práctica de Estadística Descriptiva del ciclo anterior. Calcule la desviación estándar muestral.

Distribución de alumnos según notas de la primera práctica de Estadística Descriptiva

Nota fi hi Fi Hi

12 110 0,3364 110 0,3364

14 136 0,4159 246 0,7523

15 44 0,1346 290 0,8869

16 37 0,1131 327 1,0000

Fuente: Secretaría Académica. Universidad A

15. Los datos muestran las ventas de 90 vendedores de una empresa en el último mes.

Distribución de vendedores según volumen de venta en el último mes

Ventas, en miles de dólares Marca de clase fi hi Fi Hi

5,0 - 7,8 6,4 13 0,144 13 0,144

7,8 - 10,6 9,2 20 0,222 33 0,367

10,6 - 13,4 12,0 38 0,422 71 0,789

13,4 - 16,2 14,8 19 0,211 90 1,000

Fuente: Empresa A

Calcule la desviación estándar muestral.

82 Estadística Descriptiva 201601

Notas importantes

16. En una tienda, la desviación estándar de los precios de los jeans es de 20 soles, calcule la nueva desviación estándar de los precios de los jeans si se realiza:

a. una rebaja del 6% de todos los precios,

b. una oferta y se rebaja ocho soles a cada precio.

17. El siguiente cuadro muestra la distribución de los sueldos mensuales, en soles, de los empleados de las empresas A y B.

Distribución de empleados según salario mensual de las empresas A y B

Sueldos

Empresa A

Marca de clase

fi Sueldos

Empresa B

Marca de clase

fi

[1 500 – 2 500] 2 000 120 [3 000 – 3 500] 3 250 150

]2 500 – 3 500] 3 000 80 ]3 500 – 4 000] 3 750 120

]3 500 – 4 500] 4 000 77 ]4 000 – 4 500] 4 250 45

]4 500 – 5 500] 5 000 63 ]4 500 – 5 000] 4 750 55

Fuente: Empresa A Fuente: Empresa B

¿Cuál de los grupos presenta mayor variabilidad de salarios?

Si en la empresa A hay un aumento de sueldo del 6%, mientras que en la empresa B se da un aumento de sueldo del 4% y una bonificación de 120 soles. Luego de los aumen-tos, ¿qué grupo presenta mayor variabilidad de salarios?

18. Los siguientes datos representan las notas de la primera práctica de alumnos de Estadís-tica Descriptiva. Calcule e interprete el percentil 25 de los siguientes datos.

Distribución de alumnos según notas de la primera práctica de Estadística Descriptiva

xi fi hi Fi Hi

12 5 0,025 5 0,025

13 46 0,230 51 0,255

14 109 0,545 160 0,800

16 40 0,200 200 1,000

Fuente: Secretaría Académica. Universidad A

19. Las notas de un curso de capacitación sobre tributación se muestran en la siguiente dis-tribución de frecuencias.

Distribución de empleados según notas del curso de capacitación. Agosto 2015

Notas Marca de clase fi hi Fi Hi

08 – 10 9 15 0,1056 15 0,1056

10 – 12 11 48 0,3380 63 0,4437

12 – 14 13 60 0,4225 123 0,8662

14 – 16 15 12 0,0845 135 0,9507

16 – 18 17 7 0,0493 142 1,0000

Fuente: Empresa A. Gerencia de RRHH

Unidad 2. Medidas descriptivas 83

Notas importantes

Calcule la nota mínima para estar en el quinto superior.

Calcule la nota máxima para estar en el 10% de las notas más bajas.

Calcule el porcentaje de personas que tuvo notas menores o iguales a 13.

Calcule el porcentaje de personas que tuvo notas mayores a 12 y menores o iguales a 15,5.

20. Dados los siguientes datos, calcule e interprete el percentil 30 y el percentil 75.

38 45 20 20 10 12 18 28 18 23 11 15 3 5 6 4 3 5 5

21. En el artículo “Estudios españoles de crecimiento 2008. Nuevos patrones antropométri-cos” se muestra el siguiente gráfico:

Tomado de http://www.sciencedirect.com/science/article/pii/S1575092208758455

¿Qué significa que para las jóvenes de 18 años el percentil 3 del peso sea 44 kilos?

¿Qué significa que para las jóvenes de 19 años el percentil 50 de la talla es 1,64 metros?

22. El tiempo, en meses, que viene laborando 51 trabajadores en una empresa se registra en la siguiente tabla.

6 7 11 12 13 15 15 15 16 16 17 17 17 18 18 18 19

19 19 19 19 19 19 19 19 20 20 20 20 20 21 21 21 22

22 22 22 23 23 24 26 26 26 28 29 29 31 41 48 50 60

Calcule el rango y el rango intercuartil de los datos.

84 Estadística Descriptiva 201601

Notas importantes

23. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

El percentil 90 es siempre mayor al percentil 10

El cuartil 2 es igual al decil 5

El percentil siempre se expresa en porcentaje

Si todos los pesos son iguales, la media ponderada es igual a la media aritmética

La media ponderada no tiene unidades

24. La siguiente tabla muestra información de los precios del artículo A (en soles) en estable-cimientos elegidos al azar en el distrito de La Molina.

Distribución de establecimientos de la Molina según precios del artículo A

Intervalo de clase

Marca de clase

Frecuencia absoluta

Frecuencia relativa

Frecuencia abso-luta acumulada

Frecuencia rela-tiva acumulada

– 4

– 0,150

– 0,300 22

– 8,35 8

– 0,900

– 40

Fuente: Indecopi

Complete la tabla anterior si se sabe que el rango intercuartil es 0,8.

25. De datos sacados de la Intranet de la Universidad A, se desea comparar el resultado de la primera práctica de tres horarios de un curso de estadística, para lo cual, se tienen los si-guientes resultados.

H1 10 11 11 12 12 12 12 13 13 13 14 15 15 16 16 17 18 18 19 19 19 20

H2 4 11 11 11 12 12 13 13 14 14 15 15 16 16 15 16 16 17 17 18

H3 9 9 10 10 10 11 12 12 12 12 13 13 13 13 14 14 15 15 15 17

Construya un diagrama de cajas que permita comparar el resultado de los horarios.

Indique el horario con mayor mediana de notas, el horario con mayor rango intercuartil y el horario donde existen valores atípicos.

26. Complete el siguiente texto:

“Los datos atípicos se define como ……………………….……………………………………………………..”

“Se trazan los bigotes desde los … ……………………... de las cajas hasta los valores mínimo y máximo ……………..……………. de los límites inferior y superior.

Unidad 2. Medidas descriptivas 85

Notas importantes

27. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

El coeficiente de asimetría tiene unidades las mismas unidades que los datos

Si a cada valor de un grupo de datos se le aumenta en 10%, el coeficiente de asimetría no varía

Si a cada valor de un grupo de datos se le aumenta 10 unidades, el coeficiente de asimetría no varía

En un diagrama de cajas siempre se puede conocer el máximo y mínimo de un grupo de datos

28. En un examen de Estadística Descriptiva se tomó la siguiente pregunta:

Con la intención de conocer los hábitos y preferencias de los estudiantes acerca de los productos naturales, se contrató los servicios de la consultora Data Mining Today S.A. la cual elaboró una encuesta para el estudio de mercado y se aplicó a 400 estudiantes de diferentes instituciones educativas. Algunos resultados fueron:

- El 70% de los encuestados prefiere consumir productos naturales enlatados. - La fruta más consumida es la manzana, seguida por el plátano y la pera. - El gasto promedio por semana en productos naturales es de 25 soles con una des-

viación estándar de 5 soles. - El 15% de los encuestados gasta más de 28 soles semanales en productos naturales. - El 50% de los encuestados tiene una edad superior a 20 años. - El número promedio de vasos de yogurt consumidos durante la semana es de 6.

En base a esta información indique: (1,5 puntos)

Población

Variable cuantitativa continua

Variable cuantitativa discreta

Variable Nombre del estadístico Valor del estadístico

Tendencia central

Dispersión

Posición

Lo siguiente es la respuesta de un alumno, póngale nota.

Población Los 400 estudiantes de diferentes instituciones educativas

Cuantitativa continua Gasto promedio semanal en productos naturales

Cuantitativa discreta Número promedio de vasos de yogurt consumidos durante

la semana

86 Estadística Descriptiva 201601

Notas importantes

Variable Nombre del estadístico Valor del estadístico

Tendencia central

Fruta consumida Moda Manzana, plátano y

pera

Dispersión Gasto promedio semanal

en productos naturales

Desviación estándar 5 soles

Posición Tipo de producto prefe-

rido

Percentil 70

29. El salario, en cientos de soles, de los trabajadores una empresa se presenta a continua-ción:

13 12 13 14 15 15 15 18 23 24 24 25 25 36 42 48 60

Calcule el coeficiente de asimetría de Pearson

30. El siguiente cuadro muestra la distribución de los sueldos mensuales de los empleados de las empresas A y B.

Distribución de empleados según de sueldos mensuales en la empresa A y B

Sueldos

Empresa A

Marca de clase

fi Sueldos

Empresa B

Marca de clase

fi

[1 500 – 2 500] 2 000 45 [3 000 – 3 500] 3 250 18

]2 500 – 3 500] 3 000 148 ]3 500 – 4 000] 3 750 70

]3 500 – 4 500] 4 000 60 ]4 000 – 4 500] 4 250 70

]4 500 – 5 500] 5 000 15 ]4 500 – 5 000] 4 750 18

Fuente: Empresa A Fuente: Empresa B

Calcule la asimetría de los dos grupos. Realice una conclusión

31. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

El coeficiente de variación se puede calcular en escalas de in-tervalo y de razón

Si las unidades de los datos son minutos, la varianza se expresa en minutos al cuadrado

El rango intercuartil se ve muy afectado por valores muy gran-des o muy pequeños

El coeficiente de variación tiene las mismas unidades que la varianza

32. Loy Toy es una red de librerías, con sucursales en los distritos de Santiago de Surco, San Borja y San Luis. Se ha observado que durante los últimos meses los montos de ventas vienen disminuyendo, por lo que el administrador desea conocer los factores que están originando este problema y le ha encargado a su equipo de trabajo realizar una encuesta entre sus clientes, seleccionados aleatoriamente de cada sucursal.

Unidad 2. Medidas descriptivas 87

Notas importantes

La administración se ha trazado cumplir los siguientes objetivos: 1. Identificar el número de libros universitarios más frecuente que vende diariamente

en cada una de las sucursales. 2. Determinar el monto de venta mínima que debe tener la librería en un día, para estar

considerada dentro del 18% de los días con mayores ventas. 3. Determinar la sucursal que tiene las ventas más homogéneas. 4. Identificar el comportamiento de las ventas de los grupos de artículos: útiles escola-

res, material de oficina y libros universitarios.

Para cumplir los objetivos 1, 2 y 3 se seleccionaron muestras de las dos sucursales las que se representan a continuación:

Distribución del número de libros universitarios vendidos por día en la sucursal de San Luis

Número de libros vendidos Hi hi

0 0,0833 0,0833

1 0,1833 0,1000

2 0,3133 0,1300

3 0,5333 0,2200

4 0,6833 0,1500

5 0,9333 0,2500

7 10,000 0,0667

a. Identifique la unidad elemental b. Interprete h3 del gráfico. c. El gerente comercial Loy Toy propone un reconocimiento a la sucursal cuyas ventas

diarias más frecuentes superen los cuatro libros universitarios. ¿Qué sucursal recibirá dicho reconocimiento? Justifique numéricamente su resultado usando el gráfico y la tabla.

1

8 9

7 7

3

5

0

2

4

6

8

10

1 2 3 4 5 6 7

me

ro d

e d

ías

Número de libros vendidos

Distribución del número de libros universitarios vendidos por día en la sucursal de Surco

Fuente: Loy Toy

88 Estadística Descriptiva 201601

Notas importantes

El gerente comercial otorgará un bono al personal de la sucursal, cuya venta mínima dia-ria del 18% de los días con mayores ventas sea superior a 250 soles. ¿En qué sucursal o sucursales los trabajadores recibirán el bono de reconocimiento? Justifique numérica-mente su resultado usando el gráfico y la tabla.

Distribución poblacional porcentual de las ventas diarias, en nuevos soles, de la sucursal San Borja

Tabla Nº 2: Muestra de ventas diarias, en nuevos soles, de la sucursal de San Luis

101,07 102,7 110,85 130,26 138,63 139,3 152,34 156,31 169,27 174,46

193,55 204,57 210,1 222,05 232,51 238,7 259,13 259,13 264,32 300,61

El gerente comercial de Loy Toy realizó el análisis de las ventas diarias por sucursal consi-derando solo los promedios, pero esto generó el reclamo de los trabajadores. ¿Qué me-dida adicional le sugiere calcular para realizar una comparación objetiva que le permita determinar la sucursal con ventas más homogéneas? Justifique numéricamente su res-puesta usando el gráfico y la tabla de la pregunta anterior. Para cumplir el objetivo 4 se seleccionarán muestras de artículos que fueron clasificados en tres grupos: útiles escola-res, material de oficina y libros universitarios.

El gerente comercial analizará las ventas del mes de agosto según grupo de artículos. Los resultados se muestran a continuación:

Unidad 2. Medidas descriptivas 89

Notas importantes

Ventas en miles de nuevos soles, del mes de agosto según grupo de artículos

Grupo de artículos Ventas (miles de nuevos soles)

Útiles escolares 31,5 37,8 39,7 39,8 40,3 59,2 59,3 67,1 74,9 77,7 88,7 91,9 96,3 99,5 104,7

Material de oficina 29,2 29,5 33,4 35,8 37,4 44,5 57,6 58,8 62,7 65,3 75,1 115,0

Libros universitarios 55,0 67,5 74,2 78,0 78,7 80,0 85,0 85,0 85,0 86,6 92,0 100,0 115,0 125,0

Usando la tabla, complete el cuadro y el diagrama de cajas.

Libros universitarios

Mínimo Límite Inferior

Máximo Límite Superior

Percentil 25 Valor atípico(s) inferior(es)

Percentil 50 Valor atípico(s) superior(es)

Percentil 75 Bigote inferior

RIC

Bigote superior 100

39.8 34 31.5 29.2

67.1

51.05

104.7

75.1

91.9

64.65

20

30

40

50

60

70

80

90

100

110

120

130

Útiles escolares Material de oficina Libros universitarios

Ve

nta

s

Grupo de artículos

Gráfico Nº 3: Ventas del mes de agosto, en miles de nuevos soles, por grupo de artículos

Fuente: Lay Toy

*

90 Estadística Descriptiva 201601

Notas importantes

Si el gerente comercial desea identificar qué grupo de artículos: útiles escolares, mate-rial de oficina y libros universitarios presenta mayor dispersión en el 50% de las ventas centrales. ¿Cuál sería su conclusión? Justifique su respuesta. Si el gerente comercial ha decidido implementar una estrategia publicitaria para incre-mentar las ventas para aquel grupo que presente una asimetría positiva o hacia la dere-cha en el 50% central de las ventas centrales. ¿Qué grupo de artículo requiere de dicha estrategia? Justifique su respuesta.

Temario

Reglas de conteo y combinaciones

Probabilidad: concepto, experimento aleatorio, espacio muestral y evento

Operaciones con eventos

Probabilidad condicional

Probabilidad total

Teorema de Bayes

Diagrama del árbol

Eventos independientes

Al finalizar la unidad 3, el alumno

utiliza los diferentes conceptos relacionados

con probabilidades en la toma de decisiones

frente a situaciones de incertidumbre.

Logro de la unidad 3

Unidad 3:

Teoría de la probabilidad

92 Estadística Descriptiva 201601

Notas importantes

1.1. Experimentos, reglas de conteo y asignación de probabilidades

La probabilidad mide o cuantifica la posibilidad de ocurrencia de un evento.

La probabilidad es el lenguaje para describir y tratar la incertidumbre.

Ejercicio 21

Marque con un aspa, asignando una opción a la situación descrita de acuerdo con su po-sibilidad de ocurrencia.

Situación Muy poco probable

Poco probable

Igualmente pro-bable que ocurra o que no ocurra

Bastante probable

Muy probable

Una mujer será la próxima presienta del Perú

Aprobaré este curso

Lanzo un dado y sale un número par

El PBI del Perú crecerá 4% este año

Perú se clasificará al Mundial Rusia 2018

Experimento aleatorio

Es todo proceso que genera dos o más resultados bien definidos sin que se pueda pre-decir con certeza cuál de ellos será observado u ocurrirá en cada realización del proceso.

En cualquier repetición simple de un experimento, ocurrirá uno y solo uno de los posi-bles resultados experimentales.

Espacio muestral

Es el conjunto de todos los posibles resultados de todos los resultados experimentales. Se le suele simbolizar por S o Ω.

Evento

Un evento es un subconjunto del espacio muestral.

Al realizar un experimento, diremos que el evento A ha ocurrido si el resultado obtenido es un elemento del evento A.

Usualmente a un evento se le denota con las letras mayúsculas del abecedario (A, B, C, etc.)

Unidad 3. Teoría de Probabilidad 93

Notas importantes

Probabilidad de un evento

La probabilidad es una medida numérica de la posibilidad de que ocurra un evento. Por tanto, la probabilidad es una medida del grado de incertidumbre asociado con un even-to.

Los valores de la probabilidad siempre se asignan en una escala de 0 a 1.

Una probabilidad cercana a 0 indica que es difícil que el evento ocurra, mientras que, una probabilidad cercana a 1 indica que es casi seguro que el evento ocurra.

Ejemplo 13

Sea el experimento aleatorio “Una app se ofrece por App Store y se registra el número de descargas en un día”, indique el espacio muestral definido, un evento y asigne una probabilidad de ocurrencia a dicho evento.

Ejercicio 22

Sea el experimento aleatorio “Un alumno se matricula en Estadística Descriptiva y anali-za su situación al final del ciclo (aprobado, desaprobado, retirado)”. Indique el espacio muestral definido, un evento y asigne una probabilidad de ocurrencia a dicho evento.

Experimento aleatorio

•Una app se ofrece por App Store y se registra el número de descargas en un día

Espacio muestral

•S = 0, 1, 2, 3, 4, 5, 6, 7, ...

Evento

•A = que el número de descargas sea mayor a 5 = 6, 7, ....

Probabilidad

•P(A) = 0,10

Experimento aleatorio

Espacio muestral S =

Evento A =

Probabilidad P(A) =

0 1 0,5

Poca probabilidad de ocurrencia

Alta probabilidad de ocurrencia

La ocurrencia del evento es tan probable como improbable

94 Estadística Descriptiva 201601

Notas importantes

Definición clásica de la probabilidad de un evento

Sea un experimento aleatorio cuyo correspondiente espacio muestral S está formado por un número n finito de posibles resultados distintos y con la misma probabilidad de ocurrir, entonces definimos la probabilidad de un evento como:

casosdetotalnúmero

Aeventoalfavorablescasosdenúmero

Sn

AnAP )(

Ejemplo 14

Sea el experimento aleatorio “Lanzar un dado y anotar el número de puntos de la cara superior”, indique el espacio muestral definido, un evento e indique su probabilidad de ocurrencia.

Solución

Ejemplo 15

Sea el experimento aleatorio “Lanzar dos dados y anotar el número de puntos de cada cara superior”, indique el espacio muestral definido, un evento e indique su probabili-dad de ocurrencia.

Solución

Ejercicio 23

Sea el experimento aleatorio “Lanzar dos monedas y anotar el resultado”, indique el es-pacio muestral definido, un evento e indique su probabilidad de ocurrencia.

Solución

Experimento aleatorio

•Lanzar un dado y anotar el número de puntos de la cara superior

Espacio muestral

•S = 1 2, 3, 4, 5, 6

Evento

•A = 1 , 3, 5

Probabilidad

•P(A) = n(A) / n(S) = 3/6 = 0,5

Experimento aleatorio

•Lanzar dos dados y anotar el número de puntos de cada cara superior

Espacio muestral

•S = (1,1); (1,2); (1,3); .... (6,6)

Evento

•A = (1,1); (2,2); (3,3); (4,4); (5,5); (6,6)

Probabilidad

•P(A) = n(A) / n(S) = 6/36 = 1/6

Experimento aleatorio Lanzar dos monedas y anotar el resultado

Espacio muestral S =

Evento A =

Probabilidad P(A) = n(A)/n(S) =

Unidad 3. Teoría de Probabilidad 95

Notas importantes

Algunas relaciones básicas de probabilidad

Con frecuencia se construyen eventos mediante la combinación de eventos más senci-llos. Es usual emplear la notación de conjuntos para describir los eventos construidos de esta forma.

Sea un experimento aleatorio y S el espacio muestral asociado. Si A y B son dos even-tos definidos en S, se define las siguientes operaciones con eventos.

Complemento (AC)

Para un evento A cualquiera se define su complemento CA como el evento consistente en todos los puntos de S que no están en A.

Se tiene que:

P(A) = 1 - P(AC)

CA se expresa como: “El evento A no ocurre”

Ejercicio 24

Diego invierte en un negocio. Escriba el evento complementario al evento A:= Diego tie-ne éxito en el negocio.

Ejercicio 25

Una gerente toma diez decisiones en su empresa. Escriba el evento complementario al evento A:= La gerente tiene razón en tres o más de las decisiones.

Ejercicio 26

Complete los espacios en blanco.

La probabilidad de que una empresa gane una licitación es 0,60, por lo tanto, la probabi-lidad de que no la gane ……………………….

La probabilidad de que una persona gane la Tinka con una jugada es del 0,0000123%, por lo tanto, la probabilidad de que no la gane en una jugada es …………………………%.

96 Estadística Descriptiva 201601

Notas importantes

Unión de eventos (A B)

Para dos eventos A y B, la unión del evento A con el evento B es el evento que contienen todos los puntos de S que pertenecen a A o a B o a ambos.

BA se expresa como: “Al menos uno de los eventos A o B ocurre”.

Intersección de eventos (A ∩ B)

Para dos eventos A y B, la intersección de los eventos A y B es el evento que contienen todos los puntos de S que pertenecen tanto a A como a B.

BA se expresa como: “Ambos eventos, A y B ocurren a la vez”.

Diferencia de eventos (A - B)

Para dos eventos A y B, la diferencia de los eventos A y B es el evento que contienen to-dos los puntos de S que pertenecen a A y no pertenecen a B.

BA se expresa como: “Ocurre el evento A pero no el evento B”

Unidad 3. Teoría de Probabilidad 97

Notas importantes

Diferencia simétrica de eventos (A ∆ B)

Para dos eventos A y B, la diferencia simétrica de los eventos A y B es el evento que con-tienen todos los puntos de S que pertenecen solo a A o aquellos que solo pertenecen a B.

BA se expresa como: “Ocurre solamente uno de los eventos A o B”

Ejercicio 27

Una financista invierte en fondos mutuos y en la Bolsa de Valores. Se definen los even-tos:

A:= que la financista tenga éxito en la inversión de fondos mutuos

B:= que la financista tenga éxito en la inversión en la Bolsa de Valores.

Escriba los siguientes eventos en función de los eventos A y B. Además, grafique dicho evento en un diagrama de Venn.

Evento Notación Diagrama de Venn

que la financista tenga éxito en las dos inversiones

A ………... B

que la financista no tenga éxito en la Bolsa de Valores

que la financista tenga éxito en, al menos una, de sus inversiones

que la financista tenga éxito solamente en una de sus inversiones

que la financista tenga éxito en la Bolsa de Valores, pero no en los fondos mutuos

98 Estadística Descriptiva 201601

Notas importantes

Eventos mutuamente excluyentes

Dos eventos son mutuamente excluyentes o disjuntos si no tienen puntos de S en co-

mún. Los eventos A y B son mutuamente excluyentes si y solo si A B = .

Ejercicio 28

Indique si los siguientes eventos son mutuamente excluyentes.

A: Estudio mucho el curso Estadística, B: Desapruebo el curso Estadística …….………………

A: Apruebo el curso Estadística, B: Desapruebo el curso Estadística……………….................

Tengo cinco soles, A: Compro un sándwich que cuesta cuatro soles, B: Compro una ga-seosa que cuesta dos soles …….………………

1.2. Reglas de conteo y combinaciones

Regla de la adición

Si A y B son eventos mutuamente excluyentes, entonces

n(A U B) = n(A) + n(B)

Caso Aerolínea Wayra

En un día, una persona puede viajar de Lima a Cusco en cualquiera de los diez vuelos diarios directos o en cualquiera de los tres vuelos con escala en Ayacucho. ¿De cuántas maneras diferentes puede viajar una persona de Lima a Cusco por dicha aerolínea?

Unidad 3. Teoría de Probabilidad 99

Notas importantes

Regla de la multiplicación

Si un experimento se realiza por una sucesión de k pasos, en los el primer paso tiene n1 resultados posibles, el segundo tiene n2 resultados posibles y así sucesivamente, enton-ces el número total de resultados del experimento es n1 x n2 x … x nk.

Caso Aerolínea Wayra

Un pasajero puede elegir, en el menú de primera clase, una de tres entradas diferentes, uno de cuatro segundos y uno de tres postres. ¿De cuántas maneras diferentes puede elegir un pasajero su menú?

Regla de conteo para combinaciones

La cantidad de formas de seleccionar x objetos de un total de n objetos distinguibles sin tomar en cuenta el orden es:

!!

!

xnx

nC n

x

Caso Aerolínea Wayra

En un vuelo, la aerolínea ha sobrevendido pasajes, por lo que tendrá que ofrecer pre-mios a pasajeros para que no viajen en ese vuelo. Si hay 15 pasajeros que viajan solos y están dispuestos a no viajar y recibir los premios ¿De cuántas maneras diferentes se puede elegir a solo ocho de ellos?

Objetivo específico: Establecer una política de inspección exhaustiva de pasajeros.

En cada vuelo se elegirá al azar al 5% de los pasajeros para realizar una inspección ex-haustiva, la cual detecta si una persona lleva sustancias ilegales. Si en un vuelo de 120 personas, hay tres personas que llevan sustancias ilegales. Calcule la probabilidad de de-tectar al menos a una de ellas.

100 Estadística Descriptiva 201601

Notas importantes

Axiomas de la probabilidad

Sea un experimento aleatorio, S el espacio muestral asociado a dicho experimento alea-torio y A un evento definido en S, entonces la probabilidad del evento A, denotada por P(A), es aquel número que cumple los siguientes axiomas:

Ley aditiva para eventos cualesquiera

Sean A, B y C tres eventos cualesquiera, se cumple que:

P(A B) = P(A) + P(B) – P(A B)

P(A B C)= P(A) + P(B) + P(C) - P(A B) - P(A C) - P(B C) + P(A B C)

Caso Aerolínea Wayra

La probabilidad que la aerolínea Wayra quiebre en los próximos dos años es de 0,3 y que su empresa rival quiebre en esos dos años es de 0,5; mientras que la probabilidad de que no quiebre ninguna de las dos empresas en esos dos años es 0,4.

Defina los eventos necesarios para resolver este problema:

A:= ………………………………………………………………………………………………………………

B:= ………………………………………………………………………………………………………………

Calcule la probabilidad de que ocurran los siguientes eventos:

Axioma 1

0 P(A) 1

Axioma 2

P(S) = 1

Axioma 3

Si A y B son dos eventos mutuamente excluyentes

entonces: P(A B) = P(A) + P(B)

Unidad 3. Teoría de Probabilidad 101

Notas importantes

Evento Probabilidad Diagrama de Venn

que quiebre alguna de las dos aerolíneas P(A …… B)=

que quiebre solo una de las aerolíneas P(A …… B)=

que quiebre solo la aerolínea rival de Wayra

P(A …… B)=

que no quiebre alguna de las dos aerolí-neas

P(A …… B)=

1.3. Probabilidad condicional

La probabilidad condicional se refiere a hallar la probabilidad de un evento conociendo cierta información (condición).

BP

BAPBAP

Ejemplo 16

En un grupo, conformado por hombres y mujeres, existen profesionales y no profesiona-les de acuerdo con la siguiente tabla.

Hombres (H) Mujeres (M) Total

Profesionales (P) 1 2 3

No profesionales (N) 7 10 17

Total 8 12 20

Si se elige una mujer al azar, calcule la probabilidad de que sea profesional.

Solución

Primero, definamos los eventos necesarios para resolver este problema:

M:= Que la persona escogida sea mujer

P:= Que la persona escogida sea profesional mujer

102 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo específico: Analizar el comportamiento de los clientes considerando el destino de viaje, el tipo de cliente y el modo de compra. Dentro de su proceso de creación de reportes, Felipe ha obtenido la siguiente tabla:

Tipo de cliente

Destino de viaje nacional Destino de viaje internacional

Total Compra presencial

Compra por Internet

Compra presencial

Compra por Internet

Premiun 12 28 38 13

Frecuente 8 25 12 23

Ocasional 7 15 9 10

Total

Calcule la probabilidad de que una persona elegida al azar compre pasajes por Internet y tenga un destino de viaje internacional.

Si se elige al azar a un cliente frecuente, calcule la probabilidad de que compre pasajes de forma presencial.

Si la probabilidad de que un cliente viaje dentro del país supera a 0,6, se decidirá partici-par del próximo Cyber Day. ¿Qué decisión se tomará?

Solución

Defina los eventos necesarios para resolver este problema:

……………:= ………………………………………………………………………………………………………………

……………:= ………………………………………………………………………………………………………………

……………:= ………………………………………………………………………………………………………………

……………:= ………………………………………………………………………………………………………………

……………:= ………………………………………………………………………………………………………………

Unidad 3. Teoría de Probabilidad 103

Notas importantes

Pregunta Probabilidad

Calcule la probabilidad de que una persona elegida al azar compre pasajes por Internet y tenga un destino de viaje internacional.

P(………………………) =

Si se elige al azar a un cliente frecuente, calcule la probabilidad de que compre pasa-jes de forma presencial.

P(………………………) =

Si la probabilidad que un cliente viaje dentro del país supera a 0,6, se decidirá participar del próximo Cyber Day. ¿Qué decisión se tomará?

P(………………………) =

Ejemplo 17

La mayoría de las estaciones de servicio venden tres tipos de gasolina: 90 octanos, 95 octanos y 97 octanos. Con frecuencia, alguna de cada está enriquecida con un aditivo. La tabla siguiente ilustra los porcentajes de clientes que prefieren cada tipo.

90 octanos (B) 95 octanos (C) 97 octanos (D) Total

Con aditivo (A) 0,05 0,10 0,05 0,20

Sin aditivo (AC) 0,15 0,40 0,25 0,80

Total 0,20 0,50 0,30 1,00

Se selecciona al azar un cliente que ha comprado uno de estos tipos de gasolina.

Solución

¿Cuál es la probabilidad de que haya comprado gasolina con aditivo o no sea de 95 oc-tanos?

60,0)05,005,0(50,020,0 ccc CAPCPAPCAP

Si el cliente no compró gasolina de 95 octanos, ¿cuál es la probabilidad de que hay com-prado gasolina de 97 octanos?

60,050,0

30,0)(

c

cc

CP

CDPCDP

Si el cliente no compró gasolina de 90 0ctanos, ¿cuál es la probabilidad de que haya comprado gasolina sin aditivo?

8125,080,0

65,0

c

cccc

BP

BAPBAP

104 Estadística Descriptiva 201601

Notas importantes

Ley multiplicativa para eventos cualesquiera

La ley multiplicativa se usa para calcular la probabilidad de una intersección de eventos.

BAPBPABPAPBAP //

Caso Aerolínea Wayra

Un sistema de seguridad en un avión tiene dos componentes. La probabilidad de que el primer componente falle es 0,5% y la probabilidad de que el segundo componente falle si el primero ha fallado es 3%. El sistema falla si ambos componentes fallan. Calcule la probabilidad de que falle el sistema de seguridad.

Árbol de probabilidades

Si los eventos Ai y Bi son independientes, el árbol de probabilidades se simplifica dado que las probabilidades condicionales serían iguales a las probabilidades simples corres-pondientes.

Unidad 3. Teoría de Probabilidad 105

Notas importantes

Partición del espacio muestral

Sean los k eventos A1, A2, A3,..., Ak mutuamente excluyentes y tales que entonces consti-tuyen una partición del espacio muestral S.

Probabilidad total

Sean los k eventos A1, A2, A3,..., Ak, mutuamente excluyentes y que constituyen una par-tición del espacio muestral S, entonces para cualquier evento B de S se cumple:

kABPABPABPABPBP ...321

Por la ley multiplicativa de eventos cualesquiera, se tiene finalmente que:

kk ABPAPABPAPABPAPBP /...// 2211

1.4. Teorema de Bayes

Si los k eventos A1, A2, A3, ..., Ak, constituyen una partición del espacio muestral S, en-tonces para cualquier evento B de S tal que P(B) > 0, se cumple:

BP

BAPBAP i

i

Por definición de probabilidad condicional y probabilidad total se tiene que:

kk

iii

ABPAPABPAPABPAP

ABPAPBAP

/...//

/

2211

El teorema de Bayes establece una relación muy importante en la teoría de probabilida-des y es la base para la revisión de la asignación de probabilidades a la luz de informa-ción adicional.

Probabilidades a priori

Información nueva

Teorema de Bayes

Posibilidades posteriores

106 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

Objetivo específico: Evaluar la situación de incidentes mecánicos de los aviones y su re-paración dentro de las 24 horas con la finalidad de dar un bono de reconocimiento a los mecánicos.

Se sabe que el 30% de los incidentes mecánicos ocurren con el avión 1, el 50% en el avión 2 y el resto con el avión 3. Asimismo, la probabilidad que el avión 1 sea reparado dentro de las 24 horas después de ocurrido el incidente es 90%, de 73% para el avión 2 y de 65% para el avión 3.

Si se elige en forma aleatoria un informe por incidente de un avión, ¿cuál es la probabili-dad que el informe indique que el avión logró ser reparado dentro de las 24 horas?

Si el informe dice que el avión no fue reparado dentro de las 24 horas, ¿de cuál de los aviones es más probable que sea el informe?

Solución

Los eventos y el árbol de probabilidades necesarios para resolver este problema son:

….:= ………………………………………………………………………………………………………………

….:= ………………………………………………………………………………………………………………

….:= ………………………………………………………………………………………………………………

Si se elige en forma aleatoria un informe por incidente de un avión, ¿cuál es la probabili-dad que el informe indique que el avión logró ser reparado dentro de las 24 horas?

Si el informe dice que el avión no fue reparado dentro de las 24 horas, ¿de cuál de los aviones es más probable que sea el informe?

Unidad 3. Teoría de Probabilidad 107

Notas importantes

Ejemplo 18

El departamento de créditos de una tienda comercial sabe que sus ventas se pagan con dinero en efectivo, con cheque o al crédito, con probabilidades respectivas de 0,3; 0;3 y 0,4. La probabilidad de que una venta sea por más de $50, es igual a 0,2 si ésta es en efectivo, es igual a 0,9 si ésta es con cheque y es igual a 0,6 si ésta es al crédito.

¿Cuál es la probabilidad de que una persona compre por más de $50?

Si compra por más de $50, ¿qué es más probable que haya pagado en efectivo, con che-que o al crédito?

Solución

Sean los eventos:

E: La compra se realiza con dinero en efectivo

CH: La compra se realiza con cheque

C: La compra se realiza al crédito

M: La compra es por más de $ 50

MC: La compra no es por más de $ 50

Con la información proporcionada, construimos el siguiente diagrama de árbol:

Se pide calcular:

57,060,040,090,030,020,030,0 MP

0,30 0,20 2

/0,57 19

P E M

0,30 0,90 9

/0,57 19

P CH M

0,40 0,60 8

/0,57 19

P C M

Se observa que es más probable la compra se haya hecho con cheque.

108 Estadística Descriptiva 201601

Notas importantes

1.5. Eventos independientes

Si 0AP , los eventos A y B son independientes si y solo si:

APBAP

Ley de la multiplicación para eventos independientes

Si dos eventos A y B son independientes se cumple que

BPAPBAP

Tres eventos A, B y C son independientes si se cumple que:

BPAPBAP

CPAPCAP

CPBPCBP

CPBPAPCBAP

Caso Aerolínea Wayra

Objetivo específico: Hacer un reporte sobre la compra de pasajes usando el canal de In-ternet considerando diferentes tipos de clientes.

La probabilidad que un cliente premium compre un pasaje usando Internet es 13% y, que un cliente frecuente haga la compra por esta vía es 46%. Si un día cualquiera, dos clientes (uno de cada tipo) que no se conocen (por lo tanto la decisión de compra de uno no influye en el otro), deciden comprar un pasaje:

¿Cuál es la probabilidad que por lo menos uno de los clientes compre su pasaje vía In-ternet?

Si la probabilidad de que exactamente uno de los clientes haya utilizado Internet en su compra es inferior a 0,30, se rebajará el costo de los pasajes. ¿Qué decisión se tomará?

Unidad 3. Teoría de Probabilidad 109

Notas importantes

Si se tiene un grupo de 30 clientes premium que no se conocen entre sí, calcule la pro-babilidad de que al menos uno de ellos compre su pasaje por Internet.

Si se tiene un grupo de 30 clientes premium que no se conocen entre sí, calcule la pro-babilidad de que al menos dos de ellos compren sus pasajes por Internet.

110 Estadística Descriptiva 201601

Notas importantes

Ejercicios de la Unidad 3

33. Indicar, para cada uno de los siguientes experimentos aleatorios, los respectivos espacios muestrales: lanzar una moneda, jugar un partido de fútbol, jugar un partido de tenis, lan-zar un dado, lanzar dos dados.

34. Un experimento consiste en lanzar primero un dado para después lanzar una moneda, siempre y cuando el número del dado sea par. Si el resultado del dado es impar, la mo-neda se lanza dos veces. Determine el espacio muestral de este experimento.

35. Se lanzan dos dados, calcule la probabilidad de que la suma de los dos dados sea mayor a siete. Rpta: 0,4167

36. Un fabricante de teléfonos celulares acaba de lanzar dos modelos de smartphones económicos: el L720 y el L520. La probabilidad de que el modelo L720 tenga éxito es 0,70 y en el modelo L520 es 0,60. La probabilidad de que al menos uno de los modelos tenga éxito es 0,90. Determine la probabilidad de que se tenga éxito solo en uno de los modelos. Rpta: 0,5

37. En el presente año, la probabilidad de que una persona viaje a Miami es 0,40; a Máncora es 0,5 y Madrid es 0,37. Además, la probabilidad de viajar a Miami y Máncora es 0,15; a Miami y Madrid es 0,10 y de Máncora y Madrid es 0,12. Si la probabilidad de que la persona viaje a por lo menos a una ciudad es 0,95; calcule la probabilidad de que la persona viaje a una sola ciudad.

38. En un hogar hay diez personas y un encuestador necesita entrevistar a dos de ellas, sin importar el orden. ¿De cuántas maneras diferentes se puede elegir a esas dos personas?

39. Al fin del ciclo, los 30 alumnos de una sección deben elegir a tres de ellos al azar para que organicen un “compartir”. ¿Cuántos grupos diferentes de tres personas se pueden ele-gir?

40. De 50 conductores, 9 nueve no tienen los papeles en regla. Si un policía escoge al azar a cinco conductores y les pide sus papeles,

a. Calcule la probabilidad de que elija a dos que no tengan los papeles en regla.

b. Calcule la probabilidad de que elija al menos un conductor sin papeles en regla.

41. En un lote de polos, hay 70 polos rojos, 150 blancos y 90 azules. Si extrae un polo al azar.

a. ¿Cuál es la probabilidad de que el polo sea azul o blanco?

b. ¿Cuál es la probabilidad de que no sea azul?

42. Según el II Censo Universitario, en el año 2010, 63 900 alumnos ingresaron a las universi-dades públicas y 194 151 a las universidades privadas. De ellos, en las universidades pú-blicas, 28 798 ingresantes fueron mujeres, mientras que en las privadas lo fueron 98 942.

Si se elige al azar a una ingresante, calcule la probabilidad de que estudie en una univer-sidad privada.

Si se elige al azar a un ingresante de universidad privada, calcule la probabilidad de que sea mujer.

Unidad 3. Teoría de Probabilidad 111

Notas importantes

43. En los Censos Nacionales 2007 ejecutados por el Instituto Nacional de Estadística e In-formática se preguntó a todos los peruanos por los servicios de comunicación con los que contaba su hogar y su área de residencia, obteniéndose los siguientes resultados:

Servicios con que los cuenta el hogar Urbano Rural Total

Hogares sin ningún tipo de servicio 1 682 454 1 468 889 3 151 343

Solo tienen teléfono fijo 480 831 6 170 487 001

Solo tienen teléfono celular 1 299 037 138 721 1 437 758

Solo tienen Internet 3 336 275 3 611

Solo tienen TV por cable 56 343 2 688 59 031

Tienen teléfono fijo y teléfono celular 506 759 2 912 509 671

Tienen teléfono fijo e Internet 15 684 31 15 715

Tienen teléfono fijo y TV por cable 117 733 186 117 919

Tienen teléfono celular e Internet 9 970 84 10 054

Tienen teléfono celular y TV por cable 204 563 1 981 206 544

Tienen Internet y TV por cable 1 288 19 1 307

Tienen teléfono fijo, teléfono celular e Internet 93 103 110 93 213

Tienen teléfono fijo, teléfono celular y TV por cable 326 181 468 326 649

Tienen teléfono fijo, Internet y TV por cable 19 732 9 19 741

Tienen teléfono celular, Internet y TV por cable 15 424 49 15 473

Los cuatro servicios 298 911 133 299 044

Total 5 131 349 1 622 725 6 754 074

a. Si se selecciona al azar un hogar de zona urbana, ¿cuál es la probabilidad de que tenga cuatro servicios?

b. Si se selecciona al azar un hogar con tres servicios, ¿cuál es la probabilidad de que sea de zona urbana?

c. Si se selecciona al azar un hogar de zona rural, ¿cuál es la probabilidad de que cuen-te con tres servicios por lo menos?

d. Si se selecciona al azar un hogar de zona urbana, ¿cuál es la probabilidad de que no tenga ningún servicio?

e. Si se selecciona un hogar al azar, ¿cuál es la probabilidad de que sea de zona urbana y los cuatro servicios?

f. Si se selecciona un hogar al azar, ¿cuál es la probabilidad de que sea de zona rural o no cuente con servicio alguno?

44. En una empresa hay 150 trabajadores; 25 de los hombres y 35 de las mujeres realizan ac-tividades de responsabilidad social en la empresa. El total de mujeres en la empresa es de 57.

a. Si elegimos al azar a un trabajador hombre, calcule la probabilidad de que realice ac-tividades de responsabilidad social.

b. Si elegimos al azar a un trabajador que no realice actividades de responsabilidad so-cial, calcule la probabilidad de que sea mujer.

c. Si elegimos al azar a un trabajador que realice actividades de responsabilidad social y que sea mujer.

112 Estadística Descriptiva 201601

Notas importantes

45. Para elegir a una persona entre tres se prepara una bolsa con dos bolas negras y una bola blanca. Los tres van sacando, por orden, una bola que no devuelven. Quien saque la bola blanca gana. ¿Quién lleva más ventaja: el primero, el segundo o el tercero?

46. En una empresa el 35% de los trabajadores son mujeres y el 65% son hombres. Un día ha llegado tarde a trabajar el 2% de las mujeres y el 4% de los hombres.

a. Si se elige, al azar, a un trabajador calcule la probabilidad de que haya llegado tarde.

b. Si se elige, al azar, a un trabajador que ha llegado tarde, calcule la probabilidad de que sea elegido una mujer.

47. Una empresa que fabrica polos mediante tres máquinas, A, B y C, producen el 25%, 30% y 45%, respectivamente, del total de los polos producidos en la fábrica. Los porcentajes de producción defectuosa de estas máquinas son del 2%, 4% y 3% respectivamente.

a. Si se elige un polo al azar; calcule la probabilidad de que sea no defectuoso.

b. Tomamos, al azar, un polo y resulta ser defectuoso; calcule la probabilidad de haber sido producido por la máquina B.

48. Una persona postula a dos trabajos. La probabilidad de que sea aceptado en el primer trabajo es del 70% y que sea aceptado en el segundo es del 50%. Si ser aceptado en di-chos trabajos es independiente entre sí.

a. ¿Cuál es la probabilidad de que al menos sea aceptado en uno de los trabajos?

b. ¿Cuál es la probabilidad de que solamente sea aceptado en uno solo de los trabajos?

49. El pulpo Paul es un octópodo que ha sido empleado como oráculo para predecir los re-sultados de la selección alemana de fútbol en el Mundial de Fútbol 2010, acertando los ocho emparejamientos que se le propusieron, los siete partidos de Alemania en la Copa Mundial de Fútbol de 2010 y la final entre España y Holanda.

Antes de cada partido, a Paul se le presentaron dos contenedores idénticos con comida: uno de ellos estaba marcado con una bandera, usualmente la de Alemania y el otro con la bandera del equipo oponente. La elección de Paul se interpretaba como el equipo que lograría la victoria. Si el pulpo Paul, en realidad, escogió los contenedores al azar, calcule la probabilidad de acertar en los resultados de los ocho los partidos que le propusieron. Asuma independencia entre cada elección.

50. Una persona postula a dos trabajos. La probabilidad de que sea aceptado en el primer trabajo es del 70% y que sea aceptado en el segundo es del 50%. Si ser aceptado en di-chos trabajos es independiente entre sí.

a. ¿Cuál es la probabilidad de que al menos sea aceptado en uno de los trabajos?

b. ¿Cuál es la probabilidad de que solamente sea aceptado en uno de los trabajos?

51. Un joven estima, por experiencias pasadas, que en una gran fiesta la probabilidad de que en una chica acepte bailar con él es del 4%. Si en una fiesta saca a bailar a 40 chicas. Asuma independencia entre la decisión de una chica y otra. Calcule la probabilidad de que baile por lo menos con una de ellas.

Unidad 3. Teoría de Probabilidad 113

Notas importantes

52. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación V F

El teorema de Bayes determina la probabilidad de un determinado evento se deba a una causa específica

V F

La probabilidad condicional se refiere a hallar la probabilidad de un evento cono-ciendo cierta información (condición).

V F

Si 3,0BAP , entonces, se cumple que 7,0BAP C V F

Si 3,0BAP , entonces, se cumple que 7,0cBAP V F

Si dos eventos son independientes, entonces serán también mutuamente excluyen-tes

V F

Si dos eventos son independientes, entonces P A B P B V F

Si dos eventos son independientes entonces la ocurrencia de uno de ellos no influ-ye en la ocurrencia del otro evento

V F

Si APBAP esto implica que A y B son eventos mutuamente excluyentes V F

Si APBAP esto implica que A y B son eventos independientes V F

Si 0BAP esto implica que A y B son eventos mutuamente excluyentes, si

P(B)>0 V F

El espacio muestral es el conjunto de todos los posibles eventos de un experimento aleatorio

V F

En un experimento aleatorio nunca aparece un modelo definido de regularidad V F

En algunos casos especiales la probabilidad de un evento podría ser mayor que uno V F

Un evento es un subconjunto del experimento aleatorio. V F

Si dos eventos son mutuamente excluyentes entonces la ocurrencia de uno de ellos no influye en la ocurrencia del otro

V F

El complemento del evento A no es mutuamente excluyente con el evento A V F

Si dos eventos son mutuamente excluyentes, entonces P(A) + P(B) = 1 V F

114 Estadística Descriptiva 201601

Notas importantes

53. Loy Toy es una red de librerías, con sucursales en los distritos de Santiago de Surco, San Borja y San Luis. Se ha observado que los libros que comercializa en las diferentes sucur-sales presentan fallas de compaginación, razón por la cual el gerente general está intere-sado en conocer las probabilidades de estas fallas en cada sucursal. También está intere-sado en conocer las probabilidades de la demanda por los libros que comercializa en las diferentes sucursales, con la finalidad de tomar decisiones administrativas.

El administrador de la agencia de San Borja ha observado que los libros de Literatura presentan fallas en la compaginación. Le hace la consulta a su asistente de ventas para obtener información acerca de la proporción de libros con este tipo de falla por sucursal. Los resultados obtenidos por el asistente para cada sucursal se presentan a continua-ción:

a. Coloque el título al gráfico N° 2:

b. Si se elige al azar un libro de Literatura que tiene fallas en la compaginación, ¿cuál es

la probabilidad de que sea de la sucursal de San Borja?

c. Si se eligen tres libros al azar y de manera independiente, ¿cuál es la probabilidad de

que ninguno tenga errores en la compaginación?

30%

45%

25%

0%

10%

20%

30%

40%

50%

Surco San Borja San Luis

Po

rce

nta

je d

e li

bro

s

Sucursal

Gráfico N° 1: Distribución de los libros de Literatura por sucursal

Fuente: Librería Loy Toy

5% 12% 8%

95% 88% 92%

0%

20%

40%

60%

80%

100%

Surco San Borja San Luis

Po

rce

nta

je d

e li

bro

s

Sucursal

Gráfico N° 2:

Error Sin errorFuente: Librería Loy Toy

Temario

Definición de variable aleatoria discreta y continua.

Función de probabilidad de una variable aleatoria discreta.

Función de densidad y función de distribución acumulada de una variable aleatoria continua.

Valor esperado y varianza de variables aleatorias discretas y continuas.

Estudio de propiedades de las siguientes distribuciones: binomial, hipergeométrica, Poisson, uniforme, continua, normal, t-Student

Al finalizar la unidad 4, el alumno

aplica el concepto de variable aleatoria,

valor esperado y probabilidad

para la toma de decisiones en un trabajo de investigación.

Logro de la unidad 4

Unidad 4: Variables aleatorias

116 Estadística Descriptiva 201601

Notas importantes

Variable aleatoria

Se denomina variable aleatoria a una descripción numérica del resultado de un experi-mento.

Rango o recorrido de una variable aleatoria

Se llama rango o recorrido de una variable aleatoria X y lo denotaremos RX, al conjunto de los valores reales que la variable aleatoria puede tomar.

Tipos de variable aleatoria

Una variable aleatoria es discreta si puede asumir un conjunto finito o infinito numera-ble de valores diferentes.

Una variable aleatoria es continua si puede asumir cualquier valor en un intervalo.

Caso Aerolínea Wayra

Indique el tipo de la variable aleatoria y su rango.

Variable aleatoria Tipo Rango

W = tiempo de vuelo de Lima a Cusco, en minutos

RX =

X = número de veces que un pasajero viaja al mes en avión

RX =

Y = número de pasajeros que piden pollo durante un viaje de 100 personas

RX =

Z = dinero gastado en las compras a bordo por una persona, en dólares

RX =

Evento (X = a)

El evento )( aX se define como )(/)( awXSwaX

La variable aleatoria atribuye a cada evento

un número que no es aleatorio o imprevisible,

sino fijo y predeterminado.

Lo que es aleatorio es el experimento

sobre cuyo espacio muestral se define la variable aleatoria.

Unidad 4. Variables aleatorias 117

Notas importantes

Variable aleatoria discreta

Una variable aleatoria discreta asume cada uno de los valores con cierta probabilidad que se denota P(X = x).

Por ejemplo: número de alumnos matriculados por curso, cantidad de preguntas correc-tamente contestadas en una evaluación de personal, cantidad de clientes que visitan un centro comercial en un día determinado.

Distribución de probabilidad de una variable aleatoria discreta

La distribución de probabilidad de una variable aleatoria discreta X se describe como una función de probabilidad representada por f(x) que asigna a cada valor de la variable aleatoria, la probabilidad de que X asuma ese valor, esto es:

f(x) = P(X = x)

Toda función de probabilidad debe cumplir que:

- f(x) 0

-

1

( ) 1n

ii

f x

Ejercicio 29

Sea S el espacio obtenido al lanzar una moneda dos veces y observar si sale cara (c) o se-llo (s) cada vez.

Completar los espacios en blanco.

El espacio muestral es S = (… , …), (… , …), (… , …), (… , …).

Sea X el número de caras obtenidas, luego el rango de la variable X es RX = … , …, ….

El evento (X = 0) = (…, …)

El evento (X = 1) = (…, …), (…, …)

El evento (X = 2) = (…, …)

Entonces, la probabilidad de cada evento es:

f(0) = P(……………..) = ……………………………………………..

f(1) = P(……………..) = ……………………………………………..

f(2) = P(……………..) = ……………………………………………..

118 Estadística Descriptiva 201601

Notas importantes

Ejercicio 30

Se lanza un dado, sea la variable aleatoria X igual al número de la cara superior del dado. Determine y grafique la función de probabilidad de la variable X.

Ejercicio 31

Indique cuáles de las siguientes funciones puede ser función de probabilidad.

Unidad 4. Variables aleatorias 119

Notas importantes

Ejercicio 32

Indique cuáles de las siguientes funciones puede ser función de probabilidad.

casootroen

xx

xf0

3216

,,

casootroen

xppCxf

xxx

0

2,1,0)1( 22

Ejemplo 19

Calcule a para que la siguiente función sea una función de probabilidad. Grafique f(x)

25,20,15,10 xaxxf

Solución

Tiene que cumplir dos condiciones:

La primera condición, f(x) > 0, se cumple cuando a es mayor que cero, puesto que x > 0.

La segunda condición,

1

( ) 1n

ii

f x , se cumple si 125201510 aaaa , esto se cum-

ple cuando 70a =1, luego a =1/70.

0.0

0.1

0.2

0.3

0.4

0.5

0

f(x)

X

10 15 20 25

120 Estadística Descriptiva 201601

Notas importantes

Ejemplo 20

Sea X el número de lanzamientos de un dado hasta que salga el primer seis. Determine la función de probabilidad de la variable X y calcule )3( XP

Solución

Sea la variable aleatoria X:= número de lanzamientos de un dado hasta que salga el pri-mer seis.

El rango o recorrido de X es RX = 1, 2, 3,… = Z+.

f(1) = P(X = 1) = 1/6

f(2) = P(X = 2) = 5/6 x 1/6

f(3) = P(X = 3) = 5/6 x 5/6 x 1/6

Luego, la función de probabilidad de la variable X es:

,....,,; 3216

1

6

51

x

x

RxXPxf

5787,0216

25

36

5

6

11)3()2()1(1)3(1)3(

fffXPXP

Valor esperado de una variable aleatoria discreta

El valor esperado o esperanza matemática de una variable aleatoria X o media de una distribución de probabilidad de X se denota E(X) o µX.

nn

n

i

iiX xfxxfxxfxxfxXE

...22

1

11

Caso Aerolínea Wayra

Objetivo específico: Estimar la media del número de personas que no se presentan al vuelo.

El número de personas que no se presentan a un vuelo se modela con una variable alea-toria X con la siguiente función de probabilidad.

x 0 1 2 3 4 5 6

f(x) 0,20 0,25 0,22 0,15 0,10 0,05 a

Calcule e interprete la media de X.

Unidad 4. Variables aleatorias 121

Notas importantes

Valor esperado de una función de variable aleatoria discreta

Sea G(X) una función de la variable aleatoria X. El valor esperado de G(X) es:

1 1 2 21

...n

i i n ni

E G X G x f x G x f x G x f x G x f x

Varianza y desviación estándar de una variable aleatoria discreta

La varianza V(X) de una variable aleatoria discreta X con distribución de probabilidad f(x) se define por:

2 2

X

X Xx R

V X E X x f x

Se cumple 22V X E X E X

La varianza de la variable aleatoria X, V(X), también se denota por 2X , o simplemente

como 2 .

La desviación estándar de X es la raíz cuadra de la varianza de X.

Ejercicio 33

Se lanza un dado, sea la variable aleatoria X igual al número de la cara superior del dado. Calcule la media y desviación estándar de X.

Propiedades del valor esperado en variables aleatorias

Si X1 y X2 son dos variables aleatorias, y a1 y a2 son dos constantes, entonces:

11 aaE

22112211 XEaXEaXaXaE

Si X1, X2, X3, . . ., Xn son n variables aleatorias, y a1, a2, . . ., an son n constantes, entonces:

nnnn XEaXEaXEaXaXaXaE 22112211

Si X1, X2, X3, . . ., Xn son n variables aleatorias con la misma función de probabilidad, en-

tonces se cumple que iXE y, por lo tanto:

nXXXE n ...21

122 Estadística Descriptiva 201601

Notas importantes

Propiedades de la varianza en variables aleatorias

Si Y = aX + b, con a y b son constantes, entonces 2 2 2Y Xa

Si X1, X2, X3, . . ., Xn son n variables aleatorias independientes, y a1, a2, a3, . . ., an son n constantes, entonces:

2 2 21 1 2 2 1 1 2 2n n n nV a X a X a X a V X a V X a V X

Si X1, X2, X3, . . ., Xn son n variables aleatorias independientes con la misma función de probabilidad, entonces se cumple que 2

iV X y, por lo tanto:

221 ... nXXXV n

Caso Aerolínea Wayra

Objetivo específico: Comparar el grado de dispersión del número de cancelaciones en vuelos, tanto nacional e internacional.

La distribución de probabilidades de las variables X: número de cancelaciones en vuelo nacional e Y: número de cancelaciones en vuelo internacional se muestran a continua-ción:

x 1 2 3 4 5

f(x) 0,25 0,42 0,15 0,10 a

y 0 1 2 3 4

f(y) 0,27 0,37 0,18 0,12 b

La empresa implementará cambios en aquel tipo de vuelo, nacional o internacional, cu-yo número de cancelaciones sea más variable. ¿En qué tipo de vuelo se harán los cam-bios?

Unidad 4. Variables aleatorias 123

Notas importantes

Ejemplo 21

Sea X una variable aleatoria con la siguiente función de probabilidad. Calcular el valor esperado de X2

1,2, 3, 4, 5( )

0

axf x

en otro caso

Solución

Lo primero es determinar a, planteamos que

5

1

1ii

f x , de donde a = 1/15.

Nos piden

5

2 2 2 2 2 2 2

1

1 1 1 1 11 2 3 4 5 15

15 15 15 15 15i i

i

E X x f x

Ejemplo 22

Sea X una variable aleatoria con la siguiente función de probabilidad. Calcule la varianza de X.

1,2, 3, 4, 5( ) 15

0

x

f x

en otro caso

Solución

El esperado de X es

5

1

1 2 3 4 5 551 2 3 4 5

15 15 15 15 15 15i i

i

E X x f x

Se tiene que 2 15E X

Luego se tiene que 2

22 5515 1,556

15V X E X E X

124 Estadística Descriptiva 201601

Notas importantes

Distribuciones de probabilidad de variables discretas

Distribución binomial

Un experimento binomial consiste en una serie de n pruebas o ensayos, donde n se fija antes de realizar el experimento.

Entonces para n intentos y la probabilidad p de éxito en cualquier intento, la probabili-dad de tener x éxitos en los n intentos está dada por:

1n xn x

xf x P X x C p p

x = 0, 1, 2,..., n

La variable binomial cuenta el número de éxitos en n repeticiones semejantes e inde-pendientes con probabilidad de éxito constante.

Se dice que la variable aleatoria X sigue una distribución binomial con parámetros n y p, se denota X~B (n, p)

Es simétrica si p = 0,5. Para valores de p < 0,5 la distribución tiene sesgo derecho y para valores p>0,5 tiene sesgo izquierdo, independientemente de los valores de n.

Para valores de n suficientemente grandes (n > 50), y sólo tomando en cuenta los valo-res relevantes de probabilidad, la distribución es prácticamente simétrica.

Media E X np

Varianza 2 1V X np p

En Excel 2010, use la función =DISTR.BINOM.N(Núm_éxito, Ensayos, Prob_éxito, acu-mulado)

Las pruebas son idénticas y cada una de ellos puede resultar en uno de dos

posibles resultados que denotan éxito o fracaso.

Las pruebas son independientes entre sí

por lo que el resultado de un intento en particular

no influye en el resultado de cualquier otro.

La probabilidad de éxito es constante

de una prueba a otra y la denotamos como p.

Unidad 4. Variables aleatorias 125

Notas importantes

Caso Aerolínea Wayra

Objetivo específico: Estimar la probabilidad de tener una emergencia médica durante el viaje.

La aerolínea sabe por experiencias pasadas que el 0,5% de los pasajeros tendrá alguna emergencia médica durante el vuelo.

Si en un vuelo hay 120 pasajeros, calcule la probabilidad de que ningún pasajero tenga una emergencia médica durante el viaje. Asuma independencia entre un pasajero y otro.

La variable en estudio X es ………………….…………………………………….…………………………………..

El rango o recorrido de la variable X es …………………..…………………….………………..………..……

La distribución de la variable es …………………………………………………………..

Sus parámetros son ………………………..…………………………………….…..………..

La probabilidad pedida es f(………) = P(X…………) = ………………………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =…………………………………(………..…, ….………, ……..…, …….…)

Si en un vuelo hay 120 pasajeros, calcule la probabilidad de que, como máximo, un pasa-jero tenga una emergencia médica durante el viaje.

La probabilidad pedida es P(X…………) = …………………………..…………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =…………………………………(………..…, ….………, ……..…, …….…)

Si en un vuelo hay 120 pasajeros, calcule la probabilidad de que por lo menos dos pasa-jeros tengan una emergencia médica durante el viaje.

La probabilidad pedida es P(X…………) = …………………………..…………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =…………………………………(………..…, ….………, ……..…, …….…)

Calcule el valor esperado del número de pasajeros que tengan una emergencia médica durante un viaje de 160 pasajeros.

El valor pedido es E(X) = …………………………..…………….......……… = ……………….

126 Estadística Descriptiva 201601

Notas importantes

Distribución hipergeométrica

Consideremos N elementos, de los cuales r son considerados éxitos y por lo tanto N - r como fracasos. Como en el caso de la distribución binomial estamos interesados en sa-ber la probabilidad de obtener x éxitos en una muestra de n elementos.

El experimento hipergeométrico consiste en extraer al azar y sin reposiciónn n elemen-tos de un conjunto de N elementos, r de los cuales son éxitos y N - r son fracasos.

La probabilidad de obtener de x éxitos en la muestra de n elementos es:

( ) , max0, ( ),... ,min , r N rx n x

Nn

C Cf x x n N r n r

C

El rango de X en la mayoría de los casos va de 0 a n, pero no siempre, por lo que se debe analizar en cada caso.

La variable hipergeométrica cuenta el número de éxitos en una muestra de tamaño n, tomada de una vez de una población de tamaño N donde hay r éxitos.

Se dice que la variable aleatoria X sigue una distribución hipergeométrica con paráme-tros N, r y n y se denota X ~ H (n, r, N)

Media r

E X nN

Varianza 2 11

r r N nV X n

N N N

En Excel 2010, use la función =DISTR.HIPERGEOM.N(muestra_éxito, núm_de_muestra, población_éxito, núm_de_población, acumulado)

Unidad 4. Variables aleatorias 127

Notas importantes

Caso Aerolínea Wayra

En un vuelo se van a servir 130 comidas. La oficina de control de calidad de los alimentos durante el vuelo selecciona al azar cinco de ellas para verificar que están en perfecto es-tado. Dentro de las 130 comidas, hay seis que no están en perfecto estado.

Calcule la probabilidad de que alguna de las comidas seleccionadas no estén en perfecto estado.

La variable en estudio X es ………………….…………………………………….…………………………………..

El rango o recorrido de la variable X es …………………..…………………….………………..………..……

La distribución de la variable es …………………………………………………………..

Sus parámetros son ………………………..…………………………………….…..………..

La probabilidad pedida es f(………) = P(X…………) = ………………………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =………………………(………..…, ….………, ……..…, …….…, …………..)

Calcule la probabilidad de detectar a dos de las comidas que no están en perfecto esta-do.

La probabilidad pedida es P(X…………) = …………………………..…………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =………………………(………..…, ….………, ……..…, …….…, …………..)

Calcule la probabilidad de detectar menos de tres de las comidas que no están en per-fecto estado.

La probabilidad pedida es P(X…………) = …………………………..…………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =………………………(………..…, ….………, ……..…, …….…, …………..)

Calcule el valor esperado del número de comidas que no están en perfecto estado que serán detectadas.

El valor pedido es E(X) = …………………………..…………….......……… = ……………….

128 Estadística Descriptiva 201601

Notas importantes

Distribución de Poisson

El experimento que origina una variable aleatoria que sigue una distribución de Poisson se denomina proceso de Poisson y posee las siguientes propiedades:

La probabilidad de tener x resultados en un intervalo dado o en una región específica es:

!x

exXPxf

x x = 0, 1, 2,...

x = número de éxitos por unidad de tiempo o región.

= número esperado de éxitos por unidad de tiempo o región.

e = 2,71828…

Se dice que la variable aleatoria X sigue una distribución de Poisson con parámetro y

se denota X~P().

Siempre es una distribución sesgada a la derecha. A medida que aumenta y tomando en cuenta sólo los valores relevantes de probabilidad, la distribución tiende a hacerse simétrica.

Media: E X

Varianza: 2 V X

En Excel 2010, use la función =POISSON.DIST(x, media, acumulado)

El número de resultados que ocurre en un

intervalo o región de espacio cualquiera es

independiente del número que ocurre

en cualquier otro intervalo o región del

espacio disjunto.

La probabilidad de que ocurra un solo resultado durante el intervalo muy corto o región muy pequeña es proporcional a la longitud del

intervalo o al tamaño de la región

y no depende del número de resultados que ocurren fuera del

intervalo o región.

La probabilidad de que ocurra más de un

resultado en tal intervalo corto o caiga en tal región pequeña

es insignificante.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f(x

)

X

Unidad 4. Variables aleatorias 129

Notas importantes

Caso Aerolínea Wayra

El número de llamadas hacia una azafata por los pasajeros durante un vuelo se modela con una variable Poisson con una media de 0,5 llamadas cada diez minutos.

Calcule la probabilidad de que una azafata no reciba llamadas durante un viaje de 50 minutos.

La variable en estudio X es ………………….…………………………………….…………………………………..

El rango o recorrido de la variable X es …………………..…………………….………………..………..……

La distribución de la variable es …………………………………………………………..

Sus parámetros son ………………………..…………………………………….…..………..

La probabilidad pedida es f(………) = P(X…………) = ………………………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =…………………………………(………..…, ….………, ……..…,)

Calcule la probabilidad de que una azafata reciba más de una llamada durante un viaje de 50 minutos.

La probabilidad pedida es P(X…………) = …………………………..…………….......……… = ……………….

¿Cuál sería la expresión en Excel que calcularía este problema?

En Excel 2010, use la función =…………………………………(………..…, ….………, ……..…)

Si una azafata ya recibió una llamada durante los primeros veinte minutos del viaje, cal-cule la probabilidad de que reciba dos llamadas más durante dicho viaje de 50 minutos.

Calcule la desviación estándar del número de llamadas hacia la azafata en un vuelo de dos horas.

130 Estadística Descriptiva 201601

Notas importantes

Ejemplo 23

Suponga que el número de llamadas que llegan a una central telefónica es 0,5 por mi-nuto en promedio.

Calcule la probabilidad de que en un minuto no lleguen llamadas

Solución

X:= número de llamadas / minuto = 0,5 llamadas / minuto

0.5 00,5

0 0,60650!

eP X

Calcule la probabilidad de que en un minuto lleguen más de tres llamadas

Solución

P(X > 3) = 1 – P(X ≤ 3) = 1 – (0,6065 + 0,3033 + 0,0758 + 0,0126) = 0,9982

Calcule la probabilidad de que en tres minutos lleguen menos de cinco llamadas

Solución

Y:= número de llamadas / 3 minutos = 1,5 llamadas / 3 minutos

P(Y < 5) = 0,2231 + 0,3347 + 0,2510 + 0,1255 + 0,0471 = 0,98142

Calcule la probabilidad de que en cinco minutos lleguen más de dos llamadas

Solución

W:= número de llamadas / 5 minutos = 2,5 llamadas / 5 minutos

P(W > 2) = 1 – P(W ≤ 2) = 1 – (0,0821 + 0,2052 + 0,2565) = 0,45652

Ejemplo 24

El administrador de un almacén ha observado que en promedio ingresan al estableci-miento 20 personas cada 30 minutos. ¿Cuál es la probabilidad de que en seis minutos ingresen al almacén a lo más 5 clientes pero más de 3?

Solución

Lo primero es definir la variable adecuada, sea X:= número de personas que entren al establecimiento en un periodo de seis minutos.

Como nos dicen que la variable cuenta las llegadas por unidad de tiempo, se tiene que

X ~ P().

Luego, debemos determinar el valor de , para lo cual vamos a hacer una regla de tres simple, pues es una propiedad de la distribución Poisson.

Si en 30 minutos llegan en promedio 20 personas, entonces en 6 minutos llegarán, en

promedio, ,= 4 personas.

Se tiene que X ~ P( = 4)

Nos piden 4 4 4 54 4

3 5 4 5 0,35174! 5!

e eP X P X P X

Unidad 4. Variables aleatorias 131

Notas importantes

Ejemplo 25

Si se sabe que en cada 100 metros de longitud de un cable hay un promedio de 80 pun-tos por los cuales este puede ser seccionado. ¿Cuál es la probabilidad de que en un tramo de 13,5 metros se encuentren cinco puntos de seccionamiento?

Solución

Sea X:= número de puntos de seccionamiento. Como nos dicen que la variable cuenta

puntos por unidad de longitud, se tiene que X ~ P().

Luego, debemos determinar el valor de , para lo cual vamos a hacer una regla de tres simple, pues es una propiedad de la distribución Poisson.

Si en 100 metros hay en promedio 80 puntos de seccionamiento, entonces en 13,5 me-

tros hay, en promedio, ,= 10,8 puntos.

Se tiene que X ~ P( = 10,8)

Nos piden 10.8 510.8

5 0,0255!

eP X

Observe que si lambda sale un valor que no es entero, no se debe redondear a un en-tero.

132 Estadística Descriptiva 201601

Notas importantes

Variable aleatoria continua

Es una variable cuyo rango es un conjunto infinito no numerable de valores.

Por ejemplo: peso, en kilos, de una persona, tiempo en resolver la primera pregunta del examen parcial de un curso o volumen, en decibeles, en una discoteca a una hora de-terminada.

Función de densidad de una variable aleatoria continua

Se denomina función de densidad de probabilidad f(x) de una variable aleatoria conti-nua a la función que satisface:

0f x para todo x R

1f x dx

Se tiene que b

a

P a X b f x dx

Ejercicio 34

Una variable aleatoria continua tiene la siguiente función de densidad de probabilidad:

0 5( )

0

ax xf x

en otro caso

Determine el valor de a.

Unidad 4. Variables aleatorias 133

Notas importantes

Calcule la probabilidad de P(X < 4)

Calcule la probabilidad de P(2,0 < X < 4,5)

Ejemplo 26

Para cierto negocio por correo electrónico la proporción de los pedidos procesados en 24 horas tiene la función de densidad de probabilidad.

( ) 2(1 ) ; 0 1f x x x Compruebe si f(x) es una función de densidad.

Solución

Se debe comprobar que:

- 0f x para todo x R. Este se cumple pues para 0 1x , es ( ) 2(1 ) 0f x x

- 1f x dx

. Existen dos formas de responder esta pregunta.

Integrando la función de densidad f(x) y verificando que el área es igual a 1 y que cada f(x) sea positivo

Ahora debemos evaluar en 0 y en 1

2 22 1 1 2 0 0 1

Calculando el área del triángulo a partir de la gráfica y verificando que el área es igual a y que cada f(x) sea positivo.

1 2Área 1

2 2

b h

1

0

2

1

0

21

0

1

02

222)1(2 xx

xxdxxdxxf

134 Estadística Descriptiva 201601

Notas importantes

¿Cuál es la probabilidad que al menos el 80% de los pedidos sean procesados dentro de 24 horas?

Solución

Existen dos formas de responder esta pregunta.

Integrando la función de densidad f(x) de 0,8 a 1.

1

2 2

0,82 1 2 1 1 2 0,8 0,8 0,04x

Calculando el área de triángulo desde 0,8 a 1.

1 0,8 2 1 0,8Área 0,04

2 2

b h

Observe que para la segunda forma de resolución, se usó la función de densidad para hallar la altura del triángulo.

Si el porcentaje de pedidos procesados en 24 horas es mayor al 80%, calcular la probabi-lidad de que sea mayor a 90%.

Solución

P(X > 0,9 / X > 0,8) = (0,1 x 0,2 / 2) / (0,2 x 0,4 / 2) = 0,25

Función de distribución acumulada de probabilidad

La función de distribución acumulada de una variable aleatoria continua X con función de densidad f(x) se define por:

F(x) = P(X x) para - < x < + Se tiene que:

P(a ≤ X ≤ b) = F(b) – F(a)

P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b)

dF xf x

dx

F(x) es una función que siempre está entre 0 y 1 (0 ≤ F(x) ≤ 1), pues es igual a una proba-bilidad.

F(x) es una función que nunca decrece, lim 0x

F x

y lim 1x

F x

0.0

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2 3 4 5

F(x)

Unidad 4. Variables aleatorias 135

Notas importantes

Ejercicio 35

Sea X una variable aleatoria con la siguiente función de densidad

( )

Determine y grafique la función de distribución acumulada de la variable aleatoria X.

Use la función de distribución acumulada de la variable X para calcular P(0,1 < X < 0,7)

Ejercicio 36

Marque la(s) gráfica(s) que pueden ser funciones de distribución acumulada.

136 Estadística Descriptiva 201601

Notas importantes

Ejercicio 37

Indique la(s) funciones que pueden ser función de distribución acumulada.

1 2

1 1 2

0 1

x

F x x x

x

2

1 2

1 1 2

0 1

x

F x x x

x

Ejemplo 27

Encuentre el rango intercuartil de X, si X es el tiempo de vida de un sistema es una va-riable aleatoria, en años, cuya función de distribución acumulada es:

2

0 5

251 5

x

F xx

x

Solución

Sea X:= tiempo, en años, de vida de un sistema. Para calcular el rango intercuartil, de-bemos hallar el cuartil 1 y el cuartil 3, para esto hay dos posibilidades: integrar la función de densidad f(x) o reemplazar en la función de distribución acumulada

Por definición de cuartil 3, el 75% de los datos es menor o igual a él, es decir P(X ≤ Q3) = 0,75, o lo que es lo mismo F(Q3) = 0,75

3 23

250,75 1F Q

Q de donde Q3 = 10.

Haciendo lo mismo para el cuartil 1. 1 21

250,25 1F Q

Q de donde Q1 = 5,77.

Luego el RIC = Q3 – Q1 = 4,23.

Si se sabe que el tiempo de vida de un dispositivo se encuentra en el cuarto superior, ¿cuál es la probabilidad que pertenezca al quinto superior?

Solución

Como nos dicen que “ya se sabe que está en el cuarto superior”, es una probabilidad condicional.

80

80 75

75

0,200,80

0,25

P X PP X P X P

P X P

Unidad 4. Variables aleatorias 137

Notas importantes

Valor esperado de una variable aleatoria continua

El valor esperado o esperanza matemática de una variable aleatoria X o media de una variable aleatoria X se denota E(X).

X E X x f x dx

Valor esperado de una función de variable aleatoria continua

Sea G(X) una función de la variable aleatoria X. El valor esperado de G(X) es:

E G X G x f x dx

Propiedades del valor esperado en variables aleatorias

E(b) = b

Si X1, X2, X3, . . ., Xn son n variables aleatorias, y a1, a2, a3, . . ., an son n constantes, enton-ces:

1 1 2 2 1 1 2 2n n n nE a X a X a X a E X a E X a E X

Si X1, X2, X3, . . ., Xn son n variables aleatorias con la misma función de densidad, enton-ces se cumple que iE X y, por lo tanto:

1 2 ... nE X X X n

Caso Aerolínea Wayra

El tiempo, en minutos, que se tarda una persona en ser atendido en el counter del aero-puerto se modela con una variable aleatoria X:

casootroen

xxk

xkx

xf

0

424

20

)(

Determine la media de la variable aleatoria X.

138 Estadística Descriptiva 201601

Notas importantes

Varianza y desviación estándar de una variable aleatoria continua

22 2

X V X E X E X

La desviación estándar de X es la raíz cuadrada de la varianza de X.

Propiedades de la varianza en variables aleatorias

Si Y = aX + b, con a y b son constantes, entonces 2 2 2Y Xa

Si X1, X2, X3, . . ., Xn son n variables aleatorias independientes, y a1, a2, a3, . . ., an son n constantes, entonces:

2 2 21 1 2 2 1 1 2 2n n n nV a X a X a X a V X a V X a V X

Si X1, X2, X3, . . ., Xn son n variables aleatorias independientes con la misma función de densidad, entonces se cumple que 2

iV X y, por lo tanto:

21 2 ... nV X X X n

Caso Aerolínea Wayra

El sobrepeso, en kilos, del equipaje de mano de un pasajero se modela con una variable aleatoria X con la siguiente función de densidad de probabilidad:

caso otro 0

6 0 -6)(

xxkxf

Determine la desviación estándar de la variable aleatoria X.

Unidad 4. Variables aleatorias 139

Notas importantes

Distribuciones de probabilidad de variable continua

Distribución de probabilidad uniforme

Función de densidad

1

0

a x bf x b a

en otro caso

Se dice que X tiene una distribución uniforme y se denota X ~ U (a, b)

La función de distribución acumulada de una variable uniforme es:

0

1

x a

x aF x a x b

b a

x b

Media:

2

a b

Varianza:

2

2

12

b a

Caso Aerolínea Wayra

Objetivo específico: Determinar el número esperado de vuelos con retraso.

El tiempo en el que un avión llega a su destino con respecto a su hora programada se modela con una variable aleatoria uniforme de parámetros -10 y 10. De tal manera que los valores negativos indican que el avión llegó antes de la hora programada y los valo-res positivos indican que el avión llegó después de la hora programada.

140 Estadística Descriptiva 201601

Notas importantes

Calcule la probabilidad de que un avión llegue con un retraso mayor a cuatro minutos.

Calcule la probabilidad de que la diferencia entre la hora de llegada programada y la ho-ra de llegada sea mayor a cuatro minutos.

Use la función de distribución acumulada para calcular la probabilidad de que un avión llegue con un adelanto máximo de cinco minutos.

Si se escoge al azar 20 vuelos, calcule la probabilidad de que, como máximo, se tenga un vuelo con retraso mayor a ocho minutos.

Si se escoge al azar 100 vuelos, calcule el número esperado de viajes con retrasos mayo-res cuatro minutos.

Unidad 4. Variables aleatorias 141

Notas importantes

Ejemplo 28

En ciertos experimentos, el error cometido al determinar la densidad de una sustancia es una variable aleatoria cuya distribución es uniforme con a = -0,025 y b = 0,025.

a. ¿Cuál es la probabilidad de que tal error esté entre 0,010 y 0,015?

Solución

Sea X:= error al determinar la densidad de una sustancia

La variable X ~ U(a = -0,025, b = 0,025) tiene la siguiente función de densidad

10,025 0,025

( ) 0,025 ( 0,025)

0

xf x

en otro caso

10,025 0,025

( ) 0,05

0

xf x

en otro caso

Nos piden ),,( 01500100 XP . Existen dos formas de calcular esta probabilidad:

integrando la función de densidad f(x) o calculándola a partir del área del rectángulo.

0,015

0,010

1 1(0,010 0,015) 0,015 0,010 0,10

0,050 0,050P X dx

b. ¿Cuál es el error esperado cometido?

Solución

La variable X ~ U(a = -0,025, b = 0,025) tiene el siguiente número esperado de errores

0,025+0,0250

2 2

a b

Ejemplo 29

La llegada de cada uno de los empleados a su centro de labores se produce indepen-dientemente, de acuerdo a la distribución uniforme en el intervalo comprendido entre las 8:00 y 8:25 am. De una muestra de 10 empleados, calcule la probabilidad de que cua-tro de ellos hayan llegado entre las 8:15 y 8:20 AM.

Solución

Sea X:= tiempo, en minutos, desde las 8 AM hasta la hora de llegada de los empleados al

centro de trabajo, luego XU (0, 25)

1( ) ; 0 25

25f x x

Se define la variable Y:= número de empleados que llegan al centro de trabajo entre 8:15 y 8:20 AM. Debe calcularse la probabilidad de éxito p de que un empleado llegue al centro de trabajo entre 8:15 y 8:20 AM esto es:

20 150,20

25p

Entonces Y B(10; 0,20) 10 10( ) (0,20) (0,80) , 0,1, ,10y yyf y C y

Se pide 10 4 64( 4) (4) (0,2) (0,80) 0,0881P Y f C

142 Estadística Descriptiva 201601

Notas importantes

Distribución de probabilidad normal

Función de densidad

21

21

2

x

f x e

Se dice que la variable aleatoria X sigue una distribución normal con parámetros y .

Se denota X ~ N (, 2)

La función de densidad tiene forma de campana y es simétrica, por lo que las medidas de tendencia central coinciden.

El rango de la variable normal es toda la recta real, esto es, de – a + .

En Excel 2010, use la función =DISTR.NORM.N(x, media, desviación estándar, acumula-do) para calcular la probabilidad.

En Excel 2010, use la función =INV.NORM(Probabilidad, media, desviación estándar) para calcular el valor de la variable aleatoria.

Estandarización

Se toma como referencia una distribución normal estándar ( = 0 y 2 = 1). Se trabaja

con la distancia entre x y en función de la desviación estándar, tal como se muestra.

XZ

La utilidad de convertir cualquier variable normal en una normal estándar es que pode-mos usar solo una tabla para calcular cualquier probabilidad de una variable normal.

Unidad 4. Variables aleatorias 143

Notas importantes

Ejercicio 38

Si 2~ 0, 1Z N , calcular

P(Z < 1,12) =

P(Z > 0,45) =

P(0,23 < Z < 1,25) =

P(Z < -4) =

Tabla de la distribución normal estándar (Ver la tabla completa al final de esta guía)

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,50000 0,50399 0,50798 0,51197 0,51595 0,51994 0,52392 0,52790 0,53188 0,53586

0,1 0,53983 0,54380 0,54776 0,55172 0,55567 0,55962 0,56356 0,56749 0,57142 0,57535

0,2 0,57926 0,58317 0,58706 0,59095 0,59483 0,59871 0,60257 0,60642 0,61026 0,61409

0,3 0,61791 0,62172 0,62552 0,62930 0,63307 0,63683 0,64058 0,64431 0,64803 0,65173

0,4 0,65542 0,65910 0,66276 0,66640 0,67003 0,67364 0,67724 0,68082 0,68439 0,68793

0,5 0,69146 0,69497 0,69847 0,70194 0,70540 0,70884 0,71226 0,71566 0,71904 0,72240

0,6 0,72575 0,72907 0,73237 0,73565 0,73891 0,74215 0,74537 0,74857 0,75175 0,75490

0,7 0,75804 0,76115 0,76424 0,76730 0,77035 0,77337 0,77637 0,77935 0,78230 0,78524

0,8 0,78814 0,79103 0,79389 0,79673 0,79955 0,80234 0,80511 0,80785 0,81057 0,81327

0,9 0,81594 0,81859 0,82121 0,82381 0,82639 0,82894 0,83147 0,83398 0,83646 0,83891

1,0 0,84134 0,84375 0,84614 0,84849 0,85083 0,85314 0,85543 0,85769 0,85993 0,86214

1,1 0,86433 0,86650 0,86864 0,87076 0,87286 0,87493 0,87698 0,87900 0,88100 0,88298

1,2 0,88493 0,88686 0,88877 0,89065 0,89251 0,89435 0,89617 0,89796 0,89973 0,90147

144 Estadística Descriptiva 201601

Notas importantes

Cálculo de probabilidad de una variable normal con una calculadora Casio

Ponga la calculadora en modo estadístico. Apriete MODE y luego, apriete STAT

Luego apriete SHIFT, STAT (1) y luego elija la opción DISTR. Aparecerá

una pantalla con P(, Q(, R( y t.

- P( calcula la probabilidad de que Z esté entre - y el valor que ingresa

- Q( calcula la probabilidad de que Z esté entre 0 y el valor que ingresa

- R( calcula la probabilidad de que Z esté entre el valor que ingresa y +.

Hallar c para que P(Z < c) = 0,67003

Hallar c para que P(Z > c) = 0,0250

Hallar c para que P(-c <Z < c) = 0,950

Tabla de la distribución normal estándar (Ver la tabla completa al final de esta guía)

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,50000 0,50399 0,50798 0,51197 0,51595 0,51994 0,52392 0,52790 0,53188 0,53586

0,1 0,53983 0,54380 0,54776 0,55172 0,55567 0,55962 0,56356 0,56749 0,57142 0,57535

0,2 0,57926 0,58317 0,58706 0,59095 0,59483 0,59871 0,60257 0,60642 0,61026 0,61409

0,3 0,61791 0,62172 0,62552 0,62930 0,63307 0,63683 0,64058 0,64431 0,64803 0,65173

0,4 0,65542 0,65910 0,66276 0,66640 0,67003 0,67364 0,67724 0,68082 0,68439 0,68793

0,5 0,69146 0,69497 0,69847 0,70194 0,70540 0,70884 0,71226 0,71566 0,71904 0,72240

0,6 0,72575 0,72907 0,73237 0,73565 0,73891 0,74215 0,74537 0,74857 0,75175 0,75490

0,7 0,75804 0,76115 0,76424 0,76730 0,77035 0,77337 0,77637 0,77935 0,78230 0,78524

0,8 0,78814 0,79103 0,79389 0,79673 0,79955 0,80234 0,80511 0,80785 0,81057 0,81327

0,9 0,81594 0,81859 0,82121 0,82381 0,82639 0,82894 0,83147 0,83398 0,83646 0,83891

1,0 0,84134 0,84375 0,84614 0,84849 0,85083 0,85314 0,85543 0,85769 0,85993 0,86214

1,1 0,86433 0,86650 0,86864 0,87076 0,87286 0,87493 0,87698 0,87900 0,88100 0,88298

1,2 0,88493 0,88686 0,88877 0,89065 0,89251 0,89435 0,89617 0,89796 0,89973 0,90147

Unidad 4. Variables aleatorias 145

Notas importantes

Ejercicio 39

La cantidad de dinero destinada al ahorro mensual de los clientes de un banco es una variable aleatoria que tiene una distribución normal con una media igual a 460 soles y una desviación estándar igual a 50 soles.

Calcule la probabilidad de que un cliente ahorre menos de 480 soles en un mes.

En Excel 2010, use la función =DISTR.NORM.N(………, ………, ………, ………)

Calcule la probabilidad de que un cliente ahorre más de 500 soles mensuales.

En Excel 2010, use la función =1-DISTR.NORM.N(………, ………, ………, ………)

Calcule la probabilidad que el ahorro mensual de un cliente esté entre 460 y 520 soles.

¿Cuál es el ahorro mínimo mensual para estar en el 15% de los clientes que más aho-rran?

En Excel 2010, use la función =INV.NORM(………, ………, ………)

146 Estadística Descriptiva 201601

Notas importantes

¿Cuál es el ahorro máximo mensual para estar en el 25% de los clientes que menos aho-rran?

En Excel 2010, use la función =INV.NORM(………, ………, ……..…)

Ejemplo 30

En Buck Café, la máquina surtidora de refrescos está ajustada de tal forma que sirve en promedio 250 mililitros por vaso. Si la cantidad de refresco servido en los vasos sigue, aproximadamente, una distribución normal con una desviación estándar de 10 mililitros. ¿Qué proporción de los vasos servidos contendrán entre 240 y 255 mililitros de refres-co?

Solución

Sea X:= cantidad de refresco servido por vaso, X ~ N(µ = 250, 2 = 102)

Se pide P(240 ≤ X ≤ 255). Estandarizando se tiene

240 255XP

240 250 255 250

10 10P Z

1 0,5 0,5 1P Z 0,6915 0,1587 0,5328

Ejemplo 31

Se informa que la cantidad X de azúcar de los paquetes marcados con un kilo, tiene dis-

tribución normal con media kilos y desviación estándar 0,02 kilos. Hallar el valor de si la cantidad de azúcar que contiene cada paquete es menor o igual a 0,95 kilos con probabilidad 0,102.

Solución

Sea X:= pesos de los paquetes de azúcar, en kilos. X ~ N(µ , 2 = 0,022)

Se pide 0,95 0,102P X

Estandarizando se tiene 0,95

0,102X

P

0,950,102

0,02P Z

Usando la tabla normal estándar para calcular el valor z correspondiente.

0,951,27

0,02

. De donde µ = 0,9754

Unidad 4. Variables aleatorias 147

Notas importantes

Distribución exponencial

En variables que representan los tiempos de vida útil, tiempos de sobrevivencia, en tiempos de ocurrencia en procesos de Poisson se suele utilizar la distribución exponen-cial.

La variable aleatoria X tiene una distribución exponencial con parámetro β (β > 0) si su función de densidad de probabilidad es:

01

xexf

x

;)(

Se denota X ~ Exp(β) y se lee que la variable aleatoria X sigue una distribución exponen-cial con parámetro β.

La probabilidad de que la variable aleatoria X tome valores en el intervalo [c,d] es numé-ricamente igual al área sombreada, y se calcula de la siguiente manera:

d

c

tdtedXcP

1

1

Esperanza de X: XE

Varianza de X: 22 XV

Nótese que el parámetro β es igual a la media de la variable aleatoria.

Función de distribución acumulada de X

0;11

)(0

xedtexXPxF

xt t

Se cumple que:

x

exXP

tXPkXtkXP /

148 Estadística Descriptiva 201601

Notas importantes

Caso Aerolínea Wayra

El tiempo de vida útil de un tipo de llanta de avión se modela con una variable aleatoria con distribución exponencial, cuya media es 20 días.

Calcule la probabilidad de que la vida útil de una llanta sea mayor a 20 días.

Calcule la probabilidad de que la vida útil de una llanta esté entre 20 y 25 días.

Si una llanta ya duró 20 días, calcule la probabilidad de que la vida útil de esa llanta sea menor a 25 días.

Unidad 4. Variables aleatorias 149

Notas importantes

Ejercicios de la Unidad 4

54. En un lote de 30 polos hay tres con fallas. Se toma una muestra aleatoria de cinco polos y se define la variable aleatoria X como el número de polos defectuosos en la muestra. De-termine y grafique la función de probabilidad de la variable X.

Calcule la probabilidad de tener dos polos defectuosos en la muestra.

Calcule la probabilidad de tener al menos dos polos defectuosos en la muestra.

55. La demanda diaria de un producto es una variable aleatoria X cuya distribución de pro-babilidades es simétrica y está dada por la tabla siguiente:

x 1 2 3 4 5

f(x) a 0,20 b c 0,05

La empresa obtiene por cada unidad demandada de producto 100 soles de utilidad. Si la cantidad demanda en un día es mayor a dos unidades, se obtiene una utilidad adicional de 15 soles por unidad demandada de producto.

Calcule el valor de a, b y c.

Determine la probabilidad que la demanda diaria sea de por lo menos tres productos.

Calcule el valor esperado de la utilidad por la demanda diaria de productos.

56. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

Se denomina variable aleatoria a una descripción numérica del resultado de un experimento

El valor esperado es el valor más probable de ocurrencia

El valor esperado es un valor que puede ser mayor que el máximo de los valores del rango de la variable aleatoria

El valor esperado es un valor que siempre es igual a uno de los valores del rango de la variable

Variable aleatoria continua es una variable cuyo rango es un con-junto infinito numerable de valores

La función de distribución acumulada es siempre mayor a la fun-ción de densidad para cualquier valor de la variable aleatoria

El esperado de la suma de dos variables aleatorias es igual a la suma de los dos esperados de las variables aleatorias

La varianza de una variable aleatoria puede ser menor a cero

150 Estadística Descriptiva 201601

Notas importantes

57. Un examen de admisión consta de 100 preguntas. Cada una pregunta tiene cinco opcio-nes para marcar y solamente una respuesta correcta Por cada respuesta correcta se le otorga al postulante un punto, mientras que si la respuesta es incorrecta al postulante se le resta un cuarto de punto. Si un postulante contesta todas las preguntas del examen al azar, calcule el valor esperado del puntaje obtenido.

58. Se lanza un dado una vez, sea la variable aleatoria X igual al número de la cara superior. Calcule la varianza y desviación estándar de la variable X.

59. Se lanzan dos dados y sea la variable aleatoria X igual a la suma de los números de las ca-ras superiores. Calcule la varianza de la variable X.

60. Un restaurante pone a la venta diariamente diversas ensaladas. El número de ensaladas demandadas diariamente se modela con una variable aleatoria X que tiene la siguiente distribución de probabilidad.

x 12 15 17 18 20 25

f(x) a 0,12 0,35 2a 0,14 0,09

El costo de cada ensalada es de cuatro soles y las vende a seis soles. Toda ensalada no vendida en el día se desecha. Calcule la media y desviación estándar de la utilidad diaria, si el restaurante prepara 20 ensaladas por día.

61. Una compañía de comida rápida sabe que el 90% de sus tiendas por franquicia tendrán éxito comercial. Si el éxito de cada tienda se puede considerar independiente de las de-más tiendas. Calcule la probabilidad de que al menos dieciocho tiendas tengan éxito, si la compañía va a instalar 20 tiendas el año 2015.

62. Según la Asociación para el Fomento de la Infraestructura Nacional el 48% de los hogares de Lima no tienen acceso a agua potable de calidad, por no contar con la dosificación adecuada de cloro o comprarla de manera informal a los camiones cisternas. Si se eligen al azar a diez hogares de Lima, calcule la probabilidad de que cinco de ellos no tengan ac-ceso agua potable de calidad.

63. La empresa San Fernando ha lanzado su campaña “Plato calato no” para salvar sus ven-tas de verano 2013. Si de un total de 60 personas, donde 34 recuerdan la campaña, se eligen al azar a ocho personas para entrevistarlos, calcule la probabilidad de elegir al me-nos a tres personas que recuerden la campaña.

64. En una distribuidora hay 25 televisores de los cuales seis son de tecnología OLED. Si se seleccionan al azar diez televisores, calcule la probabilidad de que se haya seleccionado por lo menos dos televisores de tecnología OLED.

65. Un comerciante recibe un lote de 30 computadoras portátiles. Para protegerse de una mala remesa, el comerciante revisará diez computadoras y rechazará todo el lote si en-cuentra una o más computadoras defectuosas. Si en el lote hay seis computadoras defec-tuosas, ¿cuál es la probabilidad de que rechace el lote?

66. En una pastelería, el número demandado de un cierto tipo de torta se modela con una variable Poisson con una media de tres tortas al día. La pastelería, siempre, produce tres tortas diarias. Cada torta cuesta producirla 50 soles y se vende a 80 soles. Toda torta no vendida en el día se remata en 20 soles y siempre las compran todas las tortas a ese pre-cio. Calcule el valor esperado de la utilidad por dicho concepto.

Unidad 4. Variables aleatorias 151

Notas importantes

67. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

El mayor valor del rango de la variable hipergeométrica es siempre menor o igual a n

En un proceso de Poisson el número de resultados que ocurre en un intervalo es independiente del número que ocurre en cualquier otro intervalo del espacio disjunto

La variable binomial cuenta el número de éxitos en n repeticiones independientes con la misma probabilidad de fracaso en cada repe-tición

La variable hipergeométrica cuenta el número de éxitos en una muestra de tamaño n de una población N que tiene r éxitos y donde el muestreo es con reemplazo

68. La duración (en minutos) de una llamada telefónica en la sala de profesores puede mode-larse por una variable aleatoria X con la siguiente función de densidad

3 0 3

0

a x xf x

en otro caso

Determine el valor de a.

Calcule la probabilidad de que una llamada dure menos de un minuto y medio.

Si una llamada ya duró un minuto, calcule la probabilidad de que dure más de dos minu-tos.

69. La proporción de personas que responden a una encuesta enviada por correo electrónico se modela con una variable aleatoria X con la siguiente función de densidad

2 9

0 110

0

xx

f x

en otro caso

Determine y grafique la función de distribución acumulada de la variable aleatoria X.

Use la función de distribución acumulada para calcular la probabilidad de que respondan entre 60% y 80% de las personas a la encuesta.

Use la función de distribución acumulada para calcular la mediana de X.

70. El gerente comercial de la sucursal de Santiago de Surco informa que el gasto mensual, en cientos de soles, por la venta de libros a sus clientes es una variable aleatoria que tie-ne la siguiente función de densidad:

( )

Calcule el valor esperado del gasto mensual en libros.

152 Estadística Descriptiva 201601

Notas importantes

71. La variable X se distribuye uniformemente con media igual a 24 y varianza igual a 12, cal-cular los parámetros de la función de densidad.

72. La función de Excel =ALEATORIO() genera un número con distribución uniforme con pa-rámetros a igual a cero y b igual a uno. Sea X una variable aleatoria definida como el nú-mero generado por dicha función.

Calcule la probabilidad de que la función genere un número aleatorio entre 0,2 y 0,7.

Use la función de distribución acumulada para calcular P(0,15 < X < 0,55).

73. El tiempo, en minutos, que demora un servicio de delivery en entregar una pizza puede modelarse por una variable aleatoria uniforme con parámetros 10 y 38. Si la pizza se tar-da más de 30 minutos en ser entregada, el cliente no la pagará.

Si una familia pide una pizza, calcule la probabilidad de que le salga gratis.

Si la familia pide una pizza diaria durante diez días seguidos, calcule la probabilidad de que por lo menos una de ellas le salga gratis.

Una familia pidió una pizza hace 25 minutos y aún no ha llegado, ¿cuál es la probabilidad de que le salga gratis?

74. Una compañía ha comprado una prueba para seleccionar personal. Los que han diseña-do la prueba saben que las notas siguen una distribución normal con una media de 75 puntos y una desviación estándar de diez puntos. Calcule la probabilidad de que una persona que rinda esta prueba obtenga una nota superior a 90 puntos.

75. En una ciudad se estima que la temperatura máxima en un día del mes de enero puede modelarse con una variable normal con media 30°C y desviación estándar 2°C.

Si se escoge al azar un día del mes de enero, calcule la probabilidad de que la tempera-tura máxima sea menor a 31°C.

Si se escoge al azar un día del mes de enero, calcule la probabilidad de que la tempera-tura máxima esté entre 28,5 y 32°C.

Calcule el número esperado de días en el mes de enero en que la temperatura máxima es mayor a 33°C. Asuma independencia entre las temperaturas de un día y otro.

76. Marque la opción correcta.

La moda de una variable aleatoria normal X es:

a. Igual a cero

b. El esperado de X

c. Aquel valor para el cual f(Me) = 0,5, donde f es la función de densidad de X

d. No se puede determinar sin saber la desviación estándar.

e. Es el valor que acumula más del 50% del área

77. La vida útil, en meses, de un artefacto eléctrico es una variable aleatoria con distribución exponencial con parámetro β. El fabricante afirma que el 90% de estos componentes tienen una vida útil que supera los 60 meses. ¿Cuál es la media de la vida útil de estos componentes?

Unidad 4. Variables aleatorias 153

Notas importantes

78. Indique si son verdaderas o falsas las siguientes afirmaciones.

Afirmación Verdadero Falso

La media de una variable normal puede ser negativa

Si Z es una variable normal estándar P(Z > c) = 0,025, en-tonces c = -1,96

Si X es una variable normal se cumple que P(X < c) = P (X ≤ c)

Si Z es una variable normal estándar se cumple que P(Z < -c) = 1 - P (Z < c)

Si X es una variable normal se cumple que P(X < -c) = 1 - P (X < c)

El rango de toda variable normal es igual a toda la recta real

La función de densidad de la distribución normal toma su mayor valor en X = µ

La función de densidad de la distribución normal en algu-nos casos no es simétrica

El esperado de una variable normal es siempre igual a µ

79. Loy Toy es una red de librerías, con sucursales en los distritos de Santiago de Surco, San Borja y San Luis. Se ha observado que los libros que comercializa en las diferentes sucur-sales presentan fallas de compaginación, razón por la cual el gerente general está in-teresado en conocer las probabilidades de estas fallas en cada sucursal. También está in-teresado en conocer las probabilidades de la demanda por los libros que comercializa en las diferentes sucursales, el valor esperado de la utilidad, con la finalidad de tomar deci-siones administrativas.

El gerente de la sucursal de San Luis para satisfacer a sus clientes que leen libros de lite-ratura, en su pedido a la central consideró un 45% de libros de literatura, 20% de libros de ciencias, 15% de libros de historia y el resto de libros de arte y amenidades. Si se se-lecciona una muestra al azar de 10 libros, ¿cuál es la probabilidad de que se tenga a lo más 8 libros de literatura?

Otra preocupación del administrador de la red de librerías “Loy Toy” es ofrecer a sus clientes libros de buena calidad, de manera fluida y estar siempre con las últimas nove-dades. La próxima publicación en Pekín del libro “Enciclopedia de la cultura china” del ensayista peruano Guillermo Dañino, se cree traerá una gran demanda de este libro. El gerente comercial de la librería “Loy Toy” del distrito de San Borja decide hacer un pedi-do de 150 libros para el próximo mes siempre y cuando la probabilidad de la demanda de por lo menos 2 libros por día sea más de 0,95 caso contrario sólo pedirá 100 libros. Se

154 Estadística Descriptiva 201601

Notas importantes

sabe que la demanda de dicho libro sigue un proceso de Poisson con un promedio de 150 libros por mes. Considere 30 días por mes.

El gerente comercial de la sucursal de Santiago de Surco informa que el gasto mensual, en cientos de nuevos soles, por la venta de libros a sus clientes es una variable aleatoria que tiene la siguiente función de densidad:

( )

Determine el valor de a para que f(x) sea función de densidad.

Obtenga la probabilidad de que el gasto mensual de un cliente sea menor o igual a 400 nuevos soles.

Temario

Propiedad reproductiva de la distribución normal

Distribución muestral de un promedio

Teorema central del límite

Al finalizar la unidad 5,

el alumno utiliza las distribuciones muestrales

para calcular probabilidades para el total y la media muestral.

Logro de la unidad 5

Unidad 5: Distribuciones muestrales

156 Estadística Descriptiva 201601

Notas importantes

1.1. Propiedad reproductiva de la normal

Si X1, X2, X3,... ,Xn son n variables aleatorias independientes, tales que Xi ~ N(i, i2), para

cada i = 1, 2, 3,..., n, entonces, la variable aleatoria

1 1 2 2 ... n nY c X c X c X

donde c1, c2, c3,..., ck son constantes, entonces:

2 2 2 2 2 21 1 2 2 1 1 2 2~ ... , ...n n n nY N c c c c c c

Si X1, X2 son dos variables aleatorias normales independientes, tales que

21 1 1~ ,X N y 2

2 2 2~ ,X N , entonces, 22

212121 , NXXY

Si X1, X2, X3 ,..., Xk son n variables aleatorias normales independientes, tales que

2~ ,iX N , para i = 1, 2, 3,..., n, entonces, 21 2 ... ~ ,nY X X X N n n

Ejercicio 40

Sea X1 ~ N(1 = 5, 12 = 10) y X2 ~ N(2 = 6, 2

2 = 24) variables aleatorias independientes. Calcule la distribución de las siguientes variables:

Y = X1 + X2

Y = X1 - X2

Y = X1 - 8X2

La suma de una

variable aleatoria normal

con otra variable aleatoria normal

es una variable aleatoria normal

Unidad 5. Distribuciones muestrales 157

Notas importantes

Caso Aerolínea Wayra

Objetivo específico: Analizar el peso de los pasajeros.

El peso de los pasajeros adultos de un avión se modela con una variable normal:

en mujeres, con media 65 kilogramos y desviación estándar 15 kilogramos.

en hombres, con media 80 kilogramos y desviación estándar 20 kilogramos.

Calcule la probabilidad de que 20 pasajeros hombres pesen más de 1700 kilogramos.

Calcule la probabilidad de que 10 pasajeras mujeres y 10 pasajeros hombres pesen más de 1500 kilogramos.

Si en un avión donde el 60% de los pasajeros son mujeres, se elige una persona al azar, calcule la probabilidad de que esta persona pese entre 70 y 80 kilogramos.

158 Estadística Descriptiva 201601

Notas importantes

Ejemplo 32

Dos supermercados compiten por tomar el liderazgo del mercado. Un estudio reciente de una compañía de investigación de mercados, estimó que las ventas diarias (en miles de dólares) de los dos supermercados se distribuyen normalmente con medias de 15 y 17 y desviaciones estándar de 3 y 4 respectivamente.

Calcule la probabilidad de que el segundo supermercado obtenga mayores ventas que el primer supermercado en el primer día.

Solución

Sean las variables:

X: Ventas diarias del primer supermercado

Y: Ventas diarias del segundo supermercado

X N(15, 9); Y N(17, 16)

Se pide: P(Y > X) o su equivalente: P(Y – X > 0)

Sea W = Y – X, por la propiedad reproductiva de la distribución normal, se tiene:

W N(17 – 15, 16 + 9), es decir: W N(2, 25)

P(Y – X > 0) = P(W > 0)

0 2( 0)

5

( 0) 0,40

( 0) 0,6554

WP W P

P W P Z

P W

Calcule la probabilidad de que la diferencia entre las ventas diarias de ambos supermer-cados no supere los 1000 dólares.

Solución

En este caso se pide calcular:

1 2 1 21 1 1 0,6 0,2 0,1465

5 5

WP W P W P P Z

Unidad 5. Distribuciones muestrales 159

Notas importantes

Definiciones

Debido a que, muchas veces, es imposible preguntarle o medir a toda la población, un estudio estadístico se inicia con la selección de una muestra.

El muestreo comprende por lo menos dos etapas:

La selección de las unidades

El registro de las observaciones

Muestreo con y sin reemplazo

Población finita e infinita

Distribución muestral de un estadístico

Es la lista de posibles valores de un estadístico y la probabilidad asociada a cada valor.

• Las unidades se pueden seleccionar sólo una vez.

Muestreo sin reemplazo

• Las unidades se puede seleccionar más de una vez.

Muestreo con reemplazo

• Una muestra aleatoria simple de tamaño n, de una población finita de tamaño N, es una muestra seleccionada de tal manera que cada muestra posible de tamaño n tenga la misma probabilidad de ser seleccionada.

Muestreo aleatorio simple (población finita)

• Una muestra aleatoria simple de tamaño n, de una población infinita es aquella que se selecciona de tal forma que satisface las siguientes condiciones:

• cada elemento seleccionado proviene de la misma población

• cada elemento se selecciona de forma independiente.

Muestreo aleatorio simple (población infinita)

160 Estadística Descriptiva 201601

Notas importantes

Distribución de la media muestral

Es la lista de todas las medias posibles de tamaño n tomadas de una población específica y sus probabilidades asociadas.

Se tiene que:

Media E X

Varianza 2

V Xn

Factor de corrección por población finita

Si el muestreo es sin reemplazo en poblaciones de tamaño finito N, entonces debe usar-

se el factor de corrección por población finita 1

N n

N

Varianza 2

1

N nV X

n N

Distribución muestral de la media de una población normal

Si la población sigue una distribución normal con media µ y desviación estándar σ en-tonces:

Si el muestreo es con reemplazo 2

,X Nn

Si el muestreo es sin reemplazo 2

,1

N nX N

n N

Ejercicio 41

Según un informe del INEI, en el trimestre julio-agosto-setiembre del 2015, en Lima Me-tropolitana, el ingreso promedio mensual proveniente del trabajo fue de 1557 soles. Por investigaciones anteriores se sabe que la desviación estándar es de 400 soles. Si se toma una muestra de 100 personas, calcule la probabilidad de que la media muestral esté en-tre 1500 y 1600 soles. Asuma normalidad.

Unidad 5. Distribuciones muestrales 161

Notas importantes

1.2. Teorema central del límite

Por propiedades de esperado y varianza se tiene que:

E Y n

2V Y n

Se considera una buena aproximación a la distribución normal si n 30.

Del teorema central del límite, se deduce que la distribución muestral de la media X se

aproxima a la distribución normal si n 30.

Caso Aerolínea Wayra

Objetivo específico: Analizar el peso del equipaje de los pasajeros.

El peso del equipaje de los pasajeros de un avión se modela con una variable uniforme con parámetros 10 y 30 kilos. Calcule la probabilidad de que el peso total del equipaje de 50 pasajeros supere los 1050 kilos.

Sean n variables aleatorias X1, X2, X3,...Xn

independientes e igualmente distribuidas

con media y varianza 2

entonces la variable aleatoria

Y = X1 + X2 + X3 +...+ Xn

tiene una distribución aproximadamente

normal a medida que n crece,

independiente-mente de la

distribución de la población.

162 Estadística Descriptiva 201601

Notas importantes

Objetivo específico: Analizar el número de vuelos cancelados.

El número de vuelos nacionales cancelados en un día se modela con la siguiente función de probabilidad:

x 0 1 2 3 4 5

f(x) 0,40 0,25 0,15 0,1 0,05 0,05

Se toma una muestra de 100 días, calcule la probabilidad de que se cancelen entre 125 a 135 vuelos nacionales.

Unidad 5. Distribuciones muestrales 163

Notas importantes

Ejercicios de la Unidad 5

80. En un estudio de evaluación de la atención de un servicio de cafeterías, los tiempos, en minutos, que tardan en atender a un cliente las cafeterías A y B se modelaron con las va-riables aleatorias X ~ N(4,9) y Y ~ N(5,16) respectivamente y de manera independiente. Si en cada cafetería son atendidas 20 personas, halle la probabilidad de que el tiempo total de atención en la cafetería B sea mayor que el de la cafetería A.

81. Lima y El Cairo (Egipto) son las dos principales ciudades del mundo que están situadas en zonas desérticas y con extremo estrés hídrico. En París, Zurich o Berlín, el consumo promedio por persona de agua bordea los 130 litros por día. Sin embargo, según una in-vestigación del Centro de Investigación en Geografía Aplicada de la Pontificia Universi-dad Católica del Perú, en Lima, el consumo promedio por persona asciende a 250 litros por día. Además, la desviación estándar del consumo por persona se estima en 60 litros por día. Si se toma una muestra aleatoria en Lima de 100 personas, calcule la probabili-dad de que el consumo total muestral en un día sea menor a 24 mil litros.

82. La cantidad de mango que exporta una empresa mensualmente se modela con una va-riable aleatoria con media de 25 toneladas y desviación estándar de cuatro toneladas. Encontrar la probabilidad de que la cantidad exportada en tres años sea menor a 920 toneladas. Asuma independencia entre las cantidades mensuales exportadas.

83. El número de personas que llega a un concierto se modela con una variable Poisson con una media de 3,1 personas por minuto. Calcule la probabilidad de que en una hora lle-guen entre 180 y 190 personas.

84. La duración, en minutos, de una llamada telefónica en la sala de profesores puede mo-delarse por una variable aleatoria X con la siguiente función de densidad

3 0 3

0

a x xf x

en otro caso

Calcule la probabilidad de que el tiempo total de 100 llamadas sea mayor a 100 minutos.

85. Una familia tiene tres hijos. El monto de la propina semanal que se le da a cada hijo puede modelarse como una variable normal. Al menor se le da en media 20 soles por semana con una desviación estándar de 3 soles, al segundo hijo se le da el doble que al menor y al mayor se le da el triple que al menor. Calcular la probabilidad de que en cua-tro semanas la suma total recibida en propinas por los tres sume más de 500 soles.

86. Marque la afirmación correcta.

El teorema del límite central afirma que:

a. A medida que el tamaño poblacional crece, la distribución de la media poblacional tiende a una distribución normal

b. A medida que el tamaño poblacional crece, la distribución de la media muestral tien-de a una distribución normal

c. A medida que el tamaño muestral crece, la distribución de la media poblacional tien-de a una distribución normal

d. A medida que el tamaño muestral crece, la distribución de la media muestral tiende a una distribución normal

164 Estadística Descriptiva 201601

Notas importantes

87. Marque la afirmación correcta.

El teorema del límite central afirma que:

a. La suma de variables aleatorias normales independientes es una variable normal

b. La suma de más de 30 variables aleatorias normales independientes es una variable normal

c. La suma de más de 30 variables aleatorias independientes es una variable normal

d. La suma de más de 30 variables aleatorias independientes es aproximadamente una variable normal

Temario

Muestreo: Conceptos y definiciones básicas: Población, marco muestral, muestra

Censo y muestreo ventajas y desventajas.

Diseño de la encuesta por muestreo.

Tipos de muestreo:

No probabilístico

Probabilístico (aleatorio simple, aleatorio estratificado y sistemático)

Al finalizar la unidad 6, el alumno aplica la teoría de muestreo

y reconoce la importancia de utilizar apropiadamente

las técnicas aprendidas en problemas reales concernientes a su especialidad.

Logro de la unidad 6

Unidad 6: Muestreo

Unidad 6. Muestreo 167

Notas importantes

1.1. Definiciones

Ejemplo 33

• Es el objeto sobre el cual se hace la medición. También llamada unidad elemental.

Elemento

• Es la colección de todos los elementos posibles que podrían extraerse en una muestra.

Población muestreada

• Es una lista de los elementos que están disponibles para su elección en la etapa de muestreo.

Marco muestral

• Es el estudio completo de todos los elementos de la población.

Censo

• Es un resumen de una característica de una población.

Parámetro

• Es un resumen de una característica de una muestra.

Estadístico

168 Estadística Descriptiva 201601

Notas importantes

Ventajas y desventajas del muestreo frente al censo

Ventajas del muestreo

Desventajas del muestreo

Ahorro de dinero debido a que se consideran menos unidades para trabajar

Ahorro de tiempo, dado que el número de mediciones solo es de una parte representativa de la población

Mayor precisión, la muestra puede ser más precisa porque reduce la magnitud de los errores no muestrales, debido a que:

•Existe menos personal necesario para hacer las mediciones (u observaciones)

•Hay personal con mejor preparación

•Puede variar las condiciones del estudio si se demora su ejecución

Conveniencia, es conveniente el uso de una muestra si el estudio ocasiona la destrucción

de la unidad estudiada

Las estimaciones resultantes del muestreo están afectas al inevitable error de muestreo

La información proveniente de una muestra no proporciona información tipo inventario

para cada uno de los elementos de la población

Las estimaciones no pueden subdividirse para pequeños dominios de análisis, considerando

que no todos ellos pueden estar representados debidamente en la muestra

Requiere de personal especializado y experimentado

Unidad 6. Muestreo 169

Notas importantes

1.2. Muestreo probabilístico

En el muestreo probabilístico, la selección de cada elemento de la muestra se hace si-guiendo reglas matemáticas de decisión. Todos los elementos de la población tienen una probabilidad real y conocida de ser seleccionados. Existen diversos métodos de mues-treo probabilístico, como por ejemplo:

Muestreo aleatorio simple

Se selecciona una muestra en forma aleatoria y sin reemplazo a n unidades de muestreo de una población que contiene un total de N unidades. Se garantiza que cada una de las muestras posibles tiene la misma probabilidad de ser elegida.

Muestreo sistemático

Se selecciona un primer elemento aleatoriamente y, luego, los demás elementos que conformarán la muestra cada cierto intervalo. Este muestreo supone que se cuenta con una enumeración completa de los elementos de la población.

Muestreo estratificado

Se selecciona la muestra de los diversos estratos. Un estrato es una parte de la pobla-ción, cuyos elementos tienen características similares. El objetivo de estratificar la po-blación es buscar homogeneidad entre los estratos.

170 Estadística Descriptiva 201601

Notas importantes

1.3. Muestreo aleatorio simple

En este procedimiento, se selecciona una muestra en forma aleatoria y sin reemplazo a n unidades de muestreo de una población que contiene un total de N unidades.

Se garantiza que cada una de las muestras posibles tiene la misma probabilidad de ser elegida.

Pasos a seguir para seleccionar una muestra simple aleatoria

1. Enumere las unidades del marco muestral con números sucesivos. 2. Seleccione tantos elementos del marco muestral como sea el tamaño requerido de

la muestra, usando una tabla de números aleatorios.

El muestreo aleatorio simple presenta dos propiedades:

Representativo: Cada unidad tiene las mismas posibilidades de ser escogida.

Independencia: La selección de una unidad no influye en la selección de otras unidades.

Pero en el mundo real es difícil encontrar muestras completamente independientes y representativas. Por ejemplo, hacer una encuesta a los votantes marcando números de teléfono al azar es un método no representativo pues no tiene en cuenta a los votantes que no disponen de teléfono y cuenta varias veces a los que tienen varios números.

Ejercicio 42

Una empresa de consumo tiene un total de 150 trabajadores y ha registrado en el cua-dro siguiente, información acerca del ingreso mensual (en soles) y años cumplidos en la empresa de cada uno de sus trabajadores.

Seleccione una muestra de 15 trabajadores usando muestreo simple aleatorio. Use las columnas C4, C8, C11 y C15 de la tabla de números aleatorios.

Seleccione una muestra de diez trabajadores usando muestreo simple aleatorio. Use las columnas C11, C6, C1 y C9 de la tabla de números aleatorios.

Unidad 6. Muestreo 171

Notas importantes

Trabajadores registrados

Nº Ingreso

(en soles) Años en la empresa

Ingreso (en soles)

Años en la empresa

Nº Ingreso

(en soles) Años en la empresa

1 2300 5

51 2100 13

101 2400 16

2 2800 11

52 2100 9

102 1700 0

3 2400 4

53 1800 1

103 2500 12

4 2500 2

54 2000 9

104 1700 3

5 2300 3

55 2100 10

105 2400 17

6 2100 2

56 1900 4

106 2400 16

7 1700 2

57 2000 10

107 1900 7

8 2000 0

58 2300 11

108 1700 1

9 2200 7

59 2000 7

109 2100 6

10 2100 4

60 1700 1

110 2000 5

11 1700 0

61 1900 6

111 2000 3

12 2500 2

62 2000 9

112 2500 13

13 2800 13

63 2400 17

113 1700 0

14 2400 9

64 1700 0

114 2500 19

15 1700 1

65 1700 2

115 1700 3

16 2400 9

66 2400 17

116 2600 19

17 2200 10

67 2500 13

117 1600 1

18 2200 4

68 2600 16

118 1800 6

19 2300 10

69 2100 14

119 2100 10

20 2800 11

70 1900 7

120 1700 0

21 2100 7

71 2000 9

121 2400 16

22 1700 1

72 1800 7

122 2600 17

23 2500 6

73 2100 10

123 2100 10

24 2400 9

74 2300 12

124 2100 8

25 2700 17

75 2700 20

125 2400 17

26 1700 0

76 2800 20

126 1700 1

27 1600 2

77 1800 3

127 2600 20

28 2600 17

78 1700 5

128 2400 16

29 2500 13

79 1700 4

129 2700 17

30 2500 16

80 1700 0

130 2100 12

31 2700 17

81 1700 1

131 1600 0

32 1700 1

82 2100 6

132 2100 15

33 1600 1

83 2600 17

133 1900 5

34 2400 11

84 2400 9

134 2100 12

35 1900 3

85 2600 19

135 2200 12

36 1800 5

86 1900 7

136 2400 13

37 1800 3

87 1600 0

137 1800 4

38 2400 14

88 1900 3

138 2600 17

39 2600 16

89 2100 14

139 2700 20

40 2700 18

90 1700 0

140 2500 16

41 2100 11

91 2100 15

141 2500 16

42 2300 14

92 1700 1

142 1900 6

43 1700 0

93 2300 14

143 2100 15

44 2200 13

94 2500 16

144 1700 9

45 2900 20

95 2600 18

145 1500 0

46 1800 5

96 1900 3

146 1800 18

47 2100 16

97 2500 19

147 2100 10

48 2000 12

98 1800 6

148 2700 19

49 2000 12

99 1700 2

149 1800 9

50 2900 20

100 2000 10

150 2100 15

172 Estadística Descriptiva 201601

Notas importantes

Seleccione una muestra de 15 trabajadores usando muestreo simple aleatorio. Use las columnas C4, C8, C11 y C15 de la tabla de números aleatorios.

Solución

Seleccionemos tantos elementos del marco muestral como sea el tamaño requerido de la muestra, usando una tabla de números aleatorios. Como el marco muestral tiene 150 elementos usemos las columnas C4, C5 y C6, para elegir números de tres cifras y luego C8, C9 y C10.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8 4 5 8 1 1 4 5 6 7 9 9 9 2 1 3 2 3 7 7 9 0 0 3 6 9 6 5 0 6 4 7 9 8 1 2 4 4 8 3 6 7 2 4 5 4 1 2 4 4 6 9 2 6 6 6 5 2 0 0 4 4 9 3 4 4 2 4 5 9 0 8 7 4 8 4 2 1 2 5 4 6 1 2 8 1 3 3 2 0 2 6 0 7 2 7 9 1 4 6 5 9 3 4 0 8 1 3 3 7 3 2 4 8 6 7 9 0 6 2 8 1 8 7 1 3 4 3 9 3 1 7 8 3 7 3 3 0 8 3 5 0 2 1 4 7 5 7 3 1 1 9 3 3 8 7 4 8 0 2 5 3 6 3 4 1 9 8 1 0 9 0 1 1 0 9 3 6 8 6 0 9 4 6 7 6 7 9 1 2 2 7 2 3 9 3 4 6 9 8 1 5 9 9 8 4 4 5 9 1 5 4 7 3 0 6 8 1 6 8 1 8 1 8 8 2 3 9 1 4 2 4 9 1 4 0 6 0 3 2 8 0 5 3 8 0 4 3 9 4 6 0 8 8 3 8 7 1 2 2 3 9 7 1 4 2 7 5 5 2 8 6 6 3 5 5 9 9 0 6 8 6 9 5 9 4 9 1 8 2 0 2 5 3 9 1 2 0 3 0 8 7 4 9 1 4 8 8 6 6 8 5 9 4 8 5 7 7 9 6 7 3 8 1 2 2 4 0 1 4 5 7 7 4 0 4 8 9 4 7 0 9 9 9 7 8 0 0 9 3 2 7 0 5 0 2 7 8 7 3 6 4 8 1 5 8 5 5 1 4 9 6 4 4 4 7 4 5 7 5 0 8 6 7 3 6 1 7 1 1 3 5 5 7 4 4 7 6 7 2 8 4 7 1 4 0 3 6 2 4 4 4 4 0 3 6 3 4 1 2 8 6 5 5 8 8 4 3 4 8 9 0 6 7 6 0 0 8 6 8 4 2 2 3 3 1 8 1 9 8 4 2 8 5 2 8 1 7 6 4 6 2 6 6 4 1 4 8 1 0 6 0 1 3 4 0 9 1 2 8 6 5 1 9 0 3 9 1 6 1 7 8 8 2 8 0 7 8 4 8 0 9 0 5 8 4 9 2 2 3 9 8 5 9 5 7 8 4 9 9 4 8 6 1 9 2 5 0 0 7 9 0 0 7 4 5 4 8 6 2 3 1 9 1 0 9 7 5 1 2 7 1 9 4 8 4 8 9 6 6 9 5 6 0 6 1 3 3 5 2 1 0 1 9 2 8 0 2 6 6 3 8 6 9 9 8 0 8 1 8 2 6 6 8 4 0 7 8 2 5 1 3 1 6 1 0 5 7 5 7 0 6 3 0 4 1 4 0 3 0 8

Los elementos seleccionados son:

Posición 114 81 134 148 39 97 105 98 126 64 109 122 142 145 149

Unidad 6. Muestreo 173

Notas importantes

Seleccione una muestra de diez trabajadores usando muestreo simple aleatorio. Use las columnas C1, C10, C12 y C4 de la tabla de números aleatorios.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8 4 5 8 1 1 4 5 6 7 9 9 9 2 1 3 2 3 7 7 9 0 0 3 6 9 6 5 0 6 4 7 9 8 1 2 4 4 8 3 6 7 2 4 5 4 1 2 4 4 6 9 2 6 6 6 5 2 0 0 4 4 9 3 4 4 2 4 5 9 0 8 7 4 8 4 2 1 2 5 4 6 1 2 8 1 3 3 2 0 2 6 0 7 2 7 9 1 4 6 5 9 3 4 0 8 1 3 3 7 3 2 4 8 6 7 9 0 6 2 8 1 8 7 1 3 4 3 9 3 1 7 8 3 7 3 3 0 8 3 5 0 2 1 4 7 5 7 3 1 1 9 3 3 8 7 4 8 0 2 5 3 6 3 4 1 9 8 1 0 9 0 1 1 0 9 3 6 8 6 0 9 4 6 7 6 7 9 1 2 2 7 2 3 9 3 4 6 9 8 1 5 9 9 8 4 4 5 9 1 5 4 7 3 0 6 8 1 6 8 1 8 1 8 8 2 3 9 1 4 2 4 9 1 4 0 6 0 3 2 8 0 5 3 8 0 4 3 9 4 6 0 8 8 3 8 7 1 2 2 3 9 7 1 4 2 7 5 5 2 8 6 6 3 5 5 9 9 0 6 8 6 9 5 9 4 9 1 8 2 0 2 5 3 9 1 2 0 3 0 8 7 4 9 1 4 8 8 6 6 8 5 9 4 8 5 7 7 9 6 7 3 8 1 2 2 4 0 1 4 5 7 7 4 0 4 8 9 4 7 0 9 9 9 7 8 0 0 9 3 2 7 0 5 0 2 7 8 7 3 6 4 8 1 5 8 5 5 1 4 9 6 4 4 4 7 4 5 7 5 0 8 6 7 3 6 1 7 1 1 3 5 5 7 4 4 7 6 7 2 8 4 7 1 4 0 3 6 2 4 4 4 4 0 3 6 3 4 1 2 8 6 5 5 8 8 4 3 4 8 9 0 6 7 6 0 0 8 6 8 4 9 2 0 9 8 2 8 3 4 3 2 8 9 4 8 7 9 4 9 4 1 3 7 9 4 8 3 7 0 8 6 6 6 8 4 1 1 3 1 3 3 3 2 5 6 7 6 1 6 6 1 7 6 5 8 1 6 2 2 7 9 9 9 8 2 8 8 1 9 1 6 2 7 5 1 8 6 1 4 4 1 7 5 4 0 9 5 7 8 7 5 0 8 6 6 2 5 3 2 3 2 7 1 7 8 8 3 8 6 9 9 2 7 4 5 9 5 6 6 6 6 0 9 2 6 1 5 1 2 3 1 8 1 2 0 8 6 4 4 0 3 3 6 3 4 9 6 4 4 9 8 5 7 3 3 4 2 3 2 8 0 1 9 7 9 7 9 4 4 1 6 6 7 7 0 7 9 8 6 8 4 7 1 5 3 7 0 9 2 5 2 1 0 0 4 0 4 6 8 8 7 8 9 9 6 8 5 6 8 1 9 2 7 5 1 7 0 1 5 5 2 2 3 3 1 8 1 9 8 4 2 8 5 2 8 1 7 6 4 6 2 6 6 4 1 4 8 1 0 6 0 1 3 4 0 9 1 2 8 6 5 1 9 0 3 9 1 6 1 7 8 8 2 8 0 7 8 4 8 0 9 0 5 8 4 9 2 2 3 9 8 5 9 5 7 8 4 9 9 4 8 6 1 9 2 5 0 0 7 9 0 0 7 4 5 4 8 6 2 3 1 9 1 0 9 7 5 1 2 7 1 9 4 8 4 8 9 6 6 9 5 6 0 6 1 3 3 5 2 1 0 1 9 2 8 0 2 6 6 3 8 6 9 9 8 0 8 1 8 2 6 6 8 4 0 7 8 2 5 1 3 1 6 1 0 5 7 5 7 0 6 3 0 4 1 4 0 3 0 8

174 Estadística Descriptiva 201601

Notas importantes

Los elementos seleccionados son:

Posición

1.4. Muestreo sistemático

En el muestreo sistemático se elige un elemento del marco muestral cada cierto interva-lo. Este muestreo supone que se cuenta con una enumeración completa de los elemen-tos de la población.

Procedimiento para seleccionar una muestra sistemática

1. Calcule el valor de k, donde n

Nk . El valor de k se redondea al valor del entero

menor.

2. Seleccione aleatoriamente un número entero entre 1 y k llamado arranque alea-torio (A).

3. A partir de este número elegido, seleccione el siguiente que ocupa la posición (A + k) del listado del marco muestral y así sucesivamente hasta completar la muestra.

Ejemplo 34

Se tiene una población de 12 personas y se desea elegir a cuatro de ellas mediante un muestreo sistemático. ¿Cuál es el arranque aleatorio para este ejemplo? Use la columna C3, C6 y C12.

Solución

Calculemos el valor de k, donde 34

12

n

Nk . El valor de k se redondea al valor del

entero menor, luego k = 3.

Unidad 6. Muestreo 175

Notas importantes

Seleccionemos aleatoriamente un número entero entre 1 y k = 3, llamado arranque aleatorio (A). Observando la columna C3 de la tabla de números aleatorios tenemos que A = 2.

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4

A partir de este número elegido, seleccionemos el dato que ocupa la posición (A + k), es decir la quinta posición (3 + 2 = 5) del listado del marco muestral y así sucesivamente hasta completar la muestra. Es decir, elegiremos los datos de las posiciones 2, 5, 8 y 11.

Ejemplo 35

Se tiene una población de 15 personas y se desea elegir a seis de ellas mediante un muestreo sistemático. ¿Cuál es el arranque aleatorio para este ejemplo? Use la columna C4, C8 y C1.

Solución

Calculemos el valor de k, donde 5,26

15

n

Nk . El valor de k se redondea al valor del

entero menor, luego k = 2.

Seleccionemos aleatoriamente un número entero entre 1 y k = 2, llamado arranque aleatorio (A). Observando la columna C4 de la tabla de números aleatorios tenemos que A = 1.

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7

A partir de este número elegido, seleccionemos el dato que ocupa la posición (A + k), es decir la tercera posición (1 + 2 = 3) del listado del marco muestral y así sucesivamente hasta completar la muestra. Es decir, elegiremos los datos de las posiciones 1, 3, 5, 7, 9 y 11.

176 Estadística Descriptiva 201601

Notas importantes

Ejemplo 36

Se tiene información de 40 personas de un barrio de Lima Metropolitana. Obtenga una muestra aleatoria de ocho personas usando el muestreo sistemático y elabore una tabla con los elementos seleccionados. Utilice las columnas C8; C10; C11 de la tabla de números aleatorios.

Individuos registrados

Nº Sexo Edad Estatura Nº Sexo Edad Estatura Nº Sexo Edad Estatura

1 Mujer 15 154 15 Mujer 19 178 29 Hombre 33 147

2 Hombre 16 154 16 Mujer 30 163 30 Hombre 17 167

3 Hombre 21 156 17 Hombre 29 180 31 Mujer 34 69

4 Mujer 31 184 18 Mujer 25 174 32 Mujer 20 76

5 Hombre 21 173 19 Hombre 29 137 33 Mujer 26 74

6 Mujer 24 170 20 Hombre 25 153 34 Hombre 25 90

7 Hombre 32 176 21 Mujer 16 168 35 Mujer 23 164

8 Hombre 26 188 22 Hombre 31 161 36 Hombre 20 164

9 Mujer 21 169 23 Hombre 18 270 37 Mujer 34 176

10 Mujer 22 173 24 Hombre 21 173 38 Hombre 35 188

11 Hombre 18 177 25 Hombre 31 187 39 Mujer 30 155

12 Hombre 25 181 26 Mujer 28 161 40 Mujer 29 141

13 Mujer 29 164 27 Mujer 19 172

14 Hombre 25 159 28 Hombre 31 162

Solución

Calculemos el valor de k, donde 58

40

n

Nk

El valor de k se redondea al valor del entero menor, luego k = 5.

Seleccionemos aleatoriamente un número entero entre 1 y k = 5, llamado arranque aleatorio (A).

Observando la columna C8 de la tabla de números aleatorios tenemos que A = 5.

Tabla de números aleatorios C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7

A partir de este número elegido, seleccionemos el dato que ocupa la posición (A + k), es decir la décima posición (5+5 = 10) del listado del marco muestral y así sucesivamente hasta completar la muestra. Es decir, elegiremos los datos de las posiciones 5, 10, 15, 20, 25, 30, 35 y 40.

Los elementos seleccionados son:

Posición 5 10 15 20 25 30 35 40

Unidad 6. Muestreo 177

Notas importantes

Ejercicio 43

Una empresa de telecomunicaciones tiene un total de 150 empleados y ha registrado en la tabla que se muestra a continuación información acerca de las variables: ingreso men-sual (en soles), nivel de educación y años cumplidos en la empresa.

Trabajadores registrados

Nº Ingreso (soles)

Nivel de Educación

Años en empresa

Nº Ingreso (soles)

Nivel de Educación

Años en empresa

Nº Ingreso (soles)

Nivel de Educación

Años en empresa

1 2300 Secundaria 5

51 2100 Técnica 13

101 2400 Técnica 16

2 2800 Secundaria 11

52 2100 Técnica 9

102 1700 Técnica 0

3 2400 Secundaria 4

53 1800 Técnica 1

103 2500 Técnica 12

4 2500 Secundaria 2

54 2000 Técnica 9

104 1700 Técnica 3

5 2300 Secundaria 3

55 2100 Técnica 10

105 2400 Técnica 17

6 2100 Secundaria 2

56 1900 Técnica 4

106 2400 Técnica 16

7 1700 Secundaria 2

57 2000 Técnica 10

107 1900 Técnica 7

8 2000 Secundaria 0

58 2300 Técnica 11

108 1700 Técnica 1

9 2200 Secundaria 7

59 2000 Técnica 7

109 2100 Técnica 6

10 2100 Secundaria 4

60 1700 Técnica 1

110 2000 Técnica 5

11 1700 Secundaria 1

61 1900 Técnica 6

111 2000 Superior 3

12 2500 Secundaria 2

62 2000 Técnica 9

112 2500 Superior 13

13 2800 Secundaria 13

63 2400 Técnica 17

113 1700 Superior 0

14 2400 Secundaria 9

64 1700 Técnica 0

114 2500 Superior 19

15 1700 Secundaria 1

65 1700 Técnica 2

115 1700 Superior 3

16 2400 Secundaria 9

66 2400 Técnica 17

116 2600 Superior 19

17 2200 Secundaria 10

67 2500 Técnica 13

117 1600 Superior 1

18 2200 Secundaria 4

68 2600 Técnica 16

118 1800 Superior 6

19 2300 Secundaria 10

69 2100 Técnica 14

119 2100 Superior 10

20 2800 Secundaria 11

70 1900 Técnica 7

120 1700 Superior 0

21 2100 Secundaria 7

71 2000 Técnica 9

121 2400 Superior 16

22 1700 Secundaria 1

72 1800 Técnica 7

122 2600 Superior 17

23 2500 Secundaria 6

73 2100 Técnica 10

123 2100 Superior 10

24 2400 Secundaria 9

74 2300 Técnica 12

124 2100 Superior 8

25 2700 Secundaria 17

75 2700 Técnica 20

125 2400 Superior 17

26 1700 Secundaria 0

76 2800 Técnica 20

126 1700 Superior 1

27 1600 Secundaria 2

77 1800 Técnica 3

127 2600 Superior 20

28 2600 Secundaria 17

78 1700 Técnica 5

128 2400 Superior 16

29 2500 Secundaria 13

79 1700 Técnica 4

129 2700 Superior 17

30 2500 Secundaria 16

80 1700 Técnica 0

130 2100 Superior 12

31 2700 Secundaria 17

81 1700 Técnica 1

131 1600 Superior 0

32 1700 Secundaria 1

82 2100 Técnica 6

132 2100 Superior 15

33 1600 Secundaria 1

83 2600 Técnica 17

133 1900 Superior 5

34 2400 Secundaria 11

84 2400 Técnica 9

134 2100 Superior 12

35 1900 Secundaria 3

85 2600 Técnica 19

135 2200 Superior 12

36 1800 Secundaria 5

86 1900 Técnica 7

136 2400 Superior 13

37 1800 Secundaria 3

87 1600 Técnica 0

137 1800 Superior 4

38 2400 Secundaria 14

88 1900 Técnica 3

138 2600 Superior 17

39 2600 Secundaria 16

89 2100 Técnica 14

139 2700 Superior 20

40 2700 Secundaria 18

90 1700 Técnica 0

140 2500 Superior 16

41 2100 Técnica 11

91 2100 Técnica 15

141 2500 Superior 16

42 2300 Técnica 14

92 1700 Técnica 1

142 1900 Superior 6

43 1700 Técnica 0

93 2300 Técnica 14

143 2100 Superior 15

44 2200 Técnica 13

94 2500 Técnica 16

144 1700 Superior 9

45 2900 Técnica 20

95 2600 Técnica 18

145 1500 Superior 0

46 1800 Técnica 5

96 1900 Técnica 3

146 1800 Superior 18

47 2100 Técnica 16

97 2500 Técnica 19

147 2100 Superior 10

48 2000 Técnica 12

98 1800 Técnica 6

148 2700 Superior 19

49 2000 Técnica 12

99 1700 Técnica 2

149 1800 Superior 9

50 2900 Técnica 20

100 2000 Técnica 10

150 2100 Superior 15

178 Estadística Descriptiva 201601

Notas importantes

Aplique el muestreo sistemático para seleccionar una muestra de ocho empleados. Ela-bore un listado con el número seleccionado. Utilice la columna C3, C9, y C12 de la tabla de números aleatorios.

Solución

Calculemos el valor de k, donde n

Nk ………………………...

El valor de k se redondea al valor del entero menor, luego k = ……………..……..

Seleccionemos aleatoriamente un número entero entre 1 y k, llamado arranque aleato-rio (A).

Observando la columna C3 y C4 de la tabla de números aleatorios tenemos que A = …………….....

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8

A partir de este número elegido, seleccionemos el dato que ocupa la posición (A + k) del listado del marco muestral y así sucesivamente hasta completar la muestra.

Los elementos seleccionados son:

Posición

Unidad 6. Muestreo 179

Notas importantes

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8 4 5 8 1 1 4 5 6 7 9 9 9 2 1 3 2 3 7 7 9 0 0 3 6 9 6 5 0 6 4 7 9 8 1 2 4 4 8 3 6 7 2 4 5 4 1 2 4 4 6 9 2 6 6 6 5 2 0 0 4 4 9 3 4 4 2 4 5 9 0 8 7 4 8 4 2 1 2 5 4 6 1 2 8 1 3 3 2 0 2 6 0 7 2 7 9 1 4 6 5 9 3 4 0 8 1 3 3 7 3 2 4 8 6 7 9 0 6 2 8 1 8 7 1 3 4 3 9 3 1 7 8 3 7 3 3 0 8 3 5 0 2 1 4 7 5 7 3 1 1 9 3 3 8 7 4 8 0 2 5 3 6 3 4 1 9 8 1 0 9 0 1 1 0 9 3 6 8 6 0 9 4 6 7 6 7 9 1 2 2 7 2 3 9 3 4 6 9 8 1 5 9 9 8 4 4 5 9 1 5 4 7 3 0 6 8 1 6 8 1 8 1 8 8 2 3 9 1 4 2 4 9 1 4 0 6 0 3 2 8 0 5 3 8 0 4 3 9 4 6 0 8 8 3 8 7 1 2 2 3 9 7 1 4 2 7 5 5 2 8 6 6 3 5 5 9 9 0 6 8 6 9 5 9 4 9 1 8 2 0 2 5 3 9 1 2 0 3 0 8 7 4 9 1 4 8 8 6 6 8 5 9 4 8 5 7 7 9 6 7 3 8 1 2 2 4 0 1 4 5 7 7 4 0 4 8 9 4 7 0 9 9 9 7 8 0 0 9 3 2 7 0 5 0 2 7 8 7 3 6 4 8 1 5 8 5 5 1 4 9 6 4 4 4 7 4 5 7 5 0 8 6 7 3 6 1 7 1 1 3 5 5 7 4 4 7 6 7 2 8 4 7 1 4 0 3 6 2 4 4 4 4 0 3 6 3 4 1 2 8 6 5 5 8 8 4 3 4 8 9 0 6 7 6 0 0 8 6 8 4 9 2 0 9 8 2 8 3 4 3 2 8 9 4 8 7 9 4 9 4 1 3 7 9 4 8 3 7 0 8 6 6 6 8 4 1 1 3 1 3 3 3 2 5 6 7 6 1 6 6 1 7 6 5 8 1 6 2 2 7 9 9 9 8 2 8 8 1 9 1 6 2 7 5 1 8 6 1 4 4 1 7 5 4 0 9 5 7 8 7 5 0 8 6 6 2 5 3 2 3 2 7 1 7 8 8 3 8 6 9 9 2 7 4 5 9 5 6 6 6 6 0 9 2 6 1 5 1 2 3 1 8 1 2 0 8 6 4 4 0 3 3 6 3 4 9 6 4 4 9 8 5 7 3 3 4 2 3 2 8 0 1 9 7 9 7 9 4 4 1 6 6 7 7 0 7 9 8 6 8 4 7 1 5 3 7 0 9 2 5 2 1 0 0 4 0 4 6 8 8 7 8 9 9 6 8 5 6 8 1 9 2 7 5 1 7 0 1 5 5 2 2 3 3 1 8 1 9 8 4 2 8 5 2 8 1 7 6 4 6 2 6 6 4 1 4 8 1 0 6 0 1 3 4 0 9 1 2 8 6 5 1 9 0 3 9 1 6 1 7 8 8 2 8 0 7 8 4 8 0 9 0 5 8 4 9 2 2 3 9 8 5 9 5 7 8 4 9 9 4 8 6 1 9 2 5 0 0 7 9 0 0 7 4 5 4 8 6 2 3 1 9 1 0 9 7 5 1 2 7 1 9 4 8 4 8 9 6 6 9 5 6 0 6 1 3 3 5 2 1 0 1 9 2 8 0 2 6 6 3 8 6 9 9 8 0 8 1 8 2 6 6 8 4 0 7 8 2 5 1 3 1 6 1 0 5 7 5 7 0 6 3 0 4 1 4 0 3 0 8

180 Estadística Descriptiva 201601

Notas importantes

1.5. Muestreo estratificado

Estratificar significa dividir a la población en varias partes de acuerdo con ciertas carac-terísticas de sus elementos.

El objetivo de estratificar la población es buscar homogeneidad entre los estratos.

Pasos a seguir para seleccionar una muestra estratificada

1. Divida a la población en estratos que sean mutuamente excluyentes. Esto es, que in-cluyan a todos los elementos de la población y que cada elemento pertenezca sola-mente a un estrato.

2. Calcule la cantidad de elementos a seleccionar en cada estrato.

3. Seleccione muestras aleatorias simples para cada uno de los estratos.

Recomendaciones para el uso de muestras estratificadas

Si se tiene que usar más de una variable para formar los estratos, cuidar que estas no es-tén relacionadas entre sí.

No se deben considerar la formación de muchos estratos, generalmente se usan entre tres y ocho estratos.

Los estratos pequeños no contribuyen mucho a la reducción del error, por lo tanto pue-den no ser considerados.

Unidad 6. Muestreo 181

Notas importantes

Ejemplo 37

La empresa de telecomunicaciones RTV tiene 120 empleados de los cuales tiene infor-mación de las variables: ingreso en soles, nivel de educación y años en la empresa.

Nº Ingreso

(en soles)

Nivel de educación

Años cumplidos

en la empresa Nº

Ingreso (en

soles)

Nivel de educación

Años cumplidos

en la empre-sa

Nº Ingreso

(en soles)

Nivel de educación

Años cumplidos

en la empresa

1 2300 Secundaria 5

41 2100 Técnica 13

81 2000 Superior 3

2 2800 Secundaria 11

42 2100 Técnica 9

82 2500 Superior 13

3 2400 Secundaria 4

43 1800 Técnica 1

83 1700 Superior 0

4 2500 Secundaria 2

44 2000 Técnica 9

84 2500 Superior 19

5 2300 Secundaria 3

45 2100 Técnica 10

85 1700 Superior 3

6 2100 Secundaria 2

46 1900 Técnica 4

86 2600 Superior 19

7 1700 Secundaria 2

47 2000 Técnica 10

87 1600 Superior 1

8 2000 Secundaria 0

48 2300 Técnica 11

88 1800 Superior 6

9 2200 Secundaria 7

49 2000 Técnica 7

89 2100 Superior 10

10 2100 Secundaria 4

50 1700 Técnica 1

90 1700 Superior 0

11 1700 Secundaria 0

51 1700 Técnica 1

91 2400 Superior 16

12 2500 Secundaria 2

52 2100 Técnica 6

92 2600 Superior 17

13 2800 Secundaria 13

53 2600 Técnica 17

93 2100 Superior 10

14 2400 Secundaria 9

54 2400 Técnica 9

94 2100 Superior 8

15 1700 Secundaria 1

55 2600 Técnica 19

95 2400 Superior 17

16 2400 Secundaria 9

56 1900 Técnica 7

96 1700 Superior 1

17 2200 Secundaria 10

57 1600 Técnica 0

97 2600 Superior 20

18 2200 Secundaria 4

58 1900 Técnica 3

98 2400 Superior 16

19 2300 Secundaria 10

59 2100 Técnica 14

99 2700 Superior 17

20 2800 Secundaria 11

60 1700 Técnica 0

100 2100 Superior 12

21 2100 Secundaria 7

61 2100 Técnica 15

101 1600 Superior 0

22 1700 Secundaria 1

62 1700 Técnica 1

102 2100 Superior 15

23 2500 Secundaria 6

63 2300 Técnica 14

103 1900 Superior 5

24 2400 Secundaria 9

64 2500 Técnica 16

104 2100 Superior 12

25 2700 Secundaria 17

65 2600 Técnica 18

105 2200 Superior 12

26 1700 Secundaria 0

66 1900 Técnica 3

106 2400 Superior 13

27 1600 Secundaria 2

67 2500 Técnica 19

107 1800 Superior 4

28 2600 Secundaria 17

68 1800 Técnica 6

108 2600 Superior 17

29 2500 Secundaria 13

69 1700 Técnica 2

109 2700 Superior 20

30 2500 Secundaria 16

70 2000 Técnica 10

110 2500 Superior 16

31 2100 Técnica 11

71 2400 Técnica 16

111 2500 Superior 16

32 2300 Técnica 14

72 1700 Técnica 0

112 1900 Superior 6

33 1700 Técnica 0

73 2500 Técnica 12

113 2100 Superior 15

34 2200 Técnica 13

74 1700 Técnica 3

114 1700 Superior 9

35 2900 Técnica 20

75 2400 Técnica 17

115 1500 Superior 0

36 1800 Técnica 5

76 2400 Técnica 16

116 1800 Superior 18

37 2100 Técnica 16

77 1900 Técnica 7

117 2100 Superior 10

38 2000 Técnica 12

78 1700 Técnica 1

118 2700 Superior 19

39 2000 Técnica 12

79 2100 Técnica 6

119 1800 Superior 9

40 2900 Técnica 20

80 2000 Técnica 5

120 2100 Superior 15

182 Estadística Descriptiva 201601

Notas importantes

Aplique el muestreo estratificado para seleccionar una muestra de 16 empleados. Use como variable de estratificación el nivel educacional. Elabore un listado identificando el número de dato seleccionado.

Para el estrato 1 use las columnas C1, C3 y C5, para el estrato 2 use las columnas C8, C9, C10 y C11 y para el estrato 3 use las columnas C4, C3, C5 y C7.

Solución

Se divide a la población en estratos que sean mutuamente excluyentes, luego los estra-tos 1, 2 y 3 son: secundaria, técnica y superior, respectivamente. Para cada uno de los estratos, seleccionamos muestras aleatorias simples.

Estratos Números de elementos

en el estrato Nh

Posiciones

(desde – hasta) Cantidad seleccionada por estrato n

N

Nn h

h

1. Secundaria N1 = 30 1 – 30 416120

3011 n

N

Nn

2. Técnica N2 = 50 31 – 80 767,616120

5022 n

N

Nn

3. Superior N3 = 40 81 – 120 533,516120

4033 n

N

Nn

Total N = 120 n = 16

Para el estrato Secundaria, realizamos un muestreo aleatorio simple usando las colum-nas C1, C3 y C5. Observemos que las posiciones de los elementos a elegir están entre el 1 y el 30.

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8

Luego, el cuadro con los datos elementos seleccionados para el estrato Secundaria es:

Estrato Secundaria Posición 2 16 29 13

Para el estrato Técnica, realizamos un muestreo aleatorio simple usando las columnas C8, C9, C10 y C11. Observemos que las posiciones de los elementos a elegir están entre el 31 y el 80.

Unidad 6. Muestreo 183

Notas importantes

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7

Luego, el cuadro con los datos elementos seleccionados para el estrato Técnica es:

Estrato Técnica Posición 54 62 66 77 48 67 44

Para el estrato Superior, realizamos un muestreo aleatorio simple usando las columnas C4, C3, C5 y C7. Observemos que las posiciones de los elementos a elegir están entre el 81 y el 120.

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8 4 5 8 1 1 4 5 6 7 9 9 9 2 1 3 2 3 7 7 9 0 0 3 6 9 6 5 0 6 4 7 9 8 1 2 4 4 8 3 6 7 2 4 5 4 1 2 4 4 6 9 2 6 6 6 5 2 0 0 4

Luego, el cuadro con los datos elementos seleccionados para el estrato Superior es:

Estrato Superior Posición 114 81 97 105 83

184 Estadística Descriptiva 201601

Notas importantes

Ejercicio 44

La siguiente tabla muestra a los 120 alumnos de la especialidad de Administración, de la universidad El Saber, a quienes se les preguntó por su emisora radial preferida y por la cantidad de horas a la semana que la escucha.

Posición Radio Horas Posición Radio Horas Posición Radio Horas

1 Estudio 92 6 41 Oxígeno 6 81 Oxígeno 4

2 Estudio 92 10 42 Oxígeno 6 82 Oxígeno 3

3 Estudio 92 4 43 Oxígeno 8 83 Oxígeno 3

4 Estudio 92 2 44 Oxígeno 9 84 Oxígeno 5

5 Estudio 92 3 45 Oxígeno 4 85 Oxígeno 5

6 Estudio 92 6 46 Oxígeno 6 86 Oxígeno 8

7 Estudio 92 7 47 Oxígeno 7 87 Planeta 7

8 Estudio 92 6 48 Oxígeno 9 88 Planeta 6

9 Estudio 92 8 49 Oxígeno 8 89 Planeta 9

10 Estudio 92 9 50 Oxígeno 10 90 Planeta 9

11 Estudio 92 11 51 Oxígeno 12 91 Planeta 4

12 Estudio 92 3 52 Oxígeno 9 92 Planeta 2

13 Estudio 92 4 53 Oxígeno 9 93 Planeta 11

14 Estudio 92 2 54 Oxígeno 8 94 Planeta 2

15 Estudio 92 6 55 Oxígeno 4 95 Planeta 3

16 Estudio 92 4 56 Oxígeno 6 96 Planeta 8

17 Estudio 92 9 57 Oxígeno 7 97 Planeta 6

18 Estudio 92 5 58 Oxígeno 8 98 Planeta 7

19 Estudio 92 2 59 Oxígeno 7 99 Planeta 9

20 Estudio 92 7 60 Oxígeno 3 100 Planeta 4

21 Estudio 92 4 61 Oxígeno 6 101 Planeta 8

22 Estudio 92 6 62 Oxígeno 9 102 Planeta 7

23 Estudio 92 7 63 Oxígeno 2 103 Planeta 7

24 Estudio 92 8 64 Oxígeno 5 104 Planeta 9

25 Estudio 92 9 65 Oxígeno 1 105 Planeta 6

26 Estudio 92 10 66 Oxígeno 4 106 Planeta 7

27 Estudio 92 5 67 Oxígeno 7 107 Planeta 9

28 Estudio 92 4 68 Oxígeno 6 108 Planeta 8

29 Estudio 92 7 69 Oxígeno 7 109 Planeta 3

30 Estudio 92 8 70 Oxígeno 8 110 Planeta 11

31 Estudio 92 4 71 Oxígeno 4 111 Planeta 13

32 Oxígeno 6 72 Oxígeno 5 112 Planeta 14

33 Oxígeno 7 73 Oxígeno 3 113 Planeta 9

34 Oxígeno 5 74 Oxígeno 6 114 Planeta 8

35 Oxígeno 8 75 Oxígeno 5 115 Planeta 6

36 Oxígeno 9 76 Oxígeno 8 116 Planeta 5

37 Oxígeno 4 77 Oxígeno 7 117 Planeta 7

38 Oxígeno 5 78 Oxígeno 9 118 Planeta 3

39 Oxígeno 2 79 Oxígeno 10 119 Planeta 6

40 Oxígeno 9 80 Oxígeno 3 120 Planeta 5

Seleccione una muestra aleatoria de tamaño 12 mediante muestreo estratificado. Use la variable radio de su preferencia como variable de estratificación.

Unidad 6. Muestreo 185

Notas importantes

Elabore un listado con el alumno seleccionado. Para el estrato 1 use las columnas C7, C3 y C1, para el estrato 2 use las columnas C8, C3, C2 y C10 y para el estrato 3 use las colum-nas C1, C4, C10; C7, C12, y C13.

Estrato Nh Posición

(desde – hasta) n

N

Nn h

h

Estudio 92 N1= n1=

Oxígeno N2= n2=

Planeta N3= n3=

Total

Estrato 1: Estudio 92

Posición

Estrato 2: Oxígeno

Posición

Estrato 3: Planeta

Posición

186 Estadística Descriptiva 201601

Notas importantes

Tabla de números aleatorios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

4 8 2 4 6 6 3 5 4 5 6 0 5 2 6 9 8 0 0 9 9 2 9 8 1 4 4 1 9 8 5 1 1 9 7 9 8 5 9 0 0 2 1 3 3 9 1 6 2 9 7 1 2 6 6 0 7 5 6 4 9 6 0 8 3 5 6 6 6 4 0 8 6 3 4 8 1 8 5 4 1 6 4 1 6 5 2 7 7 2 9 9 9 9 7 4 1 5 4 9 2 9 0 5 5 0 8 4 8 7 4 6 2 1 7 0 1 5 8 7 6 1 2 9 5 0 4 0 9 8 2 0 2 6 8 7 0 1 9 7 1 3 1 8 9 9 0 1 2 6 3 7 1 9 6 1 7 9 9 8 4 5 8 1 1 4 5 6 7 9 9 9 2 1 3 2 3 7 7 9 0 0 3 6 9 6 5 0 6 4 7 9 8 1 2 4 4 8 3 6 7 2 4 5 4 1 2 4 4 6 9 2 6 6 6 5 2 0 0 4 4 9 3 4 4 2 4 5 9 0 8 7 4 8 4 2 1 2 5 4 6 1 2 8 1 3 3 2 0 2 6 0 7 2 7 9 1 4 6 5 9 3 4 0 8 1 3 3 7 3 2 4 8 6 7 9 0 6 2 8 1 8 7 1 3 4 3 9 3 1 7 8 3 7 3 3 0 8 3 5 0 2 1 4 7 5 7 3 1 1 9 3 3 8 7 4 8 0 2 5 3 6 3 4 1 9 8 1 0 9 0 1 1 0 9 3 6 8 6 0 9 4 6 7 6 7 9 1 2 2 7 2 3 9 3 4 6 9 8 1 5 9 9 8 4 4 5 9 1 5 4 7 3 0 6 8 1 6 8 1 8 1 8 8 2 3 9 1 4 2 4 9 1 4 0 6 0 3 2 8 0 5 3 8 0 4 3 9 4 6 0 8 8 3 8 7 1 2 2 3 9 7 1 4 2 7 5 5 2 8 6 6 3 5 5 9 9 0 6 8 6 9 5 9 4 9 1 8 2 0 2 5 3 9 1 2 0 3 0 8 7 4 9 1 4 8 8 6 6 8 5 9 4 8 5 7 7 9 6 7 3 8 1 2 2 4 0 1 4 5 7 7 4 0 4 8 9 4 7 0 9 9 9 7 8 0 0 9 3 2 7 0 5 0 2 7 8 7 3 6 4 8 1 5 8 5 5 1 4 9 6 4 4 4 7 4 5 7 5 0 8 6 7 3 6 1 7 1 1 3 5 5 7 4 4 7 6 7 2 8 4 7 1 4 0 3 6 2 4 4 4 4 0 3 6 3 4 1 2 8 6 5 5 8 8 4 3 4 8 9 0 6 7 6 0 0 8 6 8 4 9 2 0 9 8 2 8 3 4 3 2 8 9 4 8 7 9 4 9 4 1 3 7 9 4 8 3 7 0 8 6 6 6 8 4 1 1 3 1 3 3 3 2 5 6 7 6 1 6 6 1 7 6 5 8 1 6 2 2 7 9 9 9 8 2 8 8 1 9 1 6 2 7 5 1 8 6 1 4 4 1 7 5 4 0 9 5 7 8 7 5 0 8 6 6 2 5 3 2 3 2 7 1 7 8 8 3 8 6 9 9 2 7 4 5 9 5 6 6 6 6 0 9 2 6 1 5 1 2 3 1 8 1 2 0 8 6 4 4 0 3 3 6 3 4 9 6 4 4 9 8 5 7 3 3 4 2 3 2 8 0 1 9 7 9 7 9 4 4 1 6 6 7 7 0 7 9 8 6 8 4 7 1 5 3 7 0 9 2 5 2 1 0 0 4 0 4 6 8 8 7 8 9 9 6 8 5 6 8 1 9 2 7 5 1 7 0 1 5 5 2 2 3 3 1 8 1 9 8 4 2 8 5 2 8 1 7 6 4 6 2 6 6 4 1 4 8 1 0 6 0 1 3 4 0 9 1 2 8 6 5 1 9 0 3 9 1 6 1 7 8 8 2 8 0 7 8 4 8 0 9 0 5 8 4 9 2 2 3 9 8 5 9 5 7 8 4 9 9 4 8 6 1 9 2 5 0 0 7 9 0 0 7 4 5 4 8 6 2 3 1 9 1 0 9 7 5 1 2 7 1 9 4 8 4 8 9 6 6 9 5 6 0 6 1 3 3 5 2 1 0 1 9 2 8 0 2 6 6 3 8 6 9 9 8 0 8 1 8 2 6 6 8 4 0 7 8 2 5 1 3 1 6 1 0 5 7 5 7 0 6 3 0 4 1 4 0 3 0 8

Unidad 6. Muestreo 187

Notas importantes

Problemas resueltos

1. El gerente de Wallmarket al distribuir los productos en las diferentes tiendas toma una muestra

de 250 unidades de los tres productos y en los dos tipos de envases, del almacén con la idea de

distribuirlos aleatoriamente en las tiendas. La distribución de los productos es la siguiente:

Tipo de producto Tipo de presentación

Total Frasco Sachet

Jugo 62 50 112

Mermelada 38 50 88

Esencia 30 20 50

Total 130 120 250

Si se elige un producto al azar, para una de las tiendas,

a. ¿Cuál es la probabilidad de que sea jugo de maracuyá y en frasco? Lo primero es definir los eventos necesarios. J:= que el producto elegido sea jugo F:= que la presentación elegida sea frasco En la tabla observamos que lo pedido es:

Tipo de producto Tipo de presentación

Total Frasco Sachet

Jugo 62 50 112

Mermelada 38 50 88

Esencia 30 20 50

Total 130 120 250

( )

b. ¿Cuál es la probabilidad de que sea mermelada o el envase sea de sachet? Sean los eventos M:= que el producto elegido sea mermelada S:= que la presentación elegida sea sachet

En la tabla observamos que lo pedido es:

Tipo de producto Tipo de presentación

Total Frasco Sachet

Jugo 62 50 112

Mermelada 38 50 88

Esencia 30 20 50

Total 130 120 250

( ) ( ) ( ) ( )

188 Estadística Descriptiva 201601

Notas importantes

c. Si el envase es sachet, ¿cuál es la probabilidad de que sea esencia?

Sean los eventos E:= que el producto elegido sea esencia S:= que la presentación elegida sea sachet

En la tabla observamos que lo pedido es:

Tipo de producto Tipo de presentación

Total Frasco Sachet

Jugo 62 50 112

Mermelada 38 50 88

Esencia 30 20 50

Total 130 120 250

( )

2. Si Expórtame distribuye sus productos de la siguiente manera: 45% en jugo, 35% en mermelada y el resto en esencia. Además, se sabe que la probabilidad de que un jugo esté en mal estado es 4%, una mermelada es 2% y una esencia es 3%. a. Si se selecciona un producto al azar, calcule la probabilidad de que el producto esté en mal

estado.

Sean los siguientes eventos:

J:= que el producto elegido sea jugo

M:= que el producto elegido sea mermelada

E:= que el producto elegido sea esencia

B:= que el producto elegido esté en buen estado

Producto Mal estado Buen estado Total

Jugo 0,018 0,432 0,45

Mermelada 0,007 0,343 0,35

Esencia 0,006 0,194 0,20

Total 0,031 0,969 1,00

b. Si se selecciona un producto al azar, calcule la probabilidad de que esté en buen estado.

Para resolver este problema usaremos el teorema de la probabilidad total.

( ) ( ) ( ⁄ ) ( ) ( ⁄ ) ( ) ( ⁄ )

c. Si de los productos en mal estado se selecciona uno al azar, calcule la probabilidad de que sea jugo.

Unidad 6. Muestreo 189

Notas importantes

Para resolver este problema usaremos el teorema de la probabilidad de Bayes.

( ⁄ ) ( )

( )

( ) ( ⁄ )

( ) ( ⁄ ) ( ) ( ⁄ ) ( ) ( ⁄ )

3. Los productos de Expórtame también tienen buena acogida en el mercado nacional. El supermer-

cado Súper adquiere un lote pero conoce que algunos envases están defectuosos. La distribución

de los productos en el lote se muestra en las siguientes gráficas:

La distribución de los productos en el lote que son defectuosos se muestran en la siguiente gráfica

Si se elige un producto al azar y el porcentaje de envases defectuosos es menor al 4%, el gerente de supermercados Súper decidirá adquirir un lote mayor al actual. ¿Qué decisión tomará el geren-te de Súper?

Jugo 35%

Mermelada

37%

Esencia 28%

Distribución de los productos en el lote

2 1.5 4

98 98.5 96

0%

20%

40%

60%

80%

100%

Jugo Mermelada Esencia

Po

rce

nta

je

Tipo de producto

Distribución del estado del envase por tipo de producto

Buen estado

Defectuoso

Fuente: Supermercados Súper

190 Estadística Descriptiva 201601

Notas importantes

Producto Mal estado Buen estado Total

Jugo 0,007 0,343 0,35

Mermelada 0,006 0,364 0,37

Esencia 0,011 0,269 0,28

Total 0,024 0,976 1,00

P( defectuoso) = 0.024

El gerente decidirá adquirir un lote mayor de productos

a. Si el envase está en buen estado, ¿qué tan probable es que sea de esencia?

P(Esencia / buen estado) = 0.269/0.976 = 0.2756

b. Si el envase está en mal estado, ¿qué tipo de producto es más probable que sea?

Esencia = 0,011/ 0,024 = 0,4583

4. En el proceso de control de calidad se analiza 60 envases de los productos de Expórtame. Por

investigaciones anteriores se sabe que la probabilidad de que un envase esté en mal estado es de

0,01.

a. Se rechazarán los 60 productos si la probabilidad de seleccionar más de dos envases en mal estado es mayor al 30%, ¿qué decisión se debe de tomar?

Lo primero es definir la variable que nos permitirá resolver el problema.

Definamos la variable X:= número de envases en mal estado.

La variable X se tiene una distribución binomial con parámetros: n= número de ensayos = 60 y p =

probabilidad de éxito = 0,01.

El rango de X, es decir todos los valores que puede tomar la variable, es igual 0, 1, 2,…, 60. En-

tonces, X B(n = 60; p = 0,01) y Rx = 0, 1,…,60

( ) ( )

Como la probabilidad pedida es menor al 30%, entonces los productos no serán rechazados.

b. Calcule el valor esperado y varianza del número envases en mal estado y su varianza?

E(X) = n p = 60 x 0.01 = 0,6

V(X) = n p (1-p) = 60 x 0,01 x (1 – 0,01) = 0,594

Unidad 6. Muestreo 191

Notas importantes

5. Luego de embalar un contenedor de envases de productos de Expórtame, se tienen 60 envases,

de los cuales 25 son frascos. Si selecciona una muestra aleatoria de 20 envases para el control de

calidad.

a. Calcule la probabilidad de que ocho envases sean de frasco.

Definamos la variable X:= número de envases de frasco seleccionados.

La variable X se tiene una distribución hipergeométrica con parámetros:

N= 60 tamaño de la población

r = 25 número de éxitos en la población

n = 20 tamaño de la muestra.

El rango de X, es decir todos los valores que puede tomar la variable, es igual 0, 1, 2,…, 20. En-

tonces, X H(N = 60; r = 25; n = 20) y Rx = 0, 1,…,20

La probabilidad pedida es

( )

b. Calcule la variabilidad relativa de X respecto a la media.

Lo que nos piden es calcular el coeficiente de variación de X. Primero hallemos el esperado y la

varianza de X.

( )

( )

(

) (

)

(

) (

)

El coeficiente de variación de X es

( ) √ ( )

( )

6. El número de unidades envasados se modela con una variable Poisson con un promedio 10 uni-

dades por cada 20 minutos.

a. ¿Cuál es la probabilidad de que en los últimos 20 minutos se hayan envasado 12 productos?

P(X = 12) = 0,095

b. Si la máquina funciona durante dos horas consecutivas, calcule la probabilidad de que se ha-yan envasado 50 productos.

1 = 60 unidades en dos horas

P(X = 50) = 0,0233

192 Estadística Descriptiva 201601

Notas importantes

7. Sea la variable aleatoria X el número de frascos vendidos en un supermercado por semana, con la

siguiente función de probabilidad:

6,5,4,3,2,1)3(38

1)( 2 xparaxkxf

a. Calcule el valor de k.

k = 0,25

x 12 24 36 48 60 72

f(x) 0,1447 0,2237 0,25 0,2237 0,1447 0,01316

b. Calcule la probabilidad de vender por lo menos tres docenas de frascos

P(X ≥ 3) =1 - P(X ≤ 2) = 1 - 0.36842105 = 0,6316

c. Si la utilidad por docena de frascos vendido (en soles) viene dada por la función: U(X) = 10X – 5, expresada en soles, calcule la utilidad esperada mensual y su varianza?

E(X) = 3,0396

E(U(X)) = E(10X – 5) = 10 E(X) - 5 = 25,396

8. La demanda mensual de uno de los productos Expórtame varía grandemente de un mes a otro.

Con base a la información de los últimos 24 meses se estimó las probabilidades para la demanda

mensual del producto jugo en frasco.

Número de frascos vendidos 80 90 100 120 130 140

f(x) 0,15 0,25 0,35 0,10 0,10 0,05

a. Calcule el valor esperado del número de frascos de jugo demandados.

E(X) = 101,5

b. Cada frasco tres soles y lo vende cinco soles. Si en un mes determinado, ha solicitado al dis-tribuidor 140 frascos. Sea U(X) la utilidad del dueño de la tienda. Calcule la utilidad esperada.

x 80 90 100 120 130 140

f(x) 0,15 0,25 0,35 0,10 0,10 0,05

U(x) -20 30 80 180 230 280

E(U(X)) = 87,5

Unidad 6. Muestreo 193

Notas importantes

Caso: El Metropolitano El Metropolitano es el sistema integrado de transporte público para Lima, que cuenta con buses arti-culados de gran capacidad que circulan por corredores exclusivos, bajo el esquema de autobuses de tránsito rápido BRT (Bus Rapid Transit en inglés). El objetivo de este moderno sistema es elevar la calidad de vida de los ciudadanos, al ahorrarles tiempo en el traslado diario, proteger el medio am-biente, brindarles mayor seguridad, una mejor calidad de servicio y trato más humano, especialmen-te a las personas de la tercera edad y con discapacidad.

Se ha encargado a una empresa que modele ciertos procesos del Metropolitano con el fin de tener estimaciones que permitan tomar decisiones.

Objetivo: Estimar el monto esperado semanal de las recargas

1. Se define la variable aleatoria X definida como el número de recargas de la tarjeta de los usuarios a la semana con la siguiente función de probabilidad.

X: Número de recargas 0 1 2 3 4

f(x) 0,10 4k 0,30 k 0,10

a. Determine el valor de k para que f(x) sea función de probabilidad

Para que f(x) sea una función de probabilidad debe cumplir que ∑ ( )

Por lo tanto, f(0) + f(1) + f(2) + f(3) + f(4) = 0,10 + 4k + 0,30 + k + 0,10 = 1, de donde k= 0,1

b. Calcule la probabilidad de que un usuario, elegido al azar, recargue su tarjeta más de una vez a

la semana.

Se pide, P(2≤ X ≤ 3) = f(2) + f(3) + f(4) =0,3 + 0,10 + 0,10 = 0,5

c. Si un usuario recargó una vez su tarjeta en una semana, calcule la probabilidad de que dicho

usuario recargue su tarjeta por lo menos una vez más en esa semana.

Se pide, ( ⁄ ) ( )

( )

d. Si el costo de una recarga es de cinco soles y el Metropolitano tiene 560 mil usuarios, determi-

ne el monto esperado semanal por recargas.

Tenemos que ( ) ∑ ( )

El esperado del monto será 1,7 x 5 x 560 000 = 4 760 000 soles

194 Estadística Descriptiva 201601

Notas importantes

Objetivo: Estimar el número esperado de usuarios que realizan conexiones

2. Se sabe que el 12% de los usuarios del Metropolitano realizan conexiones de rutas. Si elegimos al azar 80 usuarios,

a. Defina la variable, indique su distribución, parámetros y rango.

Sea X = cantidad de usuarios del Metropolitano que realizan conexiones de rutas en la mues-tra

X B(n = 80; p = 0,12) y Rx = 0,1,…,80

b. Determine la probabilidad de que ocho o nueve usuarios, de los 80 escogidos, realicen conexiones.

P(8 ≤ X ≤ 9) = f(8) + f(9) = 0,2623

c. Sea la variable Y definida como el número de usuarios que realizan conexiones de los 560 mil

usuarios. Calcule el valor esperado y varianza de Y.

Y B(n = 560 000; p = 0,12)

E(Y) = np = 560 000 x 0,12 = 67 000. V(Y) = np(1-p) = 59 136

Objetivo: Determinar el gasto de los usuarios extremos

3. El gasto mensual de un usuario en el Metropolitano se modela con una variable normal con media de 100 soles y una desviación estándar de cinco soles. Se elige un usuario al azar.

a. Calcule la probabilidad de que gaste entre 90 y 110 soles.

Sea X = gasto mensual en soles. X ~ N(100; 52)

P(90 ≤ X ≤ 110) = P( X ≤ 110) - P(X ≤ 90) = 0,9772 – 0,0228 = 0,9545

b. ¿Cuál es la probabilidad de que gaste más de 105 soles?

P(X > 105) = 1 - P( X ≤ 105) = 1 - 0,8413 = 0,1587

c. Determine el gasto mensual mínimo para que esté en 10% de los que más gastan.

( ) (

) ). Buscando en la tabla,

. Luego, a = 106,4

Unidad 6. Muestreo 195

Notas importantes

Objetivo: Determinar el número esperado de usuarios que han sufrido robos

4. El 45% de los usuarios del Metropolitano son mujeres. Se estima que el 1% de las usuarias y el 0,8% de los usuarios ha sufrido de algún tipo de robo durante el uso del Metropolitano.

a. Si se elige un usuario al azar, ¿cuál es la probabilidad de que haya sido víctima de robo?

Sean los eventos

R:= Que el usuario sea víctima de robo

H:= Que el usuario sea hombre. M:= Que el usuario sea mujer

( ) ( ) ( ⁄ ) ( ) ( ⁄ )= 0,0044 + 0,0045 = 0,0089

b. Si se elige un usuario al azar que no ha sido víctima de robo, calcule la probabilidad de que sea hombre. Indique el resultado con cuatro decimales.

( ⁄ )

c. Si el sistema tiene 560 mil usuarios, calcule el número esperado de usuarios que han sido víc-timas de robo durante el uso del Metropolitano. Defina la variable necesaria y determine su distribución.

Y:= número de usuarios que han sido víctima de robo

Y B(n = 560 000; p = 0,0089)

E(Y) = np = 560 000 x 0,0089 = 4984

Objetivo: Estimar el número de correos con consultas, sugerencias, quejas o reclamos

5. El Metropolitano cuenta con una cuenta de correo para cualquier consulta, sugerencia, queja o reclamo. El número de correos electrónicos que llegan a la cuenta de correo se modela como una variable aleatoria Poisson con una media de ocho correos por día.

a. Calcule la probabilidad que en medio día llegue más de tres correos con consultas, sugeren-cias, quejas o reclamos. Defina la variable necesaria y establezca su distribución, rango y pa-rámetros.

Sea X = número de correos electrónicos que llegan a la cuenta de correo del Metropolitano en medio día

y t = 0,5 día

X ~ P(µ = 4 correos )

P(X > 3) = 1- P(X ≤ 3) = 1 – 0,4335 = 0,5665

b. Si se eligen al azar 100 días, calcule la probabilidad que la cantidad total de correos recibidos en esos 100 días esté entre 790 y 810.

196 Estadística Descriptiva 201601

Notas importantes

Sea Xi = número de correos electrónicos que llegan a la cuenta de correo del Metropolitano en el día, i = 1,…,100

Sea Y := cantidad total de correos en los 100 días

Por teorema central del límite, ( ) , es decir, ( ).

Nos piden ( ) ( ) .

También se puede calcular usando la distribución de la media muestral.

Nos piden ( ) ( )

Por teorema central del límite, (

), es decir, ( ).

Luego, ( ) ( )

Objetivo: Estimar el peso que transportan los buses

6. El peso de un usuario hombre del Metropolitano se modela con una variable normal con media de 75 kilos y desviación estándar de 15 kilos, mientras que para una usuaria mujer con media de 60 kilos y desviación estándar de 10 kilos. Si en un bus hay 50 hombres y 30 mujeres.

a. Si se elige una persona al azar, calcule la probabilidad de que pese más de 70 kilos.

Sean los eventos

A: = una persona pese más de 70 kilos

H:= Que el usuario sea hombre. M:= Que el usuario sea mujer

Sean las variables aleatorias

X = peso de un hombre X ~ N(75; 152)

Y = peso de una mujer Y ~ N(60; 102)

Por teorema de la probabilidad total ( ) ( ) ( ⁄ ) ( ) ( ⁄ )

Calculemos cada una de las probabilidades condicionadas

( ⁄ ) ( ) ( )

( ⁄ ) ( ) ( )

Luego, ( ) ( ) ( ⁄ ) ( ) ( ⁄ )

Unidad 6. Muestreo 197

Notas importantes

b. Calcule la probabilidad de que el peso total de los 50 hombres y 30 mujeres supere 5500 ki-los

Sea Y := el peso total de los 50 hombres y 30 mujeres

∑ ∑

Por propiedad reproductiva de la normal, ( ), es decir, ( ).

Nos piden ( ) ( ) .

Objetivo: Estimar el tiempo de espera

7. El tiempo de espera para tomar un bus de un usuario se modela con una variable uniforme con parámetros 0 y 10 minutos.

a. Si se elige un usuario al azar, calcule la probabilidad de que su tiempo de espera sea mayor a ocho minutos.

X=: tiempo de espera para tomar un bus. X ~ U(0,10)

P(X > 8) = 0,20

b. Si se elige al azar a 500 usuarios, calcule la probabilidad de que la media del tiempo de espe-ra de esos 500 usuarios esté en 4,8 y 5,2 minutos.

µ = (a+b)/2 = (0+10)/2= 5

σ2= (10 - 0)2/12 = 8,3333

Por teorema central del límite, (

), es decir, , ( )

Nos piden ( ) ( )

Objetivo: Mejorar la imagen del sistema de respuesta de agresiones sexuales en el Metropolitano

8. La actriz Magaly Solier es la décima séptima mujer en denunciar una agresión sexual ocurrida en un bus del Metropolitano, desde noviembre del 2012. Solo un proceso está cerca de recibir sen-tencia, según Silvia Loli, gerenta de la Mujer de la Municipalidad de Lima. Explica que en este caso el agresor se acogió a la confesión sincera y podría recibir de dos a cuatro años de prisión suspen-dida, cumplir trabajos comunitarios o pagar reparación civil. Si la oficina de relaciones públicas del Metropolitano, quiere darle seguimiento exhaustivo a tres de las denuncias y elige al azar entre los 17 casos existentes. Calcule la probabilidad de elegir el caso que está cerca de recibir senten-cia. Defina la variable necesaria y establezca su distribución, rango y parámetros.

198 Estadística Descriptiva 201601

Notas importantes

Sea X = número de casos que están cerca de recibir sentencia

X H(N= 17; n = 3; r = 1) y Rx = 0,1

P(X = 1) = f(1) = 0,1765

Objetivo: Estimar la media del número de días que un usuario usa el Metropolitano

9. Se define la variable aleatoria X: número de días a la semana que un usuario usa el Metropolitano. Esta variable presenta la siguiente función de probabilidad.

X: Número de días 0 1 2 3 4 5 6 7

f(x) 0,05 0,10 0,15 0,15 0,20 0,25 0,05 0,05

a. Calcule el esperado y la varianza de X.

Usando la calculadora, E(X) = 3,55 y V(X) = 3,1475

b. Si se elige al azar una muestra de 1000 usuarios, calcule la probabilidad de que la media muestral del número de días que usan el Metropolitana esté entre 3,5 y 3,6 días.

Por teorema central del límite, (

) , es decir, ,

( ).

Nos piden ( ) ( )

Objetivo: Estimar la media de la distancia a las estaciones

10. La distancia, en metros, que recorre un usuario caminando para llegar a una estación del Metro-politano se modela con la variable aleatoria X con la siguiente función de densidad.

( )

a. Calcule el esperado y la varianza de X.

Primero hallemos a

De donde a= 1/250. E(X) = 500 y V(X) = 41 666,7

b. Calcule la probabilidad de que un usuario camine entre 300 y 700 metros para llegar a una es-

tación.

( ) ∫

Tablas Estadísticas 199

Tablas estadísticas

Todas las tablas de este manual han sido calculadas usando el MS Excel.

Tabla de la distribución normal estándar

Área bajo la curva normal: zZP

z -0,09 -0,08 -0,07 -0,06 -0,05 -0,04 -0,03 -0,02 -0,01 -0,00

-3,9 0,000033 0,000034 0,000036 0,000037 0,000039 0,000041 0,000042 0,000044 0,000046 0,000048

-3,8 0,000050 0,000052 0,000054 0,000057 0,000059 0,000062 0,000064 0,000067 0,000069 0,000072

-3,7 0,000075 0,000078 0,000082 0,000085 0,000088 0,000092 0,000096 0,000100 0,000104 0,000108

-3,6 0,000112 0,000117 0,000121 0,000126 0,000131 0,000136 0,000142 0,000147 0,000153 0,000159

-3,5 0,000165 0,000172 0,000178 0,000185 0,000193 0,000200 0,000208 0,000216 0,000224 0,000233

-3,4 0,000242 0,000251 0,000260 0,000270 0,000280 0,000291 0,000302 0,000313 0,000325 0,000337

-3,3 0,000349 0,000362 0,000376 0,000390 0,000404 0,000419 0,000434 0,000450 0,000466 0,000483

-3,2 0,000501 0,000519 0,000538 0,000557 0,000577 0,000598 0,000619 0,000641 0,000664 0,000687

-3,1 0,000711 0,000736 0,000762 0,000789 0,000816 0,000845 0,000874 0,000904 0,000935 0,000968

-3,0 0,001001 0,001035 0,001070 0,001107 0,001144 0,001183 0,001223 0,001264 0,001306 0,001350

-2,9 0,00139 0,00144 0,00149 0,00154 0,00159 0,00164 0,00169 0,00175 0,00181 0,00187

-2,8 0,00193 0,00199 0,00205 0,00212 0,00219 0,00226 0,00233 0,00240 0,00248 0,00256

-2,7 0,00264 0,00272 0,00280 0,00289 0,00298 0,00307 0,00317 0,00326 0,00336 0,00347

-2,6 0,00357 0,00368 0,00379 0,00391 0,00402 0,00415 0,00427 0,00440 0,00453 0,00466

-2,5 0,00480 0,00494 0,00508 0,00523 0,00539 0,00554 0,00570 0,00587 0,00604 0,00621

-2,4 0,00639 0,00657 0,00676 0,00695 0,00714 0,00734 0,00755 0,00776 0,00798 0,00820

-2,3 0,00842 0,00866 0,00889 0,00914 0,00939 0,00964 0,00990 0,01017 0,01044 0,01072

-2,2 0,01101 0,01130 0,01160 0,01191 0,01222 0,01255 0,01287 0,01321 0,01355 0,01390

-2,1 0,01426 0,01463 0,01500 0,01539 0,01578 0,01618 0,01659 0,01700 0,01743 0,01786

-2,0 0,01831 0,01876 0,01923 0,01970 0,02018 0,02068 0,02118 0,02169 0,02222 0,02275

-1,9 0,02330 0,02385 0,02442 0,02500 0,02559 0,02619 0,02680 0,02743 0,02807 0,02872

-1,8 0,02938 0,03005 0,03074 0,03144 0,03216 0,03288 0,03362 0,03438 0,03515 0,03593

-1,7 0,03673 0,03754 0,03836 0,03920 0,04006 0,04093 0,04182 0,04272 0,04363 0,04457

-1,6 0,04551 0,04648 0,04746 0,04846 0,04947 0,05050 0,05155 0,05262 0,05370 0,05480

-1,5 0,05592 0,05705 0,05821 0,05938 0,06057 0,06178 0,06301 0,06426 0,06552 0,06681

-1,4 0,06811 0,06944 0,07078 0,07215 0,07353 0,07493 0,07636 0,07780 0,07927 0,08076

-1,3 0,08226 0,08379 0,08534 0,08691 0,08851 0,09012 0,09176 0,09342 0,09510 0,09680

-1,2 0,09853 0,10027 0,10204 0,10383 0,10565 0,10749 0,10935 0,11123 0,11314 0,11507

-1,1 0,11702 0,11900 0,12100 0,12302 0,12507 0,12714 0,12924 0,13136 0,13350 0,13567

-1,0 0,13786 0,14007 0,14231 0,14457 0,14686 0,14917 0,15151 0,15386 0,15625 0,15866

-0,9 0,16109 0,16354 0,16602 0,16853 0,17106 0,17361 0,17619 0,17879 0,18141 0,18406

-0,8 0,18673 0,18943 0,19215 0,19489 0,19766 0,20045 0,20327 0,20611 0,20897 0,21186

-0,7 0,21476 0,21770 0,22065 0,22363 0,22663 0,22965 0,23270 0,23576 0,23885 0,24196

-0,6 0,24510 0,24825 0,25143 0,25463 0,25785 0,26109 0,26435 0,26763 0,27093 0,27425

-0,5 0,27760 0,28096 0,28434 0,28774 0,29116 0,29460 0,29806 0,30153 0,30503 0,30854

-0,4 0,31207 0,31561 0,31918 0,32276 0,32636 0,32997 0,33360 0,33724 0,34090 0,34458

-0,3 0,34827 0,35197 0,35569 0,35942 0,36317 0,36693 0,37070 0,37448 0,37828 0,38209

-0,2 0,38591 0,38974 0,39358 0,39743 0,40129 0,40517 0,40905 0,41294 0,41683 0,42074

-0,1 0,42465 0,42858 0,43251 0,43644 0,44038 0,44433 0,44828 0,45224 0,45620 0,46017

-0,0 0,46414 0,46812 0,47210 0,47608 0,48006 0,48405 0,48803 0,49202 0,49601 0,50000

200 Tablas Estadísticas

Tabla de la distribución normal estándar

Área bajo la curva normal: zZP

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,50000 0,50399 0,50798 0,51197 0,51595 0,51994 0,52392 0,52790 0,53188 0,53586

0,1 0,53983 0,54380 0,54776 0,55172 0,55567 0,55962 0,56356 0,56749 0,57142 0,57535

0,2 0,57926 0,58317 0,58706 0,59095 0,59483 0,59871 0,60257 0,60642 0,61026 0,61409

0,3 0,61791 0,62172 0,62552 0,62930 0,63307 0,63683 0,64058 0,64431 0,64803 0,65173

0,4 0,65542 0,65910 0,66276 0,66640 0,67003 0,67364 0,67724 0,68082 0,68439 0,68793

0,5 0,69146 0,69497 0,69847 0,70194 0,70540 0,70884 0,71226 0,71566 0,71904 0,72240

0,6 0,72575 0,72907 0,73237 0,73565 0,73891 0,74215 0,74537 0,74857 0,75175 0,75490

0,7 0,75804 0,76115 0,76424 0,76730 0,77035 0,77337 0,77637 0,77935 0,78230 0,78524

0,8 0,78814 0,79103 0,79389 0,79673 0,79955 0,80234 0,80511 0,80785 0,81057 0,81327

0,9 0,81594 0,81859 0,82121 0,82381 0,82639 0,82894 0,83147 0,83398 0,83646 0,83891

1,0 0,84134 0,84375 0,84614 0,84849 0,85083 0,85314 0,85543 0,85769 0,85993 0,86214

1,1 0,86433 0,86650 0,86864 0,87076 0,87286 0,87493 0,87698 0,87900 0,88100 0,88298

1,2 0,88493 0,88686 0,88877 0,89065 0,89251 0,89435 0,89617 0,89796 0,89973 0,90147

1,3 0,90320 0,90490 0,90658 0,90824 0,90988 0,91149 0,91309 0,91466 0,91621 0,91774

1,4 0,91924 0,92073 0,92220 0,92364 0,92507 0,92647 0,92785 0,92922 0,93056 0,93189

1,5 0,93319 0,93448 0,93574 0,93699 0,93822 0,93943 0,94062 0,94179 0,94295 0,94408

1,6 0,94520 0,94630 0,94738 0,94845 0,94950 0,95053 0,95154 0,95254 0,95352 0,95449

1,7 0,95543 0,95637 0,95728 0,95818 0,95907 0,95994 0,96080 0,96164 0,96246 0,96327

1,8 0,96407 0,96485 0,96562 0,96638 0,96712 0,96784 0,96856 0,96926 0,96995 0,97062

1,9 0,97128 0,97193 0,97257 0,97320 0,97381 0,97441 0,97500 0,97558 0,97615 0,97670

2,0 0,97725 0,97778 0,97831 0,97882 0,97932 0,97982 0,98030 0,98077 0,98124 0,98169

2,1 0,98214 0,98257 0,98300 0,98341 0,98382 0,98422 0,98461 0,98500 0,98537 0,98574

2,2 0,98610 0,98645 0,98679 0,98713 0,98745 0,98778 0,98809 0,98840 0,98870 0,98899

2,3 0,98928 0,98956 0,98983 0,99010 0,99036 0,99061 0,99086 0,99111 0,99134 0,99158

2,4 0,99180 0,99202 0,99224 0,99245 0,99266 0,99286 0,99305 0,99324 0,99343 0,99361

2,5 0,99379 0,99396 0,99413 0,99430 0,99446 0,99461 0,99477 0,99492 0,99506 0,99520

2,6 0,99534 0,99547 0,99560 0,99573 0,99585 0,99598 0,99609 0,99621 0,99632 0,99643

2,7 0,99653 0,99664 0,99674 0,99683 0,99693 0,99702 0,99711 0,99720 0,99728 0,99736

2,8 0,99744 0,99752 0,99760 0,99767 0,99774 0,99781 0,99788 0,99795 0,99801 0,99807

2,9 0,99813 0,99819 0,99825 0,99831 0,99836 0,99841 0,99846 0,99851 0,99856 0,99861

3,0 0,998650 0,998694 0,998736 0,998777 0,998817 0,998856 0,998893 0,998930 0,998965 0,998999

3,1 0,999032 0,999065 0,999096 0,999126 0,999155 0,999184 0,999211 0,999238 0,999264 0,999289

3,2 0,999313 0,999336 0,999359 0,999381 0,999402 0,999423 0,999443 0,999462 0,999481 0,999499

3,3 0,999517 0,999534 0,999550 0,999566 0,999581 0,999596 0,999610 0,999624 0,999638 0,999651

3,4 0,999663 0,999675 0,999687 0,999698 0,999709 0,999720 0,999730 0,999740 0,999749 0,999758

3,5 0,999767 0,999776 0,999784 0,999792 0,999800 0,999807 0,999815 0,999822 0,999828 0,999835

3,6 0,999841 0,999847 0,999853 0,999858 0,999864 0,999869 0,999874 0,999879 0,999883 0,999888

3,7 0,999892 0,999896 0,999900 0,999904 0,999908 0,999912 0,999915 0,999918 0,999922 0,999925

3,8 0,999928 0,999931 0,999933 0,999936 0,999938 0,999941 0,999943 0,999946 0,999948 0,999950

3,9 0,999952 0,999954 0,999956 0,999958 0,999959 0,999961 0,999963 0,999964 0,999966 0,999967

Tablas Estadísticas 201

Índice alfabético

—A—

Axiomas de la probabilidad, 100

—C—

Coeficiente de variación, 72

—D—

Deciles, 65 Desviación estándar, 71 Distribución

binomial, 124 de frecuencias, 14, 28, 30 de la media muestral, 160 de probabilidad, 116, 117 hipergeométrica, 126 normal, 142 Poisson, 128 uniforme continua, 139

—E—

Escalas de medición, 8 Espacio muestral, 92 Estadística

Definición, 4 Subdivisión, 4

estadístico, 11 Estadístico, 11 Evento, 92

Complemento, 95 Eventos

independientes, 108 Intersección de, 96 mutuamente excluyentes, 98 Unión de, 96

Experimento aleatorio, 92

—F—

Función de densidad, 132 de distribución acumulada, 134

—G—

Gráfico circular, 19 de barras, 19 de barras agrupadas, 24 de barras apiladas, 25 de barras apiladas al 100%, 25 de cajas, 76 de Pareto, 21 Ojiva, 39 Polígono de frecuencias, 38

—M—

Media, 51 ponderada, 62

Mediana, 55 Moda, 59 Muestreo

aleatorio simple, 170 estratificado, 180 probabilístico, 169 sistemático, 174

—P—

Parámetro, 11 Percentiles, 66 Población, 6 Propiedad reproductiva de la normal, 156

—T—

Teorema de Bayes, 105 del límite central, 161

—V—

Valor esperado de una función de una variable aleatoria, 121, 137

Variable, 10 aleatoria continua, 132 aleatoria discreta, 117

Varianza, 71 de una variable aleatoria, 121, 138

top related