espacio vectorial

Post on 13-Jan-2017

30 Views

Category:

Data & Analytics

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ESPACIOS VECTORIALES

ESPACIO VECTORIAL Un espacio vectorial es una estructura algebraica creada a partir de un conjunto no vacío, una

operación interna y una operación externa, con 7 propiedades fundamentales. A los elementos de un espacio vectorial se les llama vectores y a los elementos del cuerpo, escalares.

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

ESPACIO VECTORIAL

SUMA DE VECTORES: MÉTODO GEOMÉTRICO

SUMA DE VECTORES: MÉTODO GEOMÉTRICO

ESPACIO VECTORIALCONDICIONES PARA QUE SE CUMPLA UN ESPACIO VECTORIAL

SUBESPACIO VECTORIAL - En álgebra lineal, un subespacio vectorial es el subconjunto de un espacio vectorial, que

debe cumplir ciertas características específicas.

-Sean V y S dos espacios vectoriales definidos en el campo K, entonces S es un subespacio vectorial de V, si y solo si, S V.⊆

-De hecho, todos los espacios vectoriales tienen subconjuntos que también son espacios vectoriales.

V

S

SUBESPACIO VECTORIALCondición de existencia de subespacio

El criterio para la verificación de que S sea subespacio de V, es que ambas operaciones (+ entre elementos del conjunto S y * con escalares del cuerpo K) sean cerradas, es decir, den como resultado elementos que también pertenezcan a S.

Para ello se definen 4 axiomas que de cumplirse, garantizan la existencia del subespacio vectorial. Sea V un espacio vectorial, se define S como subespacio vectorial si y solo si:

1. S no es un conjunto vacío.

2. S es igual o está incluido en V.

3. La suma es ley de composición interna.

4. El producto es ley de composición externa.

Si estos cuatro axiomas se cumplen entonces el conjunto es un subespacio.

TEOREMA: Sea (V, K, +, *) un espacio vectorial S V, S≠ ,⊆ ∅ S es un subespacio vectorial de V si y solo si cumple que:

1. ∀u, v S / u+v S∊ ∊2. ∀ α K, u S / ∊ ∀ ∊ α u S∊

Intersección:Se define la intersección ( ∩) de dos subespacios vectoriales S1 y S2 de V, como el subconjunto de V que verifica: a S1 ∈ ∩ S2 ⇔ a S1 y a S2∈ ∈

Teorema : La intersección de un número cualquiera de subespacios vectoriales de un espacio vectorial V es, a su vez, un subespacio vectorial de V.

Suma:Sea (V ; K ; +; •) y sean S1 y S2 dos subespacios de V. Se llama sumade S1 y S2 al conjunto:

S1 +S2 = {s1 + s2 / s1 ∈ S1, s2∈ S2}

Teorema : El conjunto S1 + S2 es un subespacio de V; es el menorde todos los subespacios que contienen a S1 y S2.

Suma directa:

Sean S1 y S2 subespacios de un espacio vectorial (V; K ;+; •) y sea L V ⊆ , decimos que L es suma directa de S1 y S2; lo que se denota L = S1 S2⊕ , si se verifica que :

L = S1 + S2 y S1∩S2 = .

Si L = V; a los subespacios S1 y S2 se les denominan subespacios complementarios.

Unión :

S1 υ S2 = {α ∈ V / α ∈ S1 ^ α ∈ S2}

En la gran mayoría de los casos la unión de dos subespacios no es

un subespacio de V, pues no se cumple con la ley de composición

interna. Pertenece de forma segura la unión a V en los casos en que

S1 este contenido en S2 o viceversa.

EJERCICIOS

EJERCICIOS

EJERCICIOS

EJERCICIOS

EJERCICIOS

top related