demostraciones de derivadas por medio de limites

Post on 26-Dec-2015

14 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Este documento, es una guía para el estudiante que dese saber como obtener las formulas de las derivadas usuales. Mediante un lenguaje formal se demuestran una a una las derivadas, empleando la definición formal.

TRANSCRIPT

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Demuestre empleando la definición formal de derivada, cada una de las siguientes expresiones:

D V N Ing. ELECTICA POTENCIA Página 1

13 .)[ sen ( x ) ]'=cos ( x ) .14 . )[cos ( x ) ] '=−sen (x ).15 .)[ tg ( x ) ]'=sec2( x ).16 .) [ctg( x ) ] '=−csc2( x ) .17 .) [sec ( x ) ]'=sec ( x )⋅tg ( x ) .18 .)[ csc ( x ) ]'=−csc ( x )⋅ctg( x ).

19 .)[ arcsen( x ) ] '=1

√1−x2.

(−1<x<1) .

20 .)[ arccos( x ) ] '=−1

√1−x2.

(−1<x<1) .

21 .)[ arctg( x )] '=11+x2

.

22 .)[ arcctg (x )] '=−11+x2

.

23 .)[ arc sec ( x ) ] '=1|x|⋅√ x2−1

,(1<|x|) .

24 . )[ arc csc( x )] '=−1|x|⋅√x2−1

,(1<|x|).

1. )(x )'=1 .2. )(k ) '=0 .3. )( xn) '=nxn−1.4 . )(ax) '=ax ln( a) .5. )(ex )'=e x .

6 .)[ ln( x ) ] '=1x,( x>0 ).

7 .)[ loga ( x ) ]'=1x ln(a )

≡loga (e )x

.

( x>0 )∧(a>0 )8 .)[ f ( x )±g ( x ) ]'=f '( x )±g ' ( x ).9 .)[ f ( x )⋅g (x )] '=f ' ( x )⋅g( x )+ f ( x )⋅g ' ( x ).

10. )[ f ( x )g ( x ) ]'

=f '( x )⋅g ( x )−f ( x )⋅g '( x )

[g (x )]2g ( x )≠0 .

11. )[ k⋅f ( x ) ]'=k⋅f ' ( x )

12. )[kf ( x ) ]'

=−k

[ f (x )]2, f ( x )≠0 .

2 .) f ( x )=k⇒ k≡x0k∴ f ( x )= x0 kf ( x+h )=( x+h )0 k

( k ) '=limh→0

( x+h )0k−x0kh

≡k limh→0

( x+h )0−x0

h

( k ) '=k limh→0

x+hx+h

−xx

h≡k lim

h→0

x (x+h )−x ( x+h )x ( x+h)h

( k ) '=k limh→0

x ( x+h ) (1−1 )x (x+h )h

( k ) '=k limh→0

(1−1 )+(eh−eh )h

( k ) '=k limh→0

(eh−1 )−(eh−1 )h

( k ) '=k [ limh→0 (eh−1 )h

−limh→0

(eh−1 )h ]

( k ) '=k (1−1 ) ∴( k ) '=0R // .

1 .) f ( x )=x

[ f ( x ) ] '=limh→0

f ( x+h )−f ( x )h

.

( x )'=limh→ 0

( x+h )−xh

( x )'=limh→ 0

x+h−xh

( x )'=limh→ 0

hh=1 .R //

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 2

3 .) f (x )=xn

( xn ) '= limx→0

( x+h )n−xn

h

( xn ) '= limh→0

(n0 )xn+(n1 ) xn−1h+(n2 ) xn−2 h2+…+(nn−2) x2hn−2+(nn−1)xhn−1+(nn )hn−xn

h

( xn ) '= limh→0

xn+nxn−1h+n(n−1)2

xn−2 h2+…+n (n−1 )2

x2hn−2+nxhn−1+hn−xn

h

( xn ) '= limh→0

nxn−1h+n(n−1)2

xn−2h2+…+n(n−1)2

x2hn−2+nxhn−1+hn

h

( xn ) '= limh→0

h[nxn−1+n(n−1)2xn−2h+…+

n(n−1)2

x2hn−3+nxhn− 2+hn−1]h

( xn ) '= limh→0 [nxn−1+n(n−1)2

xn−2 h+…+n(n−1)2

x2hn−3+nxhn−2+hn−1]( xn ) '=nxn−1+

n(n−1)2

xn−2( 0)+…+n (n−1 )2

x2 (0)+nx (0 )+(0 )

( xn ) '=nxn−1R // .

( ax) '=ax ln (a ) limt→0

(1t )(1t )

⋅tln ( t+1 )

( ax) '=ax ln (a ) limt→0

11tln ( t+1)

( ax) '=ax ln (a ) limt→0

1

ln ( t+1)1t

( ax) '=ax ln (a )1

limt→0ln ( t+1)

1t

limt→0ln ( t+1 )

1t ≡ln [ lim

t→0( t+1)

1t ]=ln (e )

( ax) '=ax ln (a )R // .

4 . ) f ( x )=ax

(ax )'=limh→0

ax+h−ax

h.

(ax )'=limh→0

ax (ah−1 )h

(ax )'=ax limh→0

ah−1h

t=ah−1⇒h=ln( t+1)ln( a)

(ax )'=ax limt→ 0

tln( t+1 )ln(a )

(ax )'=ax limt→ 0

ln(a )tln( t+1 )

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 3

5 .) f (x )=ex

( ex )'=limh→0

ex+h−ex

h.

( ex )'=limh→0

ex (eh−1 )h

( ex )'=ex limh→0

eh−1h

t=eh−1⇒h=ln( t+1)ln(e )

( ex )'=ex limt→0

tln( t+1 )

( ex )'=ex limt→0

11tln ( t+1 )

( ex )'=ex1

limt→0ln( t+1 )

1t

limt→0ln( t+1 )

1t ≡ln [ lim

t→0( t+1)

1t ]=ln (e )

( ex )'=ex R // .

6 .) f ( x )=ln( x )

[ ln (x )] '=limh→0

ln (x+h )−ln( x )h

[ ln (x )] '=limh→0

ln (x+hx )h

[ ln (x )] '=limh→0

1hln(1+hx )

[ ln (x )] '=limh→0

hx⋅1h⋅[ xh ln(1+hx )]

[ ln (x )] '=limh→0

1x⋅[ ln(1+hx )

xh ]

[ ln (x )] '=1xlimh→0 [ ln(1+hx )

xh ]

limh→0 [ ln(1+hx )

xh ]≡ln [ limh→0(1+hx )

xh ]=ln(e )

[ ln (x )] '=1xR // .

7 .) f ( x )=loga( x )

[ log a( x ) ] '=limh→0

loga ( x+h)−loga ( x )h

[ log a( x ) ] '=limh→0

loga (x+hx )h

[ log a( x ) ] '=limh→0

1hlog a(1+hx )

[ log a( x ) ] '=limh→0

hx⋅1h⋅[ xh loga (1+hx )]

[ log a( x ) ] '=1x⋅limh→0 [ loga(1+hx )

xh ]

limh→0 [ loga (1+hx )

xh ]≡log a[ limh→0 (1+hx )

xh ]=loga (e )

loga(e )≡ln (e )ln ( a)

∴[ loga( x )] '=1x ln (a )

R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 4

8 .) Sean f ( x ) yg( x )diferenciables enun Intervalo I .Hallar : [ f ( x )+g( x ) ] ' y [ f ( x )−g ( x ) ]'

[ f ( x )+g( x ) ] '=limh→0

[ f ( x+h )+g (x+h )]−[ f ( x )+g( x )]h

[ f ( x )+g( x ) ] '=limh→0

[ f ( x+h )−f (x )]+ [g (x+h )−g (x )]h

[ f ( x )+g( x ) ] '=limh→0 [ f ( x+h )−f ( x )

h+g( x+h )−g( x )h ]

[ f ( x )+g( x ) ] '=limh→0

f ( x+h )−f (x )h

+limh→0

g( x+h)−g( x )h

[ f ( x )+g( x ) ] '=[ f ( x ) ] '+[ g( x ) ] ' R // .

[ f ( x )−g( x ) ] '=limh→0

[ f ( x+h )−g( x+h )]−[ f ( x )−g( x ) ]h

[ f ( x )−g( x ) ] '=limh→0

[ f ( x+h )−f ( x )]−[ g( x+h )−g( x ) ]h

[ f ( x )−g( x ) ] '=limh→0 [ f ( x+h)−f ( x )

h−g( x+h)−g( x )h ]

[ f ( x )−g( x ) ] '=limh→0

f (x+h )−f ( x )h

−limh→0

g ( x+h)−g ( x )h

[ f ( x )−g( x ) ] '=[ f ( x )] '−[ g( x ) ] ' R // .

9 .) Sean f ( x ) yg( x )diferenciables enun Intervalo I .Hallar : [ f ( x )⋅g( x ) ] '

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h) ]−[ f ( x )⋅g ( x )]h

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h) ]−[ f ( x )⋅g ( x )]+ [ f ( x )⋅g ( x+h)−f ( x )⋅g (x+h )]h

[ f ( x )⋅g( x ) ] '=limh→0

[ f ( x+h )⋅g( x+h)−f ( x )⋅g ( x+h) ]+[ f ( x )⋅g( x+h )−f ( x )⋅g( x )]h

[ f ( x )⋅g( x ) ] '=limh→0

g ( x+h)⋅[ f ( x+h)−f ( x )]+ f ( x )⋅[g( x+h )−g( x )]h

[ f ( x )⋅g( x ) ] '=limh→0 [ g( x+h)⋅f ( x+h )−f ( x )

h+ f ( x )⋅

g( x+h )−g( x )h ]

[ f ( x )⋅g( x ) ] '=limh→0

g ( x+h)⋅limh→ 0

f ( x+h )−f (x )h

+limh→0

f ( x )⋅limh→0

g ( x+h)−g ( x )h

[ f ( x )⋅g( x ) ] '=g ( x+0)⋅[ f ( x ) ] '+ f ( x )[ g (x )] '[ f ( x )⋅g( x ) ] '=g ( x )⋅[ f ( x ) ]'+f ( x )[ g( x ) ] ' R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 5

10 . )Sean f ( x ) yg (x )diferenciables enun Intervalo I .

Hallar :[ f (x )g( x ) ]'

[ f ( x )g ( x ) ]

'

=limh→0

f ( x+h )g ( x+h)

−f ( x )g ( x )

h

[ f ( x )g ( x ) ]

'

=limh→0

f ( x+h )⋅g( x )−f ( x )⋅g (x+h )h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

[ f ( x+h )⋅g( x )−f ( x )⋅g (x+h )]+[ f (x )⋅g ( x )−f ( x )⋅g( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

[ f ( x+h )⋅g( x )−f ( x )⋅g (x )]−[ f (x )⋅g( x+h)−f ( x )⋅g ( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0

g ( x )⋅[ f ( x+h)−f ( x )]−f ( x )⋅[g (x+h )−g( x )]h⋅[ g( x+h )⋅g( x )]

[ f ( x )g ( x ) ]

'

=limh→0 [ g( x )g( x+h )⋅g ( x )

⋅f ( x+h)−f ( x )h

−f ( x )g( x+h )⋅g ( x )

⋅g( x+h )−g( x )h ]

[ f ( x )g ( x ) ]

'

=limh→0

g ( x )g ( x+h)⋅g (x )

⋅limh→0

f ( x+h)−f ( x )h

+ limh→ 0

f ( x )g (x+h )⋅g( x )

⋅limh→0

g ( x+h)−g ( x )h

[ f ( x )g ( x ) ]

'

=g ( x )g ( x+0)⋅g (x )

⋅[ f (x )] '−f ( x )g( x+0 )⋅g( x )

⋅[ g( x )] '

[ f ( x )g ( x ) ]

'

=g ( x )⋅[ f ( x ) ]'g ( x )⋅g( x )

−f ( x )⋅[ g( x )] 'g( x )⋅g ( x )

≡g( x )⋅[ f ( x ) ] '−f ( x )⋅[ g (x )] '

[ g( x )]2R // , g( x )≠0

11. )Sea g( x )diferenciable enun Intervalo I .

Hallar :[kg( x ) ]' , k∈ℜ .

[kg ( x ) ]'

=limh→0

kg ( x+h)

−kg ( x )

h≡[kg( x ) ]

'

=limh→0

k⋅g ( x )−k⋅g( x+h)h⋅[g (x+h )⋅g( x ) ]

[kg ( x ) ]'

=limh→0

−k⋅[g( x+h )−g( x )]h⋅[ g( x+h )⋅g( x )]

≡[kg( x ) ]'

=limh→0

−kg( x+h )⋅g( x )

⋅limh→0

g (x+h )−g (x )h

[kg ( x ) ]'

=−kg ( x+0)⋅g (x )

⋅[ g( x ) ] '≡[kg ( x ) ]'

=−k⋅[ g (x )] '[ g( x ) ]2

R // , g( x )≠0 .

12 .) Sea f ( x )diferenciable enun Intervalo I .Hallar :[ k⋅f ( x ) ] ',k∈ℜ .

[ k⋅f ( x ) ]'=limh→0

k⋅f (x+h )−k⋅f ( x )h

[ k⋅f ( x ) ]'=limh→0

k⋅[ f (x+h )−f ( x )]h

[ k⋅f ( x ) ]'=k⋅limh→0

f (x+h )−f ( x )h

[ k⋅f ( x ) ]'=k⋅[ f (x )] ' R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Derivadas de funciones trigonométricas y sus inversas.

D V N Ing. ELECTICA POTENCIA Página 6

13 . )Sea f ( x )=sen ( x )Hallar [ f ( x )] ' .

[ sen (x )] '=limh→0

sen( x+h )−sen ( x )h

[ sen (x )] '=limh→0

sen( x )cos (h)+sen(h )cos( x )−sen ( x )h

[ sen (x )] '=limh→0

sen(h )cos ( x )h

+ limh→0

sen( x )cos (h )−sen ( x )h

[ sen (x )] '=cos ( x )⋅limh→0

sen(h )h

+limh→0

sen ( x )⋅[cos (h )−1 ]h

[ sen (x )] '=cos ( x )⋅(1 )+ limh→0

sen ( x )⋅[cos (h)−1 ]h

⋅[cos (h)+1 ][cos (h)+1 ]

[ sen (x )] '=cos ( x )+limh→0

[cos2(h )−1 ]h

⋅sen (x )cos(h )+1

[ sen (x )] '=cos ( x )−limh→0

sen2( h)h

⋅limh→ 0

sen (x )cos(h )+1

[ sen (x )] '=cos ( x )−limh→0

sen(h )h

⋅limh→ 0

sen(h )sen ( x )cos (h )+1

[ sen (x )] '=cos ( x )−(1 )⋅sen(0 )sen (x )cos (0 )+1

[ sen (x )] '=cos ( x )−(0)⋅sen (x )1+1

[ sen (x )] '=cos ( x )−02

[ sen (x )] '=cos ( x )R // .

14 .)Sea f ( x )=cos ( x )Hallar [ f ( x )] ' .

[ cos( x ) ] '=limh→0

cos( x+h )−cos ( x )h

[ cos( x ) ] '=limh→0

cos( x )cos (h )−sen (h )sen( x )−cos (x )h

[ cos( x ) ] '=limh→0

cos( x )cos (h )−cos ( x )h

−limh→0

sen(h )sen ( x )h

[ cos( x ) ] '=limh→0

cos( x )⋅[cos(h )−1 ]h

−sen ( x )⋅limh→0

sen(h )h

[ cos( x ) ] '=limh→0

cos( x )⋅[cos(h )−1 ]h

⋅[cos(h )+1 ][cos(h )+1 ]

−sen (x )⋅(1)

[ cos( x ) ] '=limh→0

[cos2(h )−1 ]h

⋅cos ( x )cos (h )+1

−sen( x )

[ cos( x ) ] '=−sen ( x )−limh→0

sen2 (h)h

⋅limh→0

cos( x )cos(h )+1

[ cos( x ) ] '=−sen ( x )−limh→0

sen(h )h

⋅limh→0

sen( h)cos (x )cos(h )+1

[ cos( x ) ] '=−sen ( x )−(1)⋅sen(0 )cos( x )cos (0 )+1

[ cos( x ) ] '=−sen ( x )−02

[ cos( x ) ] '=−sen ( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 7

15 . )Sea f ( x )=tg ( x )Hallar [ f ( x ) ] ' .

[ tg ( x ) ] '=limh→0

tg (x+h)−tg ( x )h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos (x+h )

−sen ( x )cos (x )

h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos ( x )−sen( x )cos ( x+h)h⋅[cos ( x+h)⋅cos( x ) ]

;α=x+h , β=x .

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ tg ( x ) ] '=limh→0

sen ( x+h−x )h⋅[cos ( x+h)⋅cos( x ) ]

[ tg ( x ) ] '=limh→0

sen (h )h

⋅limh→0

1cos (x+h )⋅cos ( x )

[ tg ( x ) ] '=(1)⋅1cos( x+0 )⋅cos ( x )

[ tg ( x ) ] '=1cos (x )⋅cos (x )

≡1cos2( x )

=sec2( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 8

15 . )Sea f ( x )=tg ( x )Hallar [ f ( x ) ] ' .

[ tg ( x ) ] '=limh→0

tg (x+h)−tg ( x )h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos (x+h )

−sen ( x )cos (x )

h

[ tg ( x ) ] '=limh→0

sen ( x+h)cos ( x )−sen( x )cos ( x+h)h⋅[cos ( x+h)⋅cos( x ) ]

;α=x+h , β=x .

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ tg ( x ) ] '=limh→0

sen ( x+h−x )h⋅[cos ( x+h)⋅cos( x ) ]

[ tg ( x ) ] '=limh→0

sen (h )h

⋅limh→0

1cos (x+h )⋅cos ( x )

[ tg ( x ) ] '=(1)⋅1cos( x+0 )⋅cos ( x )

[ tg ( x ) ] '=1cos (x )⋅cos (x )

≡1cos2( x )

=sec2( x )R // .

16 . )Sea f (x )=ctg( x )Hallar [ f ( x ) ]' .

[ ctg(x )] '=limh→0

ctg( x+h )−ctg( x )h

[ ctg(x )] '=limh→0

cos ( x+h)sen( x+h )

−cos ( x )sen( x )

h

[ ctg(x )] '=limh→0

sen( x )cos ( x+h)−sen (x+h )cos( x )h⋅[sen ( x+h)⋅sen( x ) ]

;α=x , β=x+h.

sen (α−β )=sen(α )cos ( β )−sen( β )cos (α )

[ ctg(x )] '=limh→0

sen( x−h−x )h⋅[sen ( x+h)⋅sen( x ) ]

[ ctg(x )] '=limh→0

−sen (h )h

⋅limh→0

1sen ( x+h )⋅sen ( x )

[ ctg(x )] '=(−1 )⋅1sen ( x+0)⋅sen( x )

[ ctg(x )] '=−1sen( x )⋅sen (x )

≡−1sen2 ( x )

=−csc2 ( x )R // .

17 . )Sea f (x )=sec( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

sec( x+h)−sec( x )h

[ sec( x ) ] '=limh→0

1cos(x+h )

−1cos( x )

h

[ sec( x ) ] '=limh→0

cos(x )−cos ( x+h)h⋅[cos( x+h)⋅cos( x ) ]

[ sec( x ) ] '=limh→0

cos(x )−cos ( x )cos(h )+sen ( x )sen (h)h⋅[cos( x+h)⋅cos( x ) ]

[ sec( x ) ] '=limh→0

cos(x )⋅[1−cos (h )]h⋅[cos( x+h)⋅cos( x ) ]

+ limh→ 0

sen (x )sen( h)h⋅[cos ( x+h)⋅cos ( x )]

[ sec( x ) ] '=limh→0

cos(x )⋅[1−cos (h )]h⋅[cos( x+h)⋅cos( x ) ]

⋅[1+cos(h )][1+cos(h )]

+ limh→0

sen(h )h⋅¿

⋅limh→0

sen( x )[cos( x+h)⋅cos( x ) ]

¿

[ sec( x ) ] '=limh→0

[1−cos2(h )]h

⋅limh→ 0

cos( x )[cos(h )+1 ]⋅[cos(x+h )⋅cos ( x )]

+(1 )⋅sen ( x )cos ( x+0)⋅cos( x )

[ sec( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

cos( x )[cos(h)+1 ]⋅[cos( x+h )⋅cos(x )]

+sen ( x )cos( x )⋅cos( x )

[ sec( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )cos ( x )[cos (h)+1 ]⋅[cos( x+h)⋅cos( x ) ]

+1cos( x )

⋅sen ( x )cos( x )

[ sec( x ) ] '=(1 )⋅sen (0)cos( x )[cos(0 )+1 ]⋅[cos ( x+0)⋅cos ( x )]

+sec( x )⋅tg( x )

[ sec( x ) ] '=02cos2 (x )

+sec ( x )⋅tg( x )

[ sec( x ) ] '=sec( x )⋅tg( x )R // .

18 . )Sea f ( x )=csc( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

csc( x+h)−csc( x )h

[ csc( x ) ] '=limh→0

1sen ( x+h)

−1sen ( x )

h

[ csc( x ) ] '=limh→0

sen ( x )−sen( x+h )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )−sen( x )cos (h )−sen (h )cos( x )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

−limh→0

sen (h)cos ( x )h⋅[ sen( x+h )⋅sen ( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

⋅[1+cos (h )][1+cos (h )]

−limh→0

sen(h )h⋅¿

⋅limh→ 0

cos ( x )[ sen( x+h )⋅sen ( x )]

¿

[ csc( x ) ] '=limh→0

[1−cos2( h)]h

⋅limh→ 0

sen (x )[cos(h )+1 ]⋅[sen ( x+h)⋅sen ( x )]

−(1 )⋅cos( x )sen( x+0 )⋅sen ( x )

[ csc( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

sen( x )[cos(h )+1 ]⋅[sen (x+h )⋅sen( x ) ]

−cos(x )sen ( x )⋅sen( x )

[ csc( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )sen( x )[cos (h)+1 ]⋅[ sen( x+h )⋅sen ( x )]

−1sen ( x )

⋅cos ( x )sen( x )

[ csc( x ) ] '=(1 )⋅sen (0) sen( x )[cos(0 )+1 ]⋅[ sen( x+0 )⋅sen ( x )]

−csc( x )⋅ctg( x )

[ csc( x ) ] '=02 sen2 ( x )

−csc( x )⋅ctg( x )

[ csc( x ) ] '=−csc( x )⋅ctg( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Si f (x) es una funcion diferenciable y f -1(x) su inversa, halle [f -1(x)]’

D V N Ing. ELECTICA POTENCIA Página 9

18 . )Sea f ( x )=csc( x )Hallar [ f ( x ) ] ' .

[ sec( x ) ] '=limh→0

csc( x+h)−csc( x )h

[ csc( x ) ] '=limh→0

1sen ( x+h)

−1sen ( x )

h

[ csc( x ) ] '=limh→0

sen ( x )−sen( x+h )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )−sen( x )cos (h )−sen (h )cos( x )h⋅[ sen( x+h )⋅sen( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

−limh→0

sen (h)cos ( x )h⋅[ sen( x+h )⋅sen ( x )]

[ csc( x ) ] '=limh→0

sen ( x )⋅[1−cos(h )]h⋅[ sen( x+h )⋅sen( x )]

⋅[1+cos (h )][1+cos (h )]

−limh→0

sen(h )h⋅¿

⋅limh→ 0

cos ( x )[ sen( x+h )⋅sen ( x )]

¿

[ csc( x ) ] '=limh→0

[1−cos2( h)]h

⋅limh→ 0

sen (x )[cos(h )+1 ]⋅[sen ( x+h)⋅sen ( x )]

−(1 )⋅cos( x )sen( x+0 )⋅sen ( x )

[ csc( x ) ] '=limh→0

sen2 (h )h

⋅limh→0

sen( x )[cos(h )+1 ]⋅[sen (x+h )⋅sen( x ) ]

−cos(x )sen ( x )⋅sen( x )

[ csc( x ) ] '=limh→0

sen (h )h

⋅limh→0

sen (h )sen( x )[cos (h)+1 ]⋅[ sen( x+h )⋅sen ( x )]

−1sen ( x )

⋅cos ( x )sen( x )

[ csc( x ) ] '=(1 )⋅sen (0) sen( x )[cos(0 )+1 ]⋅[ sen( x+0 )⋅sen ( x )]

−csc( x )⋅ctg( x )

[ csc( x ) ] '=02 sen2 ( x )

−csc( x )⋅ctg( x )

[ csc( x ) ] '=−csc( x )⋅ctg( x )R // .

19 .)Sea y=sen ( x )Hallar [ f −1 ( x ) ]' .[ y−1=arcsen (x )]≡[ sen( y )=x ]Por lo tanto( y−1 ) '=( x )' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=sen( y )∴( x ) '=cos( y )

sen( y )=cateto opuestohipotenusa

sen( y )=x1

∴ cos ( y )=√1−x2

Por lo tanto( y−1 )'=1

√1−x2R //,(−1< x<1 )

yaque sen ( y )es acot adaeneste int ervalo .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 10

20 .)Sea y=cos (x )Hallar [ f−1( x )] ' .[ y−1=arccos( x ) ]≡[cos ( y )=x ]Por lo tanto( y−1) '=( x ) ' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=cos ( y )∴( x )'=−sen( y )

cos ( y )=catetoopuestohipotenusa

cos ( y )=x1

∴ sen ( y )=√1−x2

Por lo tanto( y−1 )'=−1

√1−x2R //,(−1< x<1 )

yaque cos( y )esacot ada eneste int ervalo .

21 .)Sea y=tg( x )Hallar [ f−1( x ) ] ' .[ y−1=arctg ( x )]≡ [tg ( y )=x ]Por lo tanto( y−1 ) '=( x )' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=tg ( y )∴( x )'=sec2 ( y )

tg ( y )=catetoopuestocatetoadyacente

tg ( y )=x1

∴ cos( y )=1

√1+x2⇒sec ( y )=√1+x2

Por lo tanto( y−1 )'=1

1+x2R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 11

22 .)Sea y=ctg( x )Hallar [ f −1 ( x ) ]' .[ y−1=arcctg ( x )]≡ [ctg( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dado que( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=ctg( y )∴( x ) '=−csc2( y )

ctg( y )=cateto adyacentecateto opuesto

ctg( y )=x1

∴sen ( y )=1

√1+x2⇒ csc ( y )=√1+x2

Por lo tanto( y−1 )'=−1

1+x2R // .

23 .)Sea y=sec( x )Hallar [ f −1 (x )] ' .[ y−1=arc sec( x ) ]≡[sec( y )=x ]Por lo tanto( y−1) '=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=sec( y )∴( x )'=sec( y )⋅tg( y )

sec( y )=hipotenusacatetoadyacente

sec( y )=x1

∴ tg( y )=√ x2−1

Por lo tanto( y−1 )'=1|x|⋅√ x2−1

R //, (1<|x|)

24 . )Sea y=csc ( x )Hallar[ f −1( x ) ] ' .[ y−1=arc csc ( x ) ]≡[csc ( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=csc ( y )∴( x )'=−csc( y )⋅ctg( y )

csc ( y )=hipotenusacatetoopuesto

csc ( y )=x1

∴ ctg( y )=√x2−1

Por lo tanto( y−1 )'=−1|x|⋅√x2−1

R //, (1<|x|)

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Demuestre formalmente las derivadas de las siguientes funciones

D V N Ing. ELECTICA POTENCIA Página 12

24 . )Sea y=csc ( x )Hallar[ f −1( x ) ] ' .[ y−1=arc csc ( x ) ]≡[csc ( y )=x ] Por lo tanto( y−1 )'=( x ) ' .

Dadoque( y−1 ) '=dydx

y ( x )'=dxdy

, entonces ( y−1) '=1

(dxdy )∴( y−1 )'=1

(x )'

x=csc ( y )∴( x )'=−csc( y )⋅ctg( y )

csc ( y )=hipotenusacatetoopuesto

csc ( y )=x1

∴ ctg( y )=√x2−1

Por lo tanto( y−1 )'=−1|x|⋅√x2−1

R //, (1<|x|)

31 .)[ arg senh( x ) ] '=1

√x2+1.

32 .)[ argcosh( x ) ]'=1

√x2−1,( x>1 ).

33 .)[ arg tgh( x ) ] '=11−x2

,(|x|<1)

34 . )[arg ctgh( x ) ]'=1

1−x2.(|x|>1 )

35 .)[ argsec h( x ) ] '=−1

x⋅√1−x2

( 0<x<1) .

36 .) [argcsc h( x ) ] '=−1|x|⋅√1+ x2

( x≠0) .

25 .)[ senh ( x ) ] '=cos( x ) .26 .) [cosh ( x ) ] '=senh ( x ).27 .) [ tgh( x ) ]'=sec2h( x ).28 .)[ ctgh( x ) ]'=−csc2 ( x ).29 .)[ sech ( x ) ]'=−sec h( x )⋅tgh( x ) .30 .)[ csc h( x ) ]'=−csc h( x )⋅ctgh( x ).

senh( x )=ex−e−x

2. cosh ( x )=e

x+e−x

2.

tgh( x )=ex−e− x

e x+e−x. ctgh( x )=ex+e− x

ex−e−x.

sec h( x )=2ex+e− x

. csch (x )=2e x−e− x

.

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 13

25 .) f (x )=senh( x )

[ senh( x ) ] '=limh→0

senh ( x+h)−senh (x )h

.

[ senh( x ) ] '=limh→0

ex+h−e−x−h

2−ex−e−x

2h

[ senh( x ) ] '=limh→0

ex+h−e−x−h−ex+e− x

2h

[ senh( x ) ] '=limh→0

(ex+h−ex )−(e−x−h−e− x )2h

[ senh( x ) ] '=limh→0

ex (eh−1 )2h

−limt→0

e−x (e−h−1 )2h

[ senh( x ) ] '=limh→0

ex

2⋅limh→0

eh−1h

−limh→0

e− x

2⋅limh→0

e−h−1h

[ senh( x ) ] '=ex

2⋅(1)−e

−x

2⋅(−1)

[ senh( x ) ] '=ex+e−x

2≡cosh ( x )R // .

26 .) f ( x )=cosh ( x )

[cosh ( x ) ] '=limh→0

cosh ( x+h)−cosh ( x )h

.

[cosh ( x ) ] '=limh→0

ex+h+e− x−h

2−e

x+e−x

2h

[cosh ( x ) ] '=limh→0

ex+h+e− x−h−ex−e− x

2h

[cosh ( x ) ] '=limh→0

(ex+h−ex )+(e− x−h−e−x )2h

[cosh ( x ) ] '=limh→0

ex (eh−1 )2h

+ limt→0

e−x (e−h−1 )2h

[cosh ( x ) ] '=limh→0

ex

2⋅limh→0

eh−1h

+ limh→0

e−x

2⋅limh→0

e−h−1h

[cosh ( x ) ] '=ex

2⋅(1)+e

−x

2⋅(−1)

[cosh ( x ) ] '=ex−e−x

2≡senh( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 14

27 .) f ( x )=tgh ( x )

[ tgh ( x ) ]'=limh→0

tgh ( x+h)−tgh( x )h

.

[ tgh ( x ) ]'=limh→0

e x+h−e− x−h

e x+h+e−x−h−e

x−e− x

e x+e−x

h

[ tgh ( x ) ]'=limh→0

(ex+h−e−x−h ) (ex+e−x )−(e x+h+e−x−h) (e x−e− x )h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

(e2 x+h−e−h+eh−e−2 x−h )− (e2 x+h+e−h−eh−e−2 x−h)h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h)+2 (eh−e−h )h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

2 [ (eh−1 )− (e−h−1 ) ]h⋅(ex+h+e−x−h ) (ex+e−x )

[ tgh ( x ) ]'=limh→0

2

(ex+h+e− x−h) (ex+e− x )⋅[ limh→0

(eh−1 )−(e−h−1 )h ]

[ tgh ( x ) ]'=2(ex+0+e− x−0) (ex+e− x )

⋅[ limh→0

eh−1h

−limh→0

e−h−1h ]

[ tgh ( x ) ]'=2

(ex+e− x )2⋅(1−(−1 ))=[2(ex+e− x ) ]

2

=sec h2 (x )R // .

28 .) f (x )=ctgh( x )

[ctgh( x ) ] '=limh→ 0

ctgh(x+h )−ctgh( x )h

.

[ctgh( x ) ] '=limh→ 0

ex+h+e− x−h

ex+h−e−x−h−ex+e− x

ex−e−x

h

[ctgh( x ) ] '=limh→ 0

(ex+h+e−x−h ) (ex−e−x )−(ex+h−e−x−h ) (ex+e−x )h⋅(e x+h+e−x−h) (e x+e− x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h+e−h−eh−e−2 x−h)−(e2 x+h−e−h+eh−e−2 x−h )h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h )−2 (eh−e−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2 [ (eh−1 )−(e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2(ex+h−e−x−h) (e x−e− x )

⋅[ limh→0 (eh−1 )−(e−h−1 )h ]

[ctgh( x ) ] '=−2(ex+0−e−x−0) (e x−e− x )

⋅[ limh→0 eh−1h

−limh→0

e−h−1h ]

[ctgh( x ) ] '=−2

(ex−e−x )2⋅(1−(−1 ) )

[ctgh( x ) ] '=−[2(e x−e− x ) ]2

[ctgh( x ) ] '=−csch2( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 15

28 .) f (x )=ctgh( x )

[ctgh( x ) ] '=limh→ 0

ctgh(x+h )−ctgh( x )h

.

[ctgh( x ) ] '=limh→ 0

ex+h+e− x−h

ex+h−e−x−h−ex+e− x

ex−e−x

h

[ctgh( x ) ] '=limh→ 0

(ex+h+e−x−h ) (ex−e−x )−(ex+h−e−x−h ) (ex+e−x )h⋅(e x+h+e−x−h) (e x+e− x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h+e−h−eh−e−2 x−h)−(e2 x+h−e−h+eh−e−2 x−h )h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

(e2 x+h−e2 x+h)+(e−2 x−h−e−2 x−h )−2 (eh−e−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2 [ (eh−1 )−(e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[ctgh( x ) ] '=limh→ 0

−2(ex+h−e−x−h) (e x−e− x )

⋅[ limh→0 (eh−1 )−(e−h−1 )h ]

[ctgh( x ) ] '=−2(ex+0−e−x−0) (e x−e− x )

⋅[ limh→0 eh−1h

−limh→0

e−h−1h ]

[ctgh( x ) ] '=−2

(ex−e−x )2⋅(1−(−1 ) )

[ctgh( x ) ] '=−[2(e x−e− x ) ]2

[ctgh( x ) ] '=−csch2( x )R // .

29 .) f (x )=sec h( x )

[sec h( x ) ] '=limh→0

sec h( x+h )−sec h( x )h

.

[sec h( x ) ] '=limh→0

2

ex+h+e− x−h−2ex+e−x

h

[sec h( x ) ] '=limh→0

2 (ex+e− x )−2 (e x+h+e−x−h)h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

2 (−ex+h+ex−e− x−h+e−x )h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ (ex+h−ex )+(e−x−h−e−x ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ ex (eh−1 )+e−x (e−h−1 ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2(ex+h+e− x−h ) (ex+e− x )

⋅[ limh→0 ex (eh−1 )+e−x (e−h−1 )h ]

[sec h( x ) ] '=−2(ex+0+e− x−0 ) (ex+e− x )

⋅[ex limh→0 eh−1h

+e− x limh→0

e−h−1h ]

[sec h( x ) ] '=−2(ex+e−x )2

⋅(ex−e−x )

[sec h( x ) ] '=−2(ex+e−x )

⋅(ex−e− x )(ex+e−x )

[sec h( x ) ] '=−sech( x )⋅tgh( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 16

29 .) f (x )=sec h( x )

[sec h( x ) ] '=limh→0

sec h( x+h )−sec h( x )h

.

[sec h( x ) ] '=limh→0

2

ex+h+e− x−h−2ex+e−x

h

[sec h( x ) ] '=limh→0

2 (ex+e− x )−2 (e x+h+e−x−h)h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

2 (−ex+h+ex−e− x−h+e−x )h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ (ex+h−ex )+(e−x−h−e−x ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2 [ ex (eh−1 )+e−x (e−h−1 ) ]h⋅(e x+h+e−x−h) (e x+e−x )

[sec h( x ) ] '=limh→0

−2(ex+h+e− x−h ) (ex+e− x )

⋅[ limh→0 ex (eh−1 )+e−x (e−h−1 )h ]

[sec h( x ) ] '=−2(ex+0+e− x−0 ) (ex+e− x )

⋅[ex limh→0 eh−1h

+e− x limh→0

e−h−1h ]

[sec h( x ) ] '=−2(ex+e−x )2

⋅(ex−e−x )

[sec h( x ) ] '=−2(ex+e−x )

⋅(ex−e− x )(ex+e−x )

[sec h( x ) ] '=−sech( x )⋅tgh( x )R // .

30 .) f (x )=csc h( x )

[csc h( x ) ] '=limh→0

csch( x+h )−csc h( x )h

.

[csc h( x ) ] '=limh→0

2

ex+h−e−x−h−2ex−e−x

h

[csc h( x ) ] '=limh→0

2 (ex−e−x )−2 (ex+h−e−x−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

2 (−ex+h+e x+e−x−h−e−x )h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ (ex+h−ex )−(e− x−h−e−x ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ ex (eh−1 )−e− x (e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2(ex+h−e−x−h) (ex−e− x )

⋅[ limh→0

ex (eh−1 )−e−x (e−h−1 )h ]

[csc h( x ) ] '=−2(ex+0−e−x−0 ) (ex−e− x )

⋅[ex limh→0 eh−1h

−e−x limh→0

e−h−1h ]

[csc h( x ) ] '=−2(ex−e−x )2

⋅(ex+e−x )

[csc h( x ) ] '=−2(ex−e−x )

⋅(ex+e− x )(ex−e−x )

[csc h( x ) ] '=−csch( x )⋅ctgh( x )R // .

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

Si f (x) es una funcion diferenciable y f -1(x) su inversa, halle [f -1(x)]’

D V N Ing. ELECTICA POTENCIA Página 17

30 .) f (x )=csc h( x )

[csc h( x ) ] '=limh→0

csch( x+h )−csc h( x )h

.

[csc h( x ) ] '=limh→0

2

ex+h−e−x−h−2ex−e−x

h

[csc h( x ) ] '=limh→0

2 (ex−e−x )−2 (ex+h−e−x−h)h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

2 (−ex+h+e x+e−x−h−e−x )h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ (ex+h−ex )−(e− x−h−e−x ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2 [ ex (eh−1 )−e− x (e−h−1 ) ]h⋅(e x+h−e− x−h ) (ex−e−x )

[csc h( x ) ] '=limh→0

−2(ex+h−e−x−h) (ex−e− x )

⋅[ limh→0

ex (eh−1 )−e−x (e−h−1 )h ]

[csc h( x ) ] '=−2(ex+0−e−x−0 ) (ex−e− x )

⋅[ex limh→0 eh−1h

−e−x limh→0

e−h−1h ]

[csc h( x ) ] '=−2(ex−e−x )2

⋅(ex+e−x )

[csc h( x ) ] '=−2(ex−e−x )

⋅(ex+e− x )(ex−e−x )

[csc h( x ) ] '=−csch( x )⋅ctgh( x )R // .

31 .)Sea y=senh ( x )Hallar [ f−1 (x )] ' .

x=senh( y )

sen( y )=ey−e− y

2

x=ey−e− y

22 x=e y−e− y

e y (2 x )=e y (e y−e− y )2 xe y=e2 y−1 ; t=e y

e2 y−2xe y−1=0t2−2xt−1=0

t=2 x±√4 x2+42

t=x+√ x2+1∨t=x−√x2+1e y=x+√x2+1y−1=ln (x+√ x2+1 )

( y−1) '=1

x+√x2+1⋅(1+x√x2+1 )

( y−1) '=1x+√x2+1

⋅(x+√ x2+1√x2+1 )

( y−1) '=1

√x2+1Por lo tanto( y−1 )'=1

√ x2+1R //

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 18

32 .)Sea y=cosh ( x )Hallar [ f−1 (x )] ' .

x=cosh ( y )

cos ( y )=e y+e− y

2

x=ey+e− y

22 x=e y+e− y

e y (2 x )=e y (e y+e− y )2 xe y=e2 y+1; t=e y

e2 y−2xe y+1=0t2−2xt+1=0

t=2 x±√4 x2−42

t=x+√ x2−1∨t=x−√x2−1e y=x+√x2−1y−1=ln (x+√ x2−1 )

( y−1) '=1

x+√x2−1⋅(1+ x√x2−1 )

( y−1) '=1x+√x2−1

⋅( x+√x2−1√x2−1 )

( y−1) '=1

√x2−1Por lo tanto( y−1 )'=1

√ x2−1R //,( x>1)

33 .)Sea y=tgh( x )Hallar [ f−1( x ) ] ' .

x=tgh( y )

tg( y )=ey−e− y

e y+e− y

x=ey−e− y

e y+e− y

x (e y+e− y )=e y−e− y

xe y (e y+e− y )=e y (e y−e− y )xe2 y+ x=e2 y−1e2 y−xe 2 y=x+1e2 y (1−x )=x+1

e2 y=x+11−x

2 y−1=ln(x+11−x )y−1=1

2ln(x+11−x )

( y−1) '=12⋅(1−xx+1 )⋅1−x+1+x

(1−x )2

( y−1) '=12⋅2

(1+x ) (1−x )

Por lo tanto( y−1 )'=11−x2

R //,(|x|<1)

34 . )Sea y=ctgh( x )Hallar [ f −1( x ) ] ' .

x=ctgh( y )

ctg( y )=ey+e− y

e y−e− y

x=ey+e− y

e y−e− y

x (e y−e− y )=e y+e− y

xe y (e y−e− y )=e y (e y+e− y )xe2 y−x=e2 y+1xe2 y−e2 y=x+1e2 y ( x−1 )=x+1

e2 y=x+1x−1

DERIVADA DE UNA FUNCIÓN POR MEDIO DE LÍMITES

D V N Ing. ELECTICA POTENCIA Página 19

34 . )Sea y=ctgh( x )Hallar [ f −1( x ) ] ' .

x=ctgh( y )

ctg( y )=ey+e− y

e y−e− y

x=ey+e− y

e y−e− y

x (e y−e− y )=e y+e− y

xe y (e y−e− y )=e y (e y+e− y )xe2 y−x=e2 y+1xe2 y−e2 y=x+1e2 y ( x−1 )=x+1

e2 y=x+1x−1

2 y−1=ln(x+1x−1 )y−1=1

2ln(x+1x−1 )

( y−1) '=12⋅( x−1x+1 )⋅x−1−x−1

( x−1 )2

( y−1) '=12⋅−2

( x+1 ) (x−1 )

( y−1) '=−1x2−1

Por lo tanto( y−1)'=11−x2

R //,(|x|>1)

35 .)Sea y=sech ( x )Hallar [ f−1 (x )] ' .

x=sec h( y )

sec( y )=2e y+e− y

x=2e y+e− y

x (e y+e− y )=2xe y (e y+e− y )=2e yxe2 y+ x=2e y ; t=e y

xt2−2 t+ x=0

t=2±√4−4 x22 x

t=1+√1−x2

x∨t=

1−√1−x2

x

e y=1+√1−x2

x

y−1=ln(1+√1−x2

x )

( y−1) '=x

1+√1−x2⋅(−x2

√1−x2−1−√1−x2

x2)

( y−1) '=x

1+√1−x2⋅(−x2−√1−x2−1+x2

x2√1−x2 )( y−1) '=−x

1+√1−x2⋅(1+√1−x2

x2√1−x2 )Por lo tanto( y−1 )'=−1

x √1−x2R //,(0< x<1 )

36 .) Sea y=csc h( x )Hallar [ f −1 ( x ) ]' .

x=csc h( y )

csc ( y )=2e y−e− y

x=2e y−e− y

x (e y−e− y )=2xe y (e y−e− y )=2e yxe2 y−x=2e y ; t=e y

xt2−2 t−x=0

t=2±√4+4 x22 x

t=1+√1+x2x

∨t=1−√1+ x2x

e y=1+√1+x2x

y−1=ln(1+√1+x2x )

( y−1) '=x

1+√1+x2⋅(x

2

√1+x2−1−√1+x2

x2)

( y−1) '=x

1+√1+x2⋅(x2−√1+x2−1−x2

x2 √1+x2 )( y−1) '=−x

1+√1+x2⋅(1+√1+x2x2 √1+x2 )

Por lo tanto( y−1 )'=−1|x|⋅√1+x2

R //,( x≠0 )

top related