1 fractales parte 2. para iterar una función f(x), se aplica inicialmente un valor x = a 0....

Post on 09-Feb-2015

8 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Fractalesparte 2

Para iterar una función f(x), se aplica inicialmente un valor x = a0.

Obtenemos a1 = f (a0), a2 = f (f(a0)), etc. Podríamos considerar una secuencia infinita

de iteraciones. a0, a1 = f (a0), a2 = f (a1), a3 = f (a2), ...

2

Iteración de funciones

3

Ejercicio 1

Sea f(x) = x2 – 0.75

Encuentre las primeras 30 iteraciones (usar Excel).

a) Para a0  = 1.

b) Para a0  = 2.

c) ¿Las iteraciones anteriores parecen converger a un número o región en particular?

Iteración de funciones

4

Iteración de funciones

Ejercicio 2

Considera la siguiente función, donde c es un número complejo cualquiera:

Encuentre las primeras 30 iteraciones (usar Excel).

a) Para c = -1, c = -0.1 + 0.75i, c = 0, c = -0.1 - 0.75i.

b) ¿Cuáles de las iteraciones anteriores parecen converger a un número o región en particular?

5

1. function M5(complex z) {2. complex c = z;3. for(int i=0; i < 30; i++){4. if (5 ≤ modulo(z) ) then return(i);5. z = z*z + c;6. }7. return(i);8. }

Ejercicio 3Suponiendo el siguiente programa para la función M5:

Iteración de funciones

Determine:

a) M5(-1+i)b) M5(-1-i)c) M5(0.4+0.1i)d) M5(5+3i)e) M5(0.1)

6

1. function J5(complex z, complex c) {2. for(int i=0; i < 30; i++){3. if (5 ≤ modulo(z) ) then return(i);4. z = z*z + c;5. }6. return(i);7. }

Ejercicio 4Suponiendo el siguiente programa para la función J5:

Iteración de funciones

Determine:

a) J5(-1-i, 0.2+0.8i)b) J5(-1+i , 0.2+0.8i)c) J5(0.4+0.1i, 0.4+0.1i)d) J5(5+3i, i)e) J5(0.1, 0.1)

Fractales IFS (Iterated Function System)

Son fractales que se obtienen coloreando puntos en el plano complejo, de acuerdo al comportamiento de cada número complejo en funciones iteradas.

7

8

Conjunto de Mandelbrot

Sea c un número complejo cualquiera. A partir de c, se construye una sucesión por inducción:

Si esta sucesión queda acotada, entonces se dice que c pertenece al conjunto de Mandelbrot, y si no, queda excluido del mismo.Por ejemplo, si c = 1 obtenemos la sucesión 0, 1, 2, 5, 26… que diverge. Como no está acotada, 1 no es un elemento del conjunto de Mandelbrot.En cambio, si c = -1 obtenemos la sucesión 0, -1, 0, -1,… que sí es acotada, y por tanto, -1 sí pertenece al conjunto de Mandelbrot.

9

Conjunto de Mandelbrot

10

Conjunto de Mandelbrot

11

Conjunto de Mandelbrot: Autosimilitud

Ver:http://en.wikipedia.org/wiki/Mandelbrot_set

12

Ejercicio 5

¿Cuáles de los siguientes puntos pertenecen al conjunto de Mandelbrot?

a) c = 0.5 i

b) c = i

c) c = 0.5 – i

Puedes verificarlo usando las ligas: http://www.bugman123.com/Fractals/Mandelbrot.htmlhttp://facstaff.unca.edu/mcmcclur/java/Julia/

Conjunto de Mandelbrot

13

Conjunto de MandelbrotDiferentes colores

Defina un color para el conjunto (puede ser negro o el tono más oscuro) además de una escala de colores (1 a n). A cada punto c del plano complejo aplique la siguiente estrategia de coloreo:

2|| z

• Si c es un punto que no escapa al infinito al iterar la función, entonces c pertenece al conjunto de Mandelbrot (coloree el punto del color elegido para el conjunto).

• De lo contrario, observar cuál es la primera iteración en que

• Coloree el punto c con el color asociado a esa iteración.

14

Conjunto de MandelbrotDiferentes colores

Hay distintas maneras de colorear el conjunto de Mandelbrot.

Por ejemplo:

Si en las iteraciones 1 – 4, elegir color 1.Si en las iteraciones 5 – 8, elegir color 2.Si en las iteraciones 9 – 12, elegir color 3.Etc.

2|| z2|| z2|| z

Planos alternos para el Conjunto de Mandelbrot

/121 nn zz

Plano 1/m

Se itera esta función:

Mandelbrot Set (in the 1/mu plane) :x in [-4.24221693,1.54934580];y in [-2.92373697,2.86782575].

/1/1

Plano 1 / (m + 0.25)

Planos alternos para el Conjunto de Mandelbrot

17

Conjunto de Julia

Nombrados así en honor al matemático francés Gaston Julia, quien investigó sus propiedades en 1915 – 1918.

Sea c un número complejo cualquiera.

Elegir un valor de z0.Iterar la función:

Si esta sucesión queda acotada, entonces se dice que z0 pertenece al conjunto de Julia con parámetro c ; y si no, queda excluido del mismo.

czz nn 2

1

18

Conjunto de Julia

Ejercicio 6

¿Cuáles de los siguientes puntos pertenecen al conjunto de Julia con parámetro c = – 1 ? (usar Excel)

a) z = 0.5 i

b) z = i

c) z = 0.5 – i

Puedes dibujar el fractal: http://www.bugman123.com/Fractals/Mandelbrot.htmlhttp://facstaff.unca.edu/mcmcclur/java/Julia/

19

Conjuntos de Julia

Si el parámetro c del conjunto de Julia, pertenece al conjunto de Mandelbrot, entonces se produce un conjunto conexo.

Si el parámetro c del conjunto de Julia, NO pertenece al conjunto de Mandelbrot, entonces se produce un conjunto disconexo (también llamado polvo Fatou o conjunto de Cantor).

Obsérvalo:http://www.bugman123.com/Fractals/Mandelbrot.htmlhttp://facstaff.unca.edu/mcmcclur/java/Julia/

Tomando al parámetro

c = -0.75

Pertenecen al conjunto los valores de z0 que no

escapan al iterar la función.

Conjunto de Julia

75.021 nn zz

Tomando al parámetro c como el centro del círculo de arriba del conjunto de Mandelbrot.

Conjunto de Julia

Tomando al parámetro

c = 0.4

Conjunto de Julia

Un fractal clásico más:Conjunto de Cantor

El conjunto de Cantor toma su nombre de Georg F. L. P. Cantor que en 1883 lo utilizó como herramienta de investigación.

Su verdadero creador fue Henry Smith, un profesor de geometría de Oxford, en 1875. Es uno de los fractales más antiguos.

24

n = 0

n = 1

n = 2

n = 3

Construcción del Conjunto de Cantor

IteraciónNúm. de

segmentosLongitud de

cada segmento0123n

Completar la tabla:

Conjunto de Cantor

Considerar la longitud del segmento que se elimina en cada iteración: 1/3, 2/9, 4/27, etc. ¿Cuál es la suma total de la longitud de los segmentos eliminados?

Conjunto de Cantor

27

Conjunto de Cantor

El conjunto de Cantor es el conjunto de los puntos que quedan al final: los 1/3n donde n corresponde a los números naturales.Es un conjunto disconexo de puntos sobre un segmento de recta con muy interesantes propiedades.

top related