06 enlace químico

Post on 27-Jul-2015

65 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

El enlace químico.

Unidad 6.

2

Contenidos (1)

1.- El enlace químico.

1.1. Enlace iónico. Reacciones de ionización.

1.2. Enlace covalente. Modelo de Lewis.

2.- Justificación de la fórmula de los principales compuestos binarios.

3.- Enlace covalente coordinado.

4.- Parámetros que caracterizan a los compuestos covalentes.

3

Contenidos (2)

5.- Carácter iónico del enlace covalente.

6.- Momento dipolar. Geometría de los compuestos covalentes.

7.- Fuerzas intermoleculares.

7.1.Enlace de Hidrógeno.

7.2.Fuerzas de Van der Waals

8.- Introducción al enlace metálico.

9.- Propiedades de los compuestosiónicos, covalentes y metálicos.

4

Enlace químico Son las fuerzas que mantienen unidos a los átomos

entre sí para formar moléculas o iones. Son de tipo eléctrico. Al formarse un enlace se desprende energía. La distancia a la que se colocan los átomos es a la que

se desprende mayor energía produciéndose la máxima estabilidad.

Los átomos se unen pues, porque así tienen una menor energía y mayor estabilidad que estando separado.

5

Diagrama de energía en la formación de una molécula de H2

6

Estabilidad en un átomo. Generalmente, los a´tomos buscan su máxima

estabilidad adoptando un a configuración electrónica similar a la que tienen los gases nobles (1 s2 o n s2p6).

El comportamiento químico de los átomos viene determinado por la estructura electrónica de su última capa (capa de valencia).

Para conseguir la conf. electrónica de gas noble, los átomos perderán, capturarán o compartirán electrones (regla del octeto).

7

Tipos de enlaces

Iónico: unen iones entre sí. Atómicos: unen átomos neutros entre sí.

– Covalente– Metálico

Intermolecular: unen unas moléculas a otras.

8

Enlace iónico

Se da entre metales y no-metales. Los metales tienen, en general, pocos electrones

en su capa de valencia y tienden a perderlos para quedar con la capa anterior completa (estructura de gas noble) convirtiéndose en cationes.

Los no-metales tienen casi completa su capa de valencia y tienden a capturar los electrones que les faltan convirtiéndose en aniones y conseguir asimismo la estructura de gas noble.

9

Reacciones de ionización Los metales se ionizan perdiendo electrones: M – n e– Mn+

Los no-metales se ionizan ganando electrones: N + n e– Nn–

Ejemplos:Ejemplos: Metales: Na – 1 e– Na+

Ca – 2 e– Ca2+ Fe – 3 e– Fe3+

No-metales: Cl + 1 e– Cl– O + 2 e– O2–

10

Enlace iónico (cont) En enlace iónico se da por la atracción electrostática

entre cargas de distinto signo, formando una estructura cristalina.

EjemploEjemplo: : Na –––––– Na+

1 e– Cl –––––– Cl–

El catión Na* se rodea de 6 aniones Cl– uniéndose a todos ellos con la misma fuerza, es decir, no existe una fuerza especial entre el Cl– y el Na+ que le dio el e–.

La fórmula de estos compuestos es empírica.

11

Ejemplo:Ejemplo: Escribir las reacciones de ionización y deducir la fórmula del compuesto iónico formado por oxígeno y aluminio.

Las reacciones de ionización serán: (1) Al – 3 e– Al3+

(2) O + 2 e– O2–

Como el número de electrones no coincide, para hacerlos coincidir se multiplica la reacción (1) ·2 y la (2) · 3.

2 ·(1) 2 Al – 6 e– 2 Al3+

3 ·(2) 3 O + 6 e– 3 O2–

Sumando: 2 Al + 3 O 2 Al3++ 3 O2–

La fórmula empírica será AlAl22OO33

12

Estructura de compuestos iónicos (cloruro de sodio)

Se forma unaestructuracristalinatridimensionalen dondetodos losenlaces sonigualmentefuertes.

Molecula.fli

13

Propiedades de los compuestos iónicos

Duros. Punto de fusión y ebullición altos. Sólo solubles en disolventes polares. Conductores en estado disuelto o

fundido. Frágiles.

14

Solubilidad de iones en

disolventes polares

Fragilidad

15

Enlace covalente

Se da entre dos átomos no-metálicos por compartición de e– de valencia.

La pareja de e– (generalmente un e– de cada átomo) pasan a girar alrededor de ambos átomos en un orbital molecular.

Si uno de los átomos pone los 2 e– y el otro ninguno se denomina ”enlace covalente coordinado” o “dativo”.

16

Estructura de Lewis. Consiste en representar con puntos “·” o “x” los e– de la

capa de valencia. EjemplosEjemplos::

Grupo: 17 16 15 14

Átomo: Cl O N C

Nº e– val. 7 6 5 4

·· · · · : Cl · : O · : N · · C ·

·· ·· · ·

17

Enlace covalente. Puede ser: Enl. covalente simple: Se comparten una

pareja de electrones. Enl. covalente doble: Se comparten dos

parejas de electrones. Enl. covalente triple: Se comparten tres

parejas de electrones. No es posible un enlace covalente cuádruple

entre dos átomos por razones geométricas.

18

Tipos de enlace covalente.

Enlace covalente puro– Se da entre dos átomos iguales.

Enlace covalente polar– Se da entre dos átomos distintos.– Es un híbrido entre el enlace covalente

puro y el enlace iónico.

19

Ejemplos de enlace covalente puro.

Se da entre dos átomos iguales. Fórmula 2 H · (H · + x H) H ·x H ; H–H H2

·· ·· ·· ·· ·· ·· ·· 2 :Cl · :Cl· + xCl: :Cl·xCl: ; :Cl–Cl: Cl2 ·· ·· ·· ·· ·· ·· ··

· · x ·x 2 :O· :O· + xO: :O·xO: ; :O=O: O2

·· ·· ·· ·· ·· ·· ··

· · x ·x 2 :N· :N· + xN: :N·xN: ; :NN: N2

· · x ·x

Enl. covalente simple

Enl. covalente triple

Enl. covalente doble

20

Enlace covalente polar (entre dos no-metales distintos).

Todos los átomos deben tener 8 e– en su última capa (regla del octeto) a excepción del hidrógeno que completa su única capa con tan sólo 2 e– .

La pareja de e– compartidos se encuentra desplazada hacia el elemento más electronegativo, por lo que aparece una fracción de carga negativa “–” sobre éste y una fracción de carga positiva sobre el elemento menos electronegativo “+”.

21

Ejemplos deenlace covalente polar.

·· ·· ·· :Cl · + x H :Cl ·x H ; :Cl–H HClHCl ·· ·· ··

·· ·· ·· · O · + 2 x H Hx ·O ·x H ; H–O–H HH22OO ·· ·· ··

·· ·· ·· · N · + 3 x H Hx ·N ·x H ; H–N–H NHNH33 · ·x |

H H

·· ·· ·· ·· ·· ·· ·· ·· · O · + 2 x Cl: :Clx ·O ·x Cl: ; :Cl–O–Cl: ClCl22OO ·· ·· ·· ·· ·· ·· ·· ··

–+

–+

–+

+–

–+

22

Ejercicio:Ejercicio: Escribe la representación de Lewis y decide cuál será la fórmula de un compuesto formado por Si y S.

La representación de Lewis de cada átomo es: · ·

· Si · (grupo 14) : S · (grupo 16) · ··

La representación de Lewis de molecular será: ·· ··

: S = Si = S :

La fórmula molecular será pues: SiSSiS22

23Cuatro elementos diferentes A,B,C,D tienen número atómico 6,9,13 y 19

respectivamente. Se desea saber: a)a) El número de electrones de valencia de cada uno de ellos. b)b) Su clasificación en metales y no metales. c)c) La fórmula de los compuestos que B puede formar con los demás ordenándolos del más iónico al más covalente.

Z a)a) Nº e– valencia b)b) Metal/No-metal

A 6 4 No-metal

B 9 7 No-metal

C 13 3 Metal

D 19 1 Metal

c) c) DB < CB3 < AB4 < B2

Cuestión de Selectividad

(Septiembre 97)

Cuestión de Selectividad

(Septiembre 97)

26

Enlace covalente coordinado. Se forma cuando uno de los átomos pone

los 2 e– y el otro ninguno. Se representa con una flecha “” que

parte del átomo que pone la pareja de e– .

EjemploEjemplo:: ·· ··

Hx ·O ·x H + H+ H–O–H HH33OO++

·· H

++

+

27

Compuestos covalentes atómicos.

Forman enlaces covalentes simples en dos o tres dimensiones del espacio con átomos distintos.

EjemplosEjemplos:: SiO2, C (diamante),

C (grafito)ESTRUCTURA DEL GRAFITO

28

Propiedades de los compuestos covalentes

MolecularesMoleculares Puntos de fusión y

ebullición bajos. Los comp.covalentes

apolares (puros) son solubles en disolventes apolares y los polares en disolventes polares.

Conductividad parcial sólo en compuestos polares.

AtómicosAtómicos Puntos de fusión y

ebullición muy elevados. Insolubles en todos los

disolventes. No conductores (el grafito

sí presenta conductividad por la deslocalización de un e– de cada átomo).

29

Enlace metálico.

Se da entre átomos metálicos. Todos tienden a ceder e– . Los cationes forman una estructura cristalina,

y los e– ocupan los intersticios que quedan libres en ella sin estar fijados a ningún catión concreto (mar de e– ).

Los e– están, pues bastante libres, pero estabilizan la estructura al tener carga contraria a los cationes.

30

Empaquetamiento de cationes metálicos.

31

Propiedades de los compuestos metálicos.

Punto de fusión y ebullición muy variado (aunque suelen ser más bien alto)

Son muy solubles en estado fundido en otros metales formando aleaciones.

Muy buenos conductores en estado sólido.

Son dúctiles y maleables (no frágiles).

presión

32

Fuerzas intermoleculares

Enlace (puente) de hidrógenoEnlace (puente) de hidrógeno– Se da entre moléculas muy polarizadas por ser

uno de los elementos muy electronegativo y el otro un átomo de H, que al tener “+” y ser muy pequeño permite acercarse mucho a otra

molécula. Fuerzas de Van der Waals:Fuerzas de Van der Waals:

– Fuerzas de dispersión (London)– Atracción dipolo-dipolo

33

Fuerzas intermoleculares (cont.) Fuerzas de dispersión (London):Fuerzas de dispersión (London):

– Aparecen entre moléculas apolares. En un momento dado la nube electrónica se desplaza al azar hacia uno de los átomos y la molécula queda polarizada instantáneamente. Este dipolo instantáneo induce la formación de dipolos en moléculas adyacentes.

Atracción dipolo-dipolo: Atracción dipolo-dipolo: – Se da entre moléculas polares. Al ser los

dipolos permanentes la unión es más fuerte.

34

Fuerzas intermolecularesFuerzas de dispersión

Enlace de hidrógeno

Atracción dipolo-dipolo

35

Estructura del hielo(puentes de hidrógeno)

top related